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Abstract: The effect of cloud parallax shift occurs in satellite imaging, particularly for high angles of
satellite observations. This study demonstrates new methods of parallax effect correction for clouds
observed by geostationary satellites. The analytical method that could be found in literature, namely
the Vicente et al./Koenig method, is presented at the beginning. It approximates a cloud position
using an ellipsoid with semi-axes increased by the cloud height. The error values of this method reach
up to 50 meters. The second method, which is proposed by the author, is an augmented version of
the Vicente et al./Koenig approach. With this augmentation, the error can be reduced to centimeters.
The third method, also proposed by the author, incorporates geodetic coordinates. It is described as a
set of equations that are solved with the numerical method, and its error can be driven to near zero
by adjusting the count of iterations. A sample numerical solution procedure with application of the
Newton method is presented. Also, a simulation experiment that evaluates the proposed methods
is described in the paper. The results of an experiment are described and contrasted with current
technology. Currently, operating geostationary Earth Observation (EO) satellite resolutions vary from
0.5 km up to 8 km. The pixel sizes of these satellites are much greater than for maximal error of
the least precise method presented in this paper. Therefore, the chosen method will be important
when the resolution of geostationary EO satellites reaches 50 m. To validate the parallax correction,
procedure data from on-ground radars and the Meteosat Second Generation (MSG) satellite, which
describes stormy events, was compared before and after correction. Comparison was performed by
correlating the logarithm of the cloud optical thickness (COT) with radar reflectance in dBZ (radar
reflectance – Z in logarithmic form).

Keywords: parallax; cloud; earth observation; geostationary satellite; meteorological radar;
MSG; SEVIRI

1. Introduction

The precision of remote space observations is important when investigating and monitoring various
components of global ecological systems, such as marine, forestry, and climate environments [1–4].
Satellite data integration with external marine and other datasets is crucial in various applications
of remote sensing techniques [5,6]. For climate and meteorological investigations, observations of
clouds and precipitation on a global scale are usually performed using ground-based radar data
and observations from geostationary satellites, due to their high temporal and moderate spatial
resolution [7–9]. However, during data comparison and integration from these sources, the problem
of parallax shift occurs [7,10], which is particularly observable for mid and high latitudes, and also
for longitudes far from the sub-satellite point. Parallax shift is also important for cloud shadow
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determination, which is a significant issue for solar farms [11] and for flood detection [12]. Parallax
phenomena also have a significant impact on the comparison of data from low-orbit satellites from
different sensors [13–16].

In terms of mathematical problem formulation, the parallax shift effect for the geostationary
satellites is actually a special case amongst low-orbit satellites, and it is easier to investigate due to
higher temporal resolution data acquisition and the fixed satellite position.

There have been several attempts to solve parallax shift for geostationary satellites. One of
them was proposed by Roebeling et al. [7,17,18], and was based on liquid water path (LWP) value
pattern matching. This approach was suitable for stormy events and other inhomogeneous cloud
formations, however it usually failed to perform correction in the case of homogeneous spatial LWP
distribution. Another attempt proposed by Greuell et al. and Roebeling [19,20] used a simplified
geometric model, which assumes Earth to be locally flat, as well as a sort of a priori knowledge about
cloud height above the Earth’s surface. There were also attempts by Li, Sun, and Yu [12] to solve this
problem using a spherical model. Finally, there is the Vicente et al./Koenig method [21,22] based on
the geometric properties of parallax shift phenomena, incorporating an ellipsoid model of Earth. The
Vicente et al./Koenig method will be presented further in this paper.

There are two methods proposed by the author in this paper, which are based on the same
assumptions as the Vicente et al./Koenig method. The first is an augmented version of the mentioned
method. This augmentation reduces the correction error to centimeters. The second method proposed
by the author is an original work which is based as before on a priori knowledge of cloud height,
a geodetic equation of an ellipsoid, and numerical methods for solving the equation set. This method
allows the correction error to be reduced to almost zero (assuming Earth to have an ellipsoidal shape).

2. Nature of Parallax Shift Problem and Vicente et al./Koenig Method

2.1. Problem Description

A parallax shift error in satellite observations occurs when the apparent image of the object is
placed in the wrong location on the ellipsoid, considering the ellipsoid’s normal line passing through
the observed point. This geometric phenomena is particularly observable in geostationary and polar
satellite observations due to the high angles of observations, particularly for edge areas of image scenes.
In Figure 1, the problem is presented considering the case of a geostationary satellite. As a result, this
phenomena causes pixel drift from the original position towards the edge of the observation disk.
Consequently, the higher the cloud top layer is, the bigger the shift that occurs.
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Figure 1. Parallax shift problem. The violet surface represents an image obtained from a geostationary
satellite. The cloud top (T) is observed by the satellite as T’ (on the violet surface). The result of the
reprojection of point T’ to ellipsoidal coordinates is I, which is not true the location of the cloud. The
true location of the cloud is denoted as B, and from the perspective of the satellite sensor is observed as
B’ on the violet surface. The square (marked as 1) shows how parallax shift affects the satellite image,
where T’ is an image of the cloud top and B’ is where the cloud top should be placed according to its
geodetic coordinates. The scale of the cloud height is not preserved.
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The position of the cloud top (T) in Cartesian coordinates can be formulated as follows [23]:
x =

(
N
(
ϕg

)
+ h

)
cosϕg cos(λg − λ0)

y =
(
N
(
ϕg

)
+ h

)
cosϕg sin(λg − λ0)

z =
(
N
(
ϕg

)(
1− e2

)
+ h

)
sinϕg

(1)

where N(ϕe) =
a√

1−e2 sin2 ϕg

is the prime vertical radius of the curvature, e2 = a2
−b2

a2 is the square of

eccentricity, a is Earth’s semi-major axis, b is Earth’s semi-minor axis, h is the cloud top height, ϕg, λg is
the geodetic latitude and longitude, and λ0 is the longitude above which the geostationary satellite is
floating. In this case, Equation (1) models the cloud position on a tangent line at coordinates ϕg, λg

(see Figure 2). This is a more precise model than the flat-earth model or the spherical model. Note that:
all longitudes (λg, λc and λp) are equal and the same. Subscripts are given to formally distinguish
these values between corresponding latitudes that have different definitions (see Figure 2).
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Figure 2. Three types of latitude: whereϕg is the geodetic latitude,ϕc is the geocentric latitude,ϕp is
the parametric latitude, P is the point of interest on the ellipsoid, and P* is the image of the point of
interest on a sphere. Based on figures from [23,24].

Pixel displacement in satellite view coordinates is defined as:

pdisp(h) =
√

c2
y(ϕs(h) −ϕs(0))

2 + c2
x(λs(h) − λs(0))

2 (2)
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where cx and cy are constants that allow for sensor inclination angles to be converted to pixels or
distance units in the satellite view space. Also, ϕs(h) and λs(h) are defined as:

ϕs(h) = tan−1 z(h)√
(x(h) − l)2 + y(h)2

(3)

λs(h) = − tan−1 y(h)
x(h) − l

(4)

where x(h), y(h), and z(h) are cloud top coordinates from Equation (1) as functions of h; l = a + hs–
distance from center of Earth to satellite; a is the Earth’s semi-major axis; hs is the distance from the
surface of Earth to the satellite. In order to illustrate pdisp(h), the following analysis presented in
Figure 3 was performed. Namely, depending on the geographical localization of the affected pixel
and cloud top height, the absolute shift error in observations is expressed in Spinning Enhanced
Visible Infra-Red Imager (SEVIRI) pixel units (In this case cx = cy = hs

3 km/px ). It is worth noting that in
many cases, especially for observations of clouds over 5000 m, this can cause pixel shift in the SEVIRI
instruments used for the purpose of this study.
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Figure 3. Error in pixels caused by cloud height parallax effect for 5 chosen cites, assuming the
observation is acquired by SEVIRI instrument at longitude of 0◦. Spatial resolution was assumed as
3 km/pixel.

As mentioned earlier, this effect hinders the comparison process between satellite and ground-based
radar data [7]. An example is depicted in Figure 4.
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Figure 4. Comparison of detected precipitation mask based on ground-based radar data (blue) and
data from Meteosat Second Generation (red). A parallax shift is particularly visible for small storm
clouds in the bottom-right corner. The height of the cloud tops reaches 12 km. The stormy event is
dated July 24, 2015, 13:00 UTC. EuroGeographics was used for the administrative boundaries.

2.2. Vicente et al./Koenig Method

The parallax shift problem is solved using a geometrical model, assuming that the surface of Earth
is an ellipsoid, and with a priori knowledge of cloud top height. One of the approaches considered in
this work is the method proposed by Vicente et al. [21] and implemented by Marianne Koenig [22].
This approach, similar to the rest of the methods presented in this paper, assumes a priori knowledge
of the cloud top height, which can be calculated using the observed brightness temperature [7,25].
In this method, the Cartesian coordinates of the cloud image are described as:

x = Rloc(ϕc) cosϕc cos(λc − λ0)

y = Rloc(ϕc) cosϕc sin(λc − λ0)

z = Rloc(ϕc) sinϕc

(5)

where a is Earth’s semi-major axis; b is Earth’s semi-minor axis; h is the cloud top height; ϕc and λc are
the geocentric latitude and longitude (see Figure 2), respectively; λ0 is the latitude of the geostationary
satellite position; and Rloc(ϕc) is the local radius of ellipsoid for the geocentric latitude model:

Rloc(ϕc) =
a√

cos2 ϕc + R2
ratio sin2 ϕc

(6)

where:
Rratio =

a
b

(7)

Satellite position (S) is defined as: 
xs = a + hs

ys = 0
zs = 0

(8)

where a is Earth’s semi-major axis and hs is the distance from the surface of Earth to the satellite.
The correction procedure is as follows:

1. Designate satellite position S in the Cartesian coordinates system;
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2. Designate the position of cloud top image I in the Cartesian coordinates system using Equation (5);

3. Designate vector
→

|IS|;
4. Designate coefficient c, which allows Cartesian coordinates of the cloud top to be calculated using

the following equations (see Figure 5):

→

|OT| =
→

|OI|+ c
→

|IS| (9)

where
→

|OT| is described by the ellipsoid parametric equation:
x →

|OT|
= (a + h) cosϕp cos(λp − λ0)

y →

|OT|
= (a + h) cosϕp sin(λp − λ0)

z →

|OT|
= (b + h) sinϕp

(10)

where ϕp and λp are the parametric latitude and longitude (see Figure 2). Therefore, Equation (9)
can be presented as a set of equations:

(a + h) cosϕp cos(λp − λ0) = x →
|OI|

+ cx →
|IS|

(a + h) cosϕp sin(λp − λ0) = y →
|OI|

+ cy →
|IS|

(b + h) sinϕp = z →
|OI|

+ cz →
|IS|

(11)

Squaring each equation and adding them according to their sides leads to a square equation,
which can be solved with respect to c:

(xI + cx →
|IS|

)2 + (yI + cy →
|IS|

)2

(a + h)2 +
(zI + cz →

|IS|
)2

(b + h)2 − 1 = 0 (12)

5. Apply c to calculate the Cartesian coordinates of T - x →

|OT|
, y →

|OT|
, and z →

|OT|
.

6. Calculate the geocentric ellipsoidal coordinates of T:
ϕc = tan−1

z →
|OT|√

x2
→

|OT|
+y2

→

|OT|

λc = tan−1
y →
|OT|

x →
|OT|

+ λ0

(13)

7. If required for further computation, a geodetic latitude can be calculated:

ϕg = tan−1 a2

b2

z →

|OT|√
x2
→

|OT|
+ y2

→

|OT|

(14)

Note that Equation (10) does not describe the cloud top position as it was defined in Equation (1)
in Section 2.1. The coordinates of the point are shifted to height h above the ellipsoid along the normal
vector. Instead, it describes the point on the ellipsoid with the semi-axes increased by h, therefore this
method is burdened with error because of the inadequacy of the model.
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3. Parallax Error Correction Methods with Lower Error

3.1. Vicente et al./Koenig Augmentation

The Vicente et al./Koenig method can be augmented in the final steps, where the latitude of the
cloud bottom position is calculated. When using the Vicente et al./Koenig method, it is assumed that
the cloud top is located on the ellipsoid with semi-axes increased by h, and therefore the geodetic
latitude can be calculated taking into account the mentioned assumption:

ϕg = tan−1 (a + h)2

(b + h)2

z →

|OT|√
x2
→

|OT|
+ y2

→

|OT|

(15)

If further computation requires the geocentric latitude, this can be calculated using the
following equation:

ϕc = tan−1 b2

a2 tanϕg (16)

This modification allows the correction error to be reduced to centimeters. Details will be presented
in the experimental section.

3.2. Ellipsoid Model with Geodetic Coordinates: Numeric Method

This method incorporates the cloud top position defined in Section 2.1 in Equation (1). With the
described cloud top position, the geostationary satellite observation line should be defined as:

x = −q cosϕs cosλs + l
y = −q cosϕs sinλs

z = q sinϕs

(17)

where l = a + hs is the distance from Earth’s center to the satellite; a is Earth’s semi-major axis; hs is
the distance from the surface of Earth to the satellite; ϕs and λs are satellite inclination angles; q is
the distance from the satellite along the observation line. To solve this problem, an intersection point
between the surface above the ellipsoid and the observation line needs to be calculated. Equations (1)
and (17) should be merged, obtaining the following set of equations:

(
N
(
ϕg

)
+ h

)
cosϕg cos(λg − λ0) = −q cosϕs cosλs + l(

N
(
ϕg

)
+ h

)
cosϕg sin(λg − λ0) = −q cosϕs sinλs(

N
(
ϕg

)(
1− e2

)
+ h

)
sinϕg = q sinϕs

(18)
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The root of the above system of equations (ϕg and λg) is the geodetic coordinates of point B.
However, due to the entanglement of the ϕg variable in Equation (18), the root of the equations
was designated using the numerical approach. The above method was implemented in C++ and
Matlab. The Matlab implementation uses the fsolve function [26], which is part of the optimization
toolbox. A detailed configuration of the fsolve function will be presented in the next section. The C++

implementation incorporates the Newton method, which is described below.
To solve the problem using the Newton method, the target function should be defined:

f
(
ϕg,λg, q

)
=

[
f1
(
ϕg,λg, q

)
, f2

(
ϕg,λg, q

)
, f3

(
ϕg,λg, q

)]
(19)

where:
f1
(
ϕg,λg, q

)
=

(
N
(
ϕg

)
+ h

)
cosϕg cos

(
λg − λ0

)
+ q cosϕs cosλs − l

f2
(
ϕg,λg, q

)
=

(
N
(
ϕg

)
+ h

)
cosϕg sin

(
λg − λ0

)
+ q cosϕs sinλs

f3
(
ϕg,λg, q

)
=

(
N

(
ϕg

)(
1− e2

)
+ h

)
sinϕg − q sinϕs

(20)

In Equation (19),
∣∣∣∣∣∣∣∣ f(ϕg,λg, q

)∣∣∣∣∣∣∣∣ can be interpreted as the distance between the current solution and the
optimal solution, which in the optimal case should be equal to zero. For such a defined cost function,
calculation of the next iteration of the solution for the Newton method is defined as:

pn+1 = pn −
(
∇f

(
pn

))−1
f
(
pn

)
(21)

where:
p :=

[
ϕg,λg, q

]
(22)

and:

∇f
(
pn

)
=


∇ f1

(
pn

)
∇ f2

(
pn

)
∇ f3

(
pn

)
 (23)

and:
∇ :=

[
∂
∂ϕg

∂
∂λg

∂
∂q

]
(24)

The stopping condition is defined as: ∣∣∣∣∣∣∣∣f(pn

)∣∣∣∣∣∣∣∣< ε (25)

However, the convergence of the above-presented approach is difficult to obtain for areas located
near the edges of the observation disk. Therefore, an alternative target function is defined as the
element-wise square of Equation (19):

g
(
pn

)
=


(

f1
(
pn

))2(
f2
(
pn

))2(
f3
(
pn

))2

 (26)

with the gradient defined as:

∇g
(
pn

)
=


2 f1

(
pn

)
∇ f1

(
pn

)
2 f2

(
pn

)
∇ f2

(
pn

)
2 f3

(
pn

)
∇ f3

(
pn

)
 (27)

and the stop condition: ∣∣∣∣∣∣∣∣∣∣g(pn

)∣∣∣∣∣∣∣∣∣∣= ∣∣∣∣∣∣∣∣f(pn

)∣∣∣∣∣∣∣∣2 < ε2 (28)
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Another issue that occurs in the numerical calculation problem is the big difference in scale
between ϕg, λg, which are expressed in radians, and q, which is expressed in meters. To handle this
problem, all distances (a, b, h, l, q) should be divided by a. This operation will bring q to a similar scale
as ϕg,λg.

An example result of parallax correction using the numerical method via the Newton algorithm is
presented in Figure 6. Note that the radar data is better aligned with the satellite data than in Figure 4.
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Figure 6. Comparison of detected precipitation mask based on ground-based radar data (blue) and
data from Meteosat Second Generation with applied parallax correction using a numerical algorithm
(green). Images of small storm clouds from satellite and meteorological radars in the bottom-right
corner seem to overlap. The height of the cloud tops reaches 12 km. The stormy event is dated July 25,
2015, 13:00 UTC. EuroGeographics was used for the administrative boundaries.

4. Parallax Effect Correction Error Simulation

In order to compare the parallax effect correction obtained by the analyzed methods, a simulation
experiment was performed. The main goal of the experiment was to generate several cloud top
positions that simulate geostationary satellite observations, which result in ϕs and λs for simulated
cloud top heights. With theϕs and λs coordinates and a priori knowledge of the cloud height, correction
methods were performed and their results were compared with the original (simulated) cloud position.
The detailed procedure of the experiment is as follows:

1. Prepare a grid of geodetic coordinates: ϕg ∈ 〈−90◦; 90◦〉, λg ∈ 〈−90◦; 90◦〉, with 1◦ steps for
each dimension;

2. Transform the grid coordinates to the geostationary view coordinates system, ϕs, λs (from now
on called the base ϕs, λs) [27], and back to geodetic coordinates to specify which grid elements are
out of scope; for out-of-scope elements, this operation will return Not a Number (NaN – floating
point special value).

3. For each h ∈ {2 km, 4 km, 8 km, 12 km, 16 km}, the following steps are performed:

a. For each ϕg and λg and with h, calculate the x, y, z coordinates using Equation (1);
b. Using x, y, z, calculate the geostationary view coordinates ϕs and λs;
c. With ϕs, λs, and h, run the correction algorithms: Vicente et al./Koenig, Vicente et al./Koenig

augmented, and the numerical geodetic coordinates method;
d. Each algorithm returns ϕ′g, λ′g, which should be transformed to ϕ′s, λ′s;
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e. The distance between the simulated original base ϕs, λs and ϕ′s, λ′s in the geostationary
view space will be denoted as the correction error.

The correction error is calculated in the geostationary view coordinate space (violet surface on
Figure 1), because it allows the impact of the correction error on a specific satellite sensor to be estimated.
The coordinates in the above equation were expressed as an angle, however expressing them in radians
and multiplying by hs allows the result to be calculated in metric units (meters) as distances on a
sphere of radius hs around a geostationary satellite. This interpretation of geostationary coordinates is
implemented in the PROJ software library [28].

In order to calculate the correction using the geodetic coordinates numerical method, the fsolve [26]
function was applied. All distances were normalized with respect to the radius of the equator. The
parameters of the fsolve function were as follows:

• Algorithm: Levenberg–Marquardt (instead of Newton);
• Function tolerance: 200m/a;
• Specify objective gradient: yes;
• Input damping: 10−5.

The results of the simulation using the Vicente et al./Koenig method and its augmented version
are presented in Figures 7 and 8. The results using the geodetic coordinates numerical method are
presented in Figures 9 and 10.

In Figure 7, the errors of the Vicente et al./Koenig method and its augmented version are depicted
for certain cloud heights. Note that the error for the augmented version is 103 times smaller than for the
unmodified version. Also, the median of error rises near linearly with the increase of the cloud height.
Also note that the error rises as the distance from the equator and from the central meridian increases.

Figure 8 shows histograms of the errors presented in Figure 7. In the histograms, the error ratio
between Vicente et al./Koenig and its augmented version can also be spotted, which can be estimated
as 103. Another important piece of information is that for the assumed cloud heights, the maximal
error of the Vicente et al./Koenig method can be estimated at 50 m, and for the augmented version,
it can be estimated at 5 cm.

The errors of the geodetic coordinates numerical method for chosen cloud heights along with
the number of iterations of the numerical method are shown in Figure 9. Note that the error is
below 1 cm for almost the entire disc. The biggest errors appear near the edges in regions where the
Vicente et al./Koenig method failed to compute a result (red NaN regions in Figure 7). The number of
iterations increases as the height of the clouds and the distance from the center of the observation disc
increase. However, during the performed experiments, the value for the majority of cases was less
than or equal to five.

The histograms of errors for the geodetic coordinates numerical method and its number of
iterations are presented in Figure 10. Based on the obtained results, the error histograms seem to be
quite similar between the experiments—almost all values are classified as near zero. However, there
are several occurrences of errors up to 3 meters, which are mainly caused by pixels in regions near the
edge of the observation disc. The iteration histograms evolve along with the cloud height. As can
be seen, the majority of occurrences fall below five iterations. Occurrences above this value refer to
regions near the edge of the observation disc.
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Figure 7. Maps showing error for the Vicente et al./Koenig (a,c,e,g,i) method and its augmented version
(b,d,f,h,j) for several chosen cloud heights. Error are given in meters for the geostationary satellite
coordinate system. NaN values for in-scope regions occur where the algorithm failed to calculate a
solution. For each map, the median (med.) error was calculated.
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Figure 8. Error histograms for the Vicente et al./Koenig method (a,c,e,g,i) and its augmented version
(b,d,f,h,j) for several chosen cloud heights. The Y-axis represents a count of 1 degree pixels, and the
X-axis is the error in meters for the geostationary satellite coordinate system.
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Figure 9. Maps with error (a,c,e,g,i) and number of iterations (b,d,f,h,j) for geodetic coordinates
numerical algorithm (Geod. num. alg.) for several chosen cloud heights. Errors are given in meters for
the geostationary satellite coordinate system. For each case, the median (med.) error was calculated.
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Figure 10. Histograms of error (a,c,e,g,i) and number of iterations (b,d,f,h,j) for geodetic coordinates
algorithm (Geod. num. alg.) method for several chosen cloud heights. Error is given in meters for the
geostationary satellite coordinate system.
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5. Discussion

The results of the conducted experiments indicate that the Vicente et al./Koenig parallax effect
correction method error is smaller than 50 meters in the geostationary satellite coordinates system for
cloud heights of up to 16 km. The error for the augmented version of the Vicente et al./Koenig method
proposed by the author allows the error values to be decreased to below 10 cm, which is negligible for
current practical applications. As expected, the error of the geodetic coordinates numerical method is
also negligible because it can be adjusted by the number of iterations. However, the advantage of the
numerical approach is that it corrects the positions of pixels located near the edge of the observation
disc (there is no NaN on Figure 9).

On the other hand, it must be noted that the proposed approach requires greater computational
power than a method with a constant number of steps, such as the Vicente et al./Koenig method.
However, experiments show that this is negligible, as the parallax correction problem was computed
within minutes.

As was mentioned in the introduction, parallax effect correction is significant for the comparison
and collocation of meteorological radar data and geostationary satellite data. This can be demonstrated
by comparing radar reflectance in dBZ:

dBZ = 10log10Z (29)

where Z is radar reflectance. Reflectance is described as the following empirical relation with
precipitation rate R [mm/h] [29]:

Z = 200R1.6 (30)

and cloud optical thickness (COT) in logarithmic form [30,31].
Figure 11 presents a scatterplot for radar reflectance and cloud optical thickness for satellite data

without parallax effect correction, which should be mutually correlated in ideal cases. The Pearson’s
correlation value for that case is equal to 0.556. On the other hand, Figure 12 presents the same type
of scatterplot but for the satellite data after parallax effect correction (by numerical method from
Section 3.2). The correlation value for the corrected data is equal to 0.683. Note that a threshold
effect occurs on top of both figures (presented as a horizontal set of points equal to 2.4), which is a
consequence of Optimal Cloud Analysis (OCA) algorithm look-up table (LUT) limitations [31]. It is
worth noticing that this effect is less significant for Figure 12, suggesting that data with parallax effect
corrections are improved in terms of geometric accuracy.

Note that despite performed spatial correction, data presented in Figures 6 and 12 still differ.
In this context, it is important to note that these differences are caused by other factors that influence
data acquisition, namely:

• Different nature of the acquisition model, as on-ground radar and MSG satellite acquisition are
registered with a slight temporal shift (less than 15 min);

• Both sensors utilize the different physical natures of acquisition. The on-ground radar is an active
sensor which sends out an electromagnetic signal in the microwave spectrum and measurers the
echo intensity scattered from precipitation particles. On the contrary, MSG SEVIRI is a passive
sensor that measures radiation in a particular electromagnetic bandwidth (visible and near visible
spectrum) coming from the sun and thermal radiance;

• Data acquired by MSG and on-ground radar is also characterized by different spatial resolutions.
Therefore, in order to compare these datasets, additional resampling needs to be performed.
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(logarithm) for a stormy event on July 25, 2015, 13:00 UTC, with parallax effect correction (see Figure 6).
The calculated Pearson’s correlation coefficient is 0.683.
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Another aspect worth considering is algorithm sensitivity to the uncertainty of cloud top height.
The easiest way to approximate this is to calculate the sensitivity of the parallax error itself due to
changes of cloud top height. The sensitivity of the parallax error in satellite coordinates is defined as a
derivative of pixel displacement (Equation (2)) in respect to h:

∂pdisp(h)

∂h
(31)

Because pixel displacement is nearly linear in respect to h (as can be noticed on Figure 3),
the derivative (Equation (31)) should nearly be constant for assumed ϕg and λg. Therefore, it can be
approximated as the mean slope pdisp(h) in respect to h, for instance:

pdisp(12 km)

12 km
(32)

where: cx = cy = hs. The displacement sensitivity depends on ϕg and λg, therefore its value varies
around the globe. Sensitivity values for cities from Figure 3 are presented in Table 1.

Table 1. The displacement function sensitivity in respect to h for five chosen cities for the geostationary
sensor at longitude 0◦. (N – North, S – South, E – East, W - West).

City Geodetic Coordinates Displacement Sensitivity as in Equation (32)

Cape Town 33.9253◦ S
18.4239◦ E 0.667

Madrid 40.4177◦ N
3.6947◦ W 0.696

Brasília 15.7839◦ S
47.9142◦ W 0.784

Gdańsk 54.3475◦ N
18.6453◦ E 0.827

Tromsø 69.6667◦ N
18.9333◦ E 0.868

Note that, the displacement sensitivity can be roughly approximated as less than 1. Therefore,
SEVIRI instrument uncertainty of cloud height greater than or equal to 3 km may lead to one pixel size
or greater error.

6. Conclusions

Data integration with data acquired from different sources requires developing additional methods
that aim to reduce the discrepancies resulting from different physical aspects of observation. In this
context, parallax shift correction for satellite data is a process that reduces geometric differences
between observations, and in many cases can significantly improve the quality of corrected data in
comparison with on-ground sources.

Regarding the scope of practical applications of the proposed approaches, it is important to
note that the resolution of currently operating geostationary satellites varies between 1–3 km for a
SEVIRI instrument [32] and 1–8 km for a Geostationary Operational Environmental Satellite (GOES)
imager [33]. The upcoming series of Meteosat Third Generation (MTG) satellites will provide imagery
with a spatial resolution between 0.5 and 2 km [34]. All of the above-presented parallax methods are
effective enough for current and near future geostationary observation satellites, and the usefulness of
the proposed methods is negligible. Selection of the proposed parallax effect correction method will
be significant only when the spatial resolution of geostationary observations is comparable to 50 m.
With high data resolution and precise parallax effect correction, the algorithm influence of precision on
cloud height will become noticeable.
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The parallax shift phenomena also affect the comparison between data collected from geostationary
satellites and low-orbit satellites [14,35]. The parallax shift problem for geostationary satellites could
be treated as a special case for low-orbit satellites. This problem for low-orbit satellites could be
modeled with similar equations to those presented above, however taking into account the position
and orientation of the satellite in the Cartesian coordinates space.

In this paper, the parallax effect was described using an ellipsoidal earth model. However,
ellipsoidal model clearly does not fully reflect the real shape of Earth. Therefore, in situations where
ellipsoidal model precision is insufficient, the numerical model of Earth’s gravitational field and
geoid values should be utilized. In this case, it would be necessary to describe the parallax effects
using differential equations and solve them using a numerical approach. In this case, the most
problematic issue would be to determine perpendicular paths to the equipotential boundaries of
Earth’s gravitational field.
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and editorial support, as well as Marek Moszyński for supervising my work. Calculations were carried out thanks
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