
remote sensing  

Article

Mapping Land Use from High Resolution Satellite
Images by Exploiting the Spatial Arrangement of Land
Cover Objects

Mengmeng Li 1,* and Alfred Stein 2

1 Key Lab of Spatial Data Mining & Information Sharing of Ministry of Education,
Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350108, China

2 Faculty of Geoinformation Science and Earth Observation (ITC), University of Twente,
P.O. Box 217, 7500AE Enschede, The Netherlands; a.stein@utwente.nl

* Correspondence: mli@fzu.edu.cn

Received: 27 October 2020; Accepted: 12 December 2020; Published: 18 December 2020
����������
�������

Abstract: Spatial information regarding the arrangement of land cover objects plays an important role
in distinguishing the land use types at land parcel or local neighborhood levels. This study investigates
the use of graph convolutional networks (GCNs) in order to characterize spatial arrangement features for
land use classification from high resolution remote sensing images, with particular interest in comparing
land use classifications between different graph-based methods and between different remote sensing
images. We examine three kinds of graph-based methods, i.e., feature engineering, graph kernels, and GCNs.
Based upon the extracted arrangement features and features regarding the spatial composition of land
cover objects, we formulated ten land use classifications. We tested those on two different remote sensing
images, which were acquired from GaoFen-2 (with a spatial resolution of 0.8 m) and ZiYuan-3 (of 2.5 m)
satellites in 2020 on Fuzhou City, China. Our results showed that land use classifications that are based on
the arrangement features derived from GCNs achieved the highest classification accuracy than using graph
kernels and handcrafted graph features for both images. We also found that the contribution to separating
land use types by arrangement features varies between GaoFen-2 and ZiYuan-3 images, due to the difference
in the spatial resolution. This study offers a set of approaches for effectively mapping land use types from
(very) high resolution satellite images.

Keywords: high resolution remote sensing; land use mapping; graph convolutional networks; graph kernels

1. Introduction

Mapping land use using high resolution (HR) satellite images is important for urban planning,
socio-economic analysis, and geo-information database updating [1–4]. Particularly, the rapid urbanization
and population growth pose big challenges for sustainable urban development, requiring updated
and fine-detailed land use information for decision making [5,6]. In the past decade, remote sensing
technologies have developed rapidly, and many satellites have been launched. A vast amount of remote
sensing images that were acquired from various platforms and sensors can be accessed now. Among them,
(very) high spatial resolution remote sensing images, usually with a resolution finer than 5 m acquired
from Worldview, GeoEye, GaoFen-2 (GF2), and ZiYuan-3 (ZY3) satellites, provide detailed images of the
earth. These images have a high potential for land use mapping at the land parcel or local neighborhood
levels [7–11].
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Automatic image classification is an essential operation for mapping land use from remote sensing
images. In the literature, many studies have been conducted for remote sensing image classification [12–15].
Initially, the methods of land use image classification were developed for classifying land cover types
based upon a number of low-level image features, e.g., spectral, textural, and contextual features [16,17].
These low-level image features can be used in order to separate land use between relatively coarse
categories from low- and medium-resolution remote sensing images. However, they fail to effectively
describe the properties of land use categories, e.g., residential, commercial, and industrial land, at urban
neighborhood level [18]. Particularly, on a high-resolution satellite image, a homogeneous land use area
reflects various spectral signatures, which correspond to different types of land cover objects. Here a land
use unit refers to a homogeneous land use area, such as a land parcel or a street block. The spatial
arrangement of land cover objects can be complicated within a land use unit, leading to difficulties
in effectively characterizing the structural properties of land use units [9]. Thus, it is necessary to
derive high-level image features in order to improve the separability between land use types, e.g., using
landscape metrics [19], visual bag-of-words (BOW) [20,21], or latent Dirichlet allocation model [22].
So far, the complex topological relations between land cover objects are insufficiently dealt with by the
above-mentioned methods.

Existing studies have shown that the mining of topological relations between land cover objects
improves land use classification performance by differentiating complex urban structures [23,24]. The main
assumption underlying land use classification is that land use units with similar structures are more likely
to have similar functional properties. For example, Li [9] proposed a hierarchical Bayesian model for
extracting land use information while using very high resolution (VHR) remote sensing images, in which
the type of land use is inferred based upon functional variables represented by the spatial arrangement
of land cover objects. The land cover objects are preliminarily classified from images, for which many
methods can be found in the literature [25–29]. A widely used method refers to object-based land cover
classification by traditional machine learning algorithms, like support vector machine or random forest
that is based upon spectral, textural, and geometrical information [28,30]. The classification can be further
improved by including more advanced features, e.g., derived from extended multi-attribute profiles [26].
Furthermore, recent studies have shown that state-of-the-art land cover classifications tend to be achieved
by deep learning methods [25,27]. An effective technique for describing and quantifying the topology of
neighboring land cover objects is based upon graph theory. In a graph, the land cover objects and their
relationships can be encoded as graph attributes and edges. By doing so, the problem of characterizing
the spatial structure of land use is transformed to the derivation of structural features from a graph that
represents the topology of land cover objects within land use units. Walde [24] investigated handcrafted
graph features (by feature engineering) in order to measure the structural properties of city blocks for
classifying urban structure types. However, deriving graph features in a handcrafted manner requires
considerable expert knowledge, limiting the generalizability of a classification method using these features.
Lehner [31] investigated a tree-structured framework based upon object-based image analysis for urban
structure type classification, in which a (sub)tree represents the topology of objects. The construction of
this framework for a different application also relies on expert knowledge.

By contrast, automatically deriving high-level structural features from graph-structured data has been
used in network analysis, information mining, and computer vision [32–34]. Graph kernels measure the
similarity between graphs, and they can be integrated with a kernel-based classifier, like support vector
machine (SVM), for graph classification. [33] grouped existing graph kernels into neighborhood aggregation
methods (e.g., based on the Weisfeiler–Lehman algorithm), assignment- and matching-based methods,
subgraph patterns, walks and paths, and kernels for graphs with continuous labels. Another popular
strategy for handling graph-structured data is based on graph neural networks (GNNs) [32,35], achieving the
state-of-the-art performance in graph feature extraction and graph classification. Among them, an important
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variant of graph neural networks refers to graph convolutional network (GCN) [36]. Recently, Li [11] applied
GCNs to urban land use classification from very high resolution (VHR) satellite images with 0.5 m spatial
resolution, and obtained promising results.

This study is an extension of [11], with the aim to exploit the spatial arrangement of land cover
objects by graph-based methods for land use mapping from high resolution satellite images. We focus
on extracting high-level structural features of land use while using GCNs, and comparing with methods
using feature engineering and graph kernels. Previous studies investigated land use classification by
GCNs while using VHR images with a spatial resolution of less than 1m. In this study, we also analyze
the applicability of these graph-based methods to land use classifications using high resolution remote
sensing images with a spatial resolution of 2.5 m.

The remaining of this paper is organized, as follows. Section 2 introduces the study areas and data,
Section 3 illustrates the graph-based methods used for graph feature learning and land use classification,
Section 4 gives the experimental results and corresponding analysis. The discussion and conclusions are
provided in Sections 5 and 6, respectively.

2. Study Areas and Data

The study area is located in the core region of Fuzhou City, the capital city of Fujian province, China
(Figure 1). It covers 210 km2, and it contains a large variety of land cover and land use types. For the
Fuzhou study area, we acquired two remote sensing images, from the GF2 satellite on 18 February 2020
and the ZY3 satellite on 10 April 2020. The GF2 image was captured by a PMS1 sensor having four
2.5 m resolution multi-spectral bands and one 0.78 m resolution panchromatic band. The ZY3 image has
four multi-spectral bands with 6.78 m and one panchromatic band with 2.38 m resolution. We executed
pansharpening to fuse multi-spectral and panchromatic bands for both images [37], and resampled the
pansharpened images to 0.8 m and 2.5 m for experiment convenience. The processed GF2 image has a size
of 18,678 × 17,703 pixels for the Fuzhou study area, and the ZY3 image has 5978× 5666 pixels.

We collected ground truth land use data over the study area from the local surveying department
to delineate homogeneous land use units. The land use samples that were used to train and test land
use classification algorithms were collected based on land use units derived from the ground truth data.
These data were derived from the 3rd National Land Survey Project, and produced at the end of 2019.
The classification system of the ground-truth land use data follows the (Chinese) National Land Use
Classification Standard (GB/T 21010-2017 ), with 12 first-level land use classes and 73 second-level classes.
These data are the most detailed and accurate land use data available and, thus, are suitable for this
study. Moreover, we re-organized the official land use system at the first level into seven land use classes,
see Table 1. We distinguish six main land use classes of high-density residential (RH), low-density residential
(RL), commercial (CM), industrial and warehouses (IW), green space and entertainment land (GE), and
undeveloped land (UN) from high resolution remote sensing images. We group the rest of land use classes
into others (OT), including public management and services, transportation, water body, and land for special
use or with multiple categories. We map water body separately because water body can be easily identified
based upon the ratio of water coverage.
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Figure 1. Overview of the study area on GF2 (a) and ZY3 (b) satellite images.
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Table 1. Land use classification system.

Abbreviation Classes

RH High-density residential
RL Low-density residential
CM Commercial
IW Industrial and warehouses
GE Green space and entertainment land
UN Undeveloped land

OT
Others (the rest of above-mentioned classes, including
public management and services, transportation, water
body, and land for special use or with multiple categories)

3. Methods

Figure 2 illustrates the workflow of land use mapping while using graph-based methods. Specifically,
we model the topological relationships between neighboring land cover objects preliminarily obtained
from remote sensing images into a planar graph. Three feature extraction methods based upon GCNs,
feature engineering, and graph kernels are used to learn structural features from graph-structured data.
The extracted structural features that are integrated with the features regarding the spatial composition of
land use are then used for land use classification.

Figure 2. Workflow of land use classification using graph-based methods from high resolution remote
sensing images. LC and LU refer to land cover and land use respectively.
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3.1. Land Cover Classification

Land cover classification is first conducted in order to obtain key types of land cover objects.
In this section, we apply a deep learning method based upon UNet [38] to obtain the land cover map
from a HR image. UNet is a popular network for semantic segmentation in computer vision, and has
been successfully used for land cover classification from remote sensing images. When compared with
traditional image classification methods that are based on machine learning, UNet can automatically
derive high-level semantic features of images, and perform semantic segmentation in an end-to-end way.
In this study, the adopted UNet uses four multispectral bands of HR images for classifying seven land
cover types [39], i.e., trees, grass, shadow, water, bare soil, buildings, and others.

The main parameters of the UNet classification were set, as follows: stochastic gradient descent with
momentum optimizer was used with the momentum value of 0.9, and the initial learning rate was set
to 0.05 with the L2 regularization. The UNet used four channels of a HR image. The training dataset
of the UNet classification was collected by digitizing the HR images into ground truth land cover areas.
Because the two images (GF2 and ZY3) were acquired in the same year, we collected the training dataset
(i.e., reference land cover areas) that was mainly based on the GF2 image, and then re-used the dataset
with a slight correction to classify land cover on the ZY3 image.

3.2. Characterizing Urban Structures by Graphs

The arrangement of land cover objects and their structures plays an important role in separating
the land use types from a HR image. We use graph theory to model the topological relations between
neighboring land cover objects. The pairwise relations between land cover objects are represented
in a graph. Let G = (V , E) be a graph with a set of nodes V = {v1, · · · , vn} and a set of edges
E = {e1, · · · , em}, where n and m are the number of nodes and edges, respectively. A node v refers
to either a land cover object or a land use unit, which corresponds to vLC or vLU , respectively, and an edge
e refers to the linkage of two nodes. Besides, features x can be assigned to each node, leading to a feature
matrix for all nodes X = [x1, · · · , xn]

T . High-level structural features are extracted from graph-structured
data, and then used for land use classification.

To create a graph G, we first need to determine graph nodes V , i.e., the basic spatial objects for analysis,
and obtain their edges E to model their pairwise relations. In this study, we used image objects created from
image segmentation as nodes, while graph edges describe the spatial adjacency of images objects in a land
use unit. More specifically, the image segmentation was conducted by multi-resolution segmentation
implemented in eCognition software. For the GF2 image, we set the scale parameter to 60, while 30 for
the ZY3 image because of a lower spatial resolution. The obtained image objects were over-segmented
to maintain fine spatial details [11]. The adjacency relationships between neighboring image objects was
specified by an adjacency matrix, which was computed from a Delaunay triangulation that was built based
upon the centroids of image segments (Figure 2). The use of Delaunay triangulation in order to determine
the adjacency of neighboring spatial objects was previously investigated in [40].

3.2.1. Graph Features Derived via Graph Convolutional Networks

For a graph G, GCN learns hidden representations hv for each node v by aggregating its neighborhood
information. Let h(l)i be the feature vector of node vi at the lth GCN layer, and H(l) be the feature matrix of
all nodes V . A lth layer GCN aggregates information via the following layer-wise propagation rule [36],

H(l) = σ(D̃−
1
2 ÃD̃−

1
2 H(l−1)W(l−1)), (1)
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where Ã = A + I is the adjacency matrix of graph G with added self-connections, I is the identity matrix,
D̃ is a degree matrix of Ã with D̃ii = ∑j Ãij, W(l−1) is a learned weight matrix, H(0) equals X, and σ

represents an activation function, such as the ReLU function. The label of nodes V can be predicted as Ŷ at
the last layer of the GCN while using the so f tmax function,

Ŷ = so f tmax(D̃−
1
2 ÃD̃−

1
2 H(l−1)W(l)), (2)

where so f tmax(xi) = exp(xi)/ ∑i exp(xi).
In this section, we use a two-layer GCN for land use classification [11]. More specifically, we create

a subgraph G i for each land use unit based upon two types of nodes, which correspond to a number of
land cover nodes vLC and a land use node vLU . A land cover node refers to a land cover object within the
land use unit, and the its edges model the linkage between the adjacent land cover objects. For the land
use node, its edges model the linkage between land cover objects and the land use unit. In urban areas,
the number of land cover objects vary between different land use units, leading to big variation among
subgraphs G i representing land use units. Li [11] proposed compressing a graph that models the relations
between land cover objects into the graph that models the relations between land cover types by creating
a AUM. We use the same strategy in order to compress the size of graphs with respect to land use units.

Moreover, we use Bayesian methods in order to integrate information regarding spatial arrangement
and spatial composition. Let C be the class variable of land use types with the number of KLU classes,
FSA be the attribute variable of spatial arrangement, and FSC be the attribute variable of spatial composition.
We assumed that the variable FSA is independent of FSC. Based upon Bayes’ theorem [11], the label of
unclassified land use units can be assigned by

C∗ = argmax
Ci

p(Ci)p(FSC|Ci)p(FSA|Ci), i = 1, · · · , KLU . (3)

Here, the prior probability p(Ci) was set equally for all land use classes, the conditional probability
p(FSA|Ci) was approximated by the probabilistic output of Ŷ by GCN. Regarding parameter settings
associated with the used GCN model, we set the number of hidden units to 24, the maximum number of
epochs to 400, the initial learning rate to 0.01 using a L2 loss, and the drop rate to 0.5 [11]. The conditional
probability of p(FSC|Ci) was approximated by the probabilistic output of a SVM classification while using
histogram intersection kernel [41], based on spatial composition features. More specifically, the spatial
composition features refer to the coverage ratio and density of a specific land cover class within a land use
unit [9].

3.2.2. Graph Features Derived via Graph Kernels

In machine learning and pattern recognition, kernel methods have also been popularly used
for handling graph-structured data, referring to graph kernels, particularly with the SVM classifier.
We compare land use classifications between the structural features that were extracted by GCNs and
graph kernels.

Given data points x, x′ ∈ R, a kernel k is a function k(x, x′) = 〈φ(x), φ(x′)〉, where φ denotes a mapping
from R to a feature space H, e.g., a Hilbert space [42]. We are interested in constructing kernels for
graph-structured data analysis, corresponding to graph kernels, i.e., k(G,G ′) where G and G ′ refer to
graphs. Recently, Kriege [33] conducted a comprehensive review on graph kernels by analyzing their
expressivity, non-linear decision boundaries, accuracy, and agreement for benchmark graph-structured
datasets. Among them, the Weisfeiler–Lehman subtree kernel [43] achieved the best overall performance
and the state-of-the-art in graph classification, motivating our choice of graph kernel in this study.
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This kernel is a successful instance of the Weisfeiler–Lehman kernel framework [43], which is built
upon the Weisfeiler–Lehman test of isomorphism [44]. Given two graphs G and G ′, the two graphs are
considered to be isomorphic if and only if a pair of nodes in G is connected by an edge in the same way as
the corresponding pair of nodes in G ′. See [43] for a detailed description on the Weisfeiler–Lehman subtree
kernel. For the subtree kernel, we set its main parameter, i.e., the number of iterations, to 6.

3.2.3. Graph Features Derived via Feature Engineering

Extracting graph features via feature engineering, referred to as handcrafted graph features, has also
been studied in the past [24,45,46]. For example, Walde [24] investigated a number of graph features
based on graph centrality, adjacency unit matrix (AUM), graph connectivity, and geometry in order to
classify urban structure types. These features are also used in our study for land use classification (Table 2).
Based upon handcrafted graph features, we use a random forest to classify land use units into different
land use classes. For the random forest algorithm, we set its main parameter, i.e., the number of trees,
to 500.

Table 2. Handcrafted graph features [24]. LC refers to land cover.

Category Features

Centrality measures

Degree centrality, i.e., LC type of the node with the highest node degree [45].
Betweenness centrality, i.e., LC type of the node with the highest node betweenness
centrality [45].
Mean node degree of buildings, i.e., Mean of the node degree of buildings.

AUM-related measures Normalized number of edges to trees, grass, and others.
Percentage of buildings with at least 1 edge to trees, grass, and others.
Diversity around buildings.
Percentage of buildings enclosed by trees, grass, and others.

Connectivity measures
Beta index β = m/n, measures the level of connectivity in a graph, where n and m
refer to the number of edges e and number of nodes v [47]. Two distance ranges of the
beta index: 0–60 m and 40–150 m were computed [24].

Additional measures
Shape index of buildings γ = A/P2, where A and P refer to the area and perimeter
of a building object [48].
Building coverage ratio.

3.3. Performance Evaluation and Accuracy Assessment

We extracted high-level structural features by GCNs, and applied a Bayesian classifier (as mentioned
in Section 3.2.1) to land use classification on both GF2 and ZY3 images. We labeled this classification as
BN(SC, SAGCN) for convenience (No. 1 in Table 3). In order to evaluate the performance of this method,
we compared with nine different methods using spatial arrangement and composition features, leading to
three categories (Table 3). The choice of these methods was motivated, as follows.

• SVM(SC), SVM classification only uses features of spatial composition. It is a traditional method,
and it can serve as a baseline to compare with classifications using features of spatial arrangement.

• SVM(SALS), SVM classification only uses landscape metrics: fractal dimension, landscape shape
index, and Shannon’s diversity index. These metrics were investigated by existing studies [19],
and they demonstrated their effectiveness in characterizing spatial structures.

• SVM(SC, SALS), SVM classification uses both spatial composition features and landscape metrics [9].
The above-mentioned two methods only characterizes the spatial properties of land use units from
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one aspect, i.e., either spatial composition or spatial structures. We believe that the integration of the
two aspects can improve classification performance.

• GCN(SAGCN), GCN classification that automatically derives high-level structural features while
using a GCN. This method has been recently applied to land use classification from VHR remote
sensing images [11]. It is also of great interest to use this method on HR images.

• SVM(SAKer), SVM classification uses the Weisfeiler–Lehman subtree kernel. It is an automatic
method for graph feature learning. [43] stated that the subtree kernel achieved the best overall
performance among many others. Therefore, the SVM(SAKer) can be seen as a state-of-the-art
method while using graph kernels.

• RF(SAHD), random forest classification uses handcrafted graph features [24]. It is a common practice
to manually derive features for graph-structured data analysis. The adopted method achieved
successful results in classifying urban structure types [24]. Therefore, we consider it to be a suitable
benchmark method for land use classification.

• BN(SC, SAKer) and BN(SC, SAHD), Bayesian classifications by combining spatial composition
features and structural features that are derived from graph kernels and feature engineering, i.e.,
SVM(SAKer) and RF(SAHD).

• BN(SC, SAGCN)
∗, a variant of BN(SC, SAGCN) by taking the type of building roofs into account

when computing the spatial arrangement and composition features. We further divided classified
buildings into dark roof, gray roof, brick-color roof, blue roof, and bright roof based on spectral features
while using a SVM classifier [9].

Table 3. Different methods for land use classifications. SA and SC refer to spatial arrangement and
spatial composition.

Categories No. Abbreviation Method Description

� 1 BN(SC, SAGCN)
Bayesian classification uses both structural features (derived via GCN)
and spatial composition features.

SC

2 SVM(SC) SVM classification uses spatial composition features.

3 SVM(SALS)
SVM classification uses landscape metrics, i.e., fractal dimension,
landscape shape index, and Shannon’s diversity index [19].

4 SVM(SC, SALS)
SVM classification uses both spatial composition features and landscape
metrics [9].

SA

5 GCN(SAGCN) GCN classification with deep graph features [11].

6 SVM(SAKer)
SVM classification uses graph features derived via the
Weisfeiler-Lehman subtree kernel [43].

7 RF(SAHD) Random forest classification uses handcrafted graph features [24].

SC+SA

8 BN(SC, SAKer)
Bayesian classification uses both structural features (derived via the
Weisfeiler-Lehman subtree kernel) and spatial composition features.

9 BN(SC, SAHD)
Bayesian classification uses both structural features (derived via feature
engineering) and spatial composition features.

10 BN(SC, SAGCN)∗

A variant of BN(SC, SAGCN) , i.e., Bayesian classification uses both
structural features (derived via GCN) and spatial composition features,
where building roof information is considered. ∗ indicates a
variant version.

� indicates the proposed method in Section 3.2.1.

We compute a confusion matrix [49] based on sample points collected by visual interpretation while
using a stratified sampling strategy in order to evaluate the accuracy of the land cover map derived from
a high resolution remote sensing image. The confusion matrix is also used to assess the accuracy of land
use classifications.
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4. Results

4.1. Land Cover Classification

Figure 3 shows the classified land cover maps from the GF2 and ZY3 images. We used the training
dataset (i.e., ground truth land cover areas) that was collected from two subset areas (red boxes in Figure 3)
to train the UNet model. By visual inspection, the two classified maps have similar distributions of land
cover types, although the map of the GF2 image has larger shadow areas than that from the ZY3 image
due to different azimuth angles. The two land cover maps were assessed based upon the confusion
matrix whlie using testing samples (i.e., in pixels) that were generated by stratified random sampling.
More specifically, 60 testing samples were randomly generated for each land cover type, and interpreted
by visual inspection. The areas of testing samples are shown in the black boxes of Figure 3. Tables 4
and 5 give the confusion matrices of the two classified land cover maps on the GF2 and ZY3 datasets.
In general, both of the datasets were classified with relatively higher overall accuracy (OA) and kappa
coefficient κ, corresponding to 0.91 and 0.90 for the OA of the GF2 and ZY3 datasets, and 0.8972 and 0.8806
for their κ. More specifically, the land cover map on the GF2 image has a slightly higher accuracy than
that of the ZY3 image. Particularly, the increase of spatial resolution helps in distinguishing grass from
trees, e.g., the user accuracy (UA) of the grass obtained from the GF2 image is higher than that of the ZY3
image, corresponding to 0.93 vs. 0.63. However, we also observed that the UA of the water class on the
ZY3 dataset is higher than that of the GF2 dataset, for which more shadow pixels were misclassified into
water class. This is because water and shadow have a similar spectral response on HR images.

Table 4. Confusion matrix of the classified land cover map using the GF2 image. UA, PA, and OA refer to
user accuracy, producer accuracy, and overall accuracy.

Reference Class

Map Class Trees Grass Water Shadow Baresoil Others Buildings UA *

Trees 56 0 0 3 1 0 0 0.93 ± 0.06
Grass 2 56 0 0 0 2 0 0.93 ± 0.06
Water 0 0 48 8 0 3 1 0.80 ± 0.10

Shadow 0 0 0 60 0 0 0 1.00 ± 0.00
Baresoil 0 0 0 1 56 3 0 0.93 ± 0.06
Others 0 0 0 6 1 50 3 0.83 ± 0.10

Buildings 0 0 0 1 0 2 57 0.95 ± 0.06
PA * 0.97 ± 0.05 1.00 ± 0.00 1.00 ± 0.00 0.76 ± 0.08 0.97 ± 0.05 0.83 ± 0.09 0.93 ± 0.06

OA * = 0.91 ± 0.03, κ = 0.8972

* 95% confidence interval.

Table 5. Confusion matrix of the classified land cover map using the ZY3 image. UA, PA, and OA refer to
user accuracy, producer accuracy, and overall accuracy.

Reference Class

Map Class Trees Grass Water Shadow Baresoil Others Buildings UA *

Trees 57 3 0 0 0 0 0 0.95 ± 0.06
Grass 18 38 0 1 2 1 0 0.63 ± 0.12
Water 1 0 57 0 1 1 0 0.95 ± 0.06

Shadow 1 0 0 59 0 0 0 0.98 ± 0.03
Baresoil 3 0 0 0 54 3 0 0.90 ± 0.08
Others 2 0 0 1 0 55 2 0.92 ± 0.07

Buildings 0 0 0 0 1 2 57 0.95 ± 0.06
PA * 0.70 ± 0.07 0.93 ± 0.08 1.00 ± 0.00 0.97 ± 0.04 0.93 ± 0.06 0.89 ± 0.07 0.97 ± 0.05

OA * = 0.90 ± 0.03, κ = 0.8806

* 95% confidence interval.
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Figure 3. (Top) Land cover map of the Fuzhou study area derived from GF2 image, and (Bottom) from
ZY3 image. Each box in red or black covers a subset area with 12 km2.
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4.2. Land Use Classification and Accuracy Assessment

For land use classification, we selected 80 land use units as samples for each land use class based
upon the ground truth land use map and visual inspection of HR images (Figure 4). The samples were
randomly partitioned into training and testing datasets with equal size, i.e., 280 sample land use units for
each dataset. We then performed 10 different land use classifications while using the GF2 and ZY3 images.

Figure 4. Overview of the collected land use samples (in land use units) on the GF2 image.

Wwe first conducted a 10-fold cross validation on the training dataset for each classification method in
order to evaluate the performance between different land use classifications. Figure 5 plots the distribution
of the overall accuracy of the 10-fold cross validation accuracy. This figure shows that the classifications
using structural features derived from graph kernels and GCNs, i.e., SVM(SAKer) and GCN(SAGCN)

had higher accuracies than using handcrafted graph features, i.e., RF(SAHD), on both study datasets.
The lowest classification accuracy was produced by SVM(SALS) while using three landscape metrics
alone. In general, the accuracy of the land use classification using the GF2 image was higher than the
corresponding classification using the ZY3 image due to a higher spatial resolution. Besides, the integration
of structural features with spatial composition features further improved the classification accuracies.
The highest classification accuracy was achieved by BN(SC, SAGCN)

∗ taking building roof’s information
into account. More specially, the classified buildings were further divided into dark roof, gray roof, brick-color
roof, blue roof, and bright roof. We also evaluated the 10 land use classifications while using the testing
dataset. Table 6 lists the OA and κ coefficient of these classifications. We can see that the results of land use
classifications BN(SC, SAGCN)

∗ achieved an OA of 0.8750 and 0.8500, and κ of 0.8542 and 0.8250 for the
GF2 and ZY3 images.
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Figure 5. Distributions of OA across 10 different implementations of the different land use classifications
on the GF2 and ZY3 images.

Table 6. Evaluation of the 10 land use classifications of the GF2 and ZY3 images on the testing datasets.
SA and SC refer to spatial arrangement and spatial composition.

Categories No. Methods
GF2 Image ZY3 Image

OA κ OA κ

� 1 BN(SC, SAGNN) 0.8464 0.8208 0.8393 0.81251

SC
2 SVM(SC) 0.8000 0.7667 0.7571 0.7167
3 SVM(SALS) 0.5036 0.4208 0.3821 0.2791
4 SVM(SC, SALS) 0.8000 0.7667 0.8000 0.7667

SA
5 GNN(SAGCN) 0.7929 0.7583 0.7071 0.6583
6 SVM(SAKer) 0.8000 0.7667 0.7107 0.6625
7 RF(SAHD) 0.6786 0.6250 0.6679 0.6125

SA+SC
8 BN(SC, SAKer) 0.8036 0.7708 0.7821 0.7458
9 BN(SC, SAHD) 0.8107 0.7791 0.7786 0.7417
10 BN(SC, SAGNN)∗ 0.8750 0.8542 0.8500 0.8250

� indicates the proposed method.
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Tables 7 and 8 show the confusion matrices of the land use classifications while using the
BN(SC, SAGNN)

∗ method on the GF2 and ZY3 images. We can see that the user accuracies (UAs) of
all land use classes, except the class of others, are larger than 0.80 for both images. More specifically, for the
GF2 dataset, the highest UA was obtained by the high-density residential with a UA of 1.00, followed by
green space and entertainment land and low-density residential due to clear spatial patterns, which can be seen
from their adjacency unit matrices (AUMs) (Figure 6). The lowest UA was given by the land use class of
others. It is reasonable, because this class is usually composed of multiple functions, and used for multiple
purposes. For the ZY3 dataset, we found that the highest UA was from the industrial and warehouses with
a UA of 1.00, followed by green space and entertainment land, while the high-density residential was classified
with a UA of 0.83. This may be explained by the fact that (1) the ZY3 image has a spatial resolution of 2.5 m,
which is hard to identify individual land cover objects, particularly the buildings in highly populated areas
(Figure 6); (2) on a ZY3 image, the buildings that are used for industrial and warehouses can be more easily
identified than buildings used for other land use types, because of more homogenous spectral reflectance
and more regular shapes.

Table 7. Confusion matrix of the classified land use map using the BN(SC, SAGNN)∗ method based on the
GF2 image. UA, PA and OA refer to user accuracy, producer accuracy and overall accuracy. RL, RL, CM,
IW, GE, UN, and OT refer to land use classes of high-density residential, low-density residential, commercial,
industrial and warehouses, green space and entertainment land, undeveloped land, and others, respectively.

Reference Class

Map Class RH RL CM IW GE UN OT UA *

RH 30 0 0 0 0 0 0 1.00 ± 0.00
RL 1 33 0 0 0 0 1 0.94 ± 0.08
CM 0 3 34 1 0 0 3 0.83 ± 0.12
IW 4 0 1 37 0 0 2 0.84 ± 0.11
GE 0 0 0 0 39 0 2 0.95 ± 0.07
UN 4 0 1 0 0 40 0 0.89 ± 0.09
OT 1 4 4 2 1 0 32 0.73 ± 0.13

PA * 0.75 ± 0.11 0.83 ± 0.10 0.85 ± 0.10 0.92 ± 0.08 0.98 ± 0.05 1.00 ± 0.00 0.80 ± 0.11

OA * =0.88 ± 0.04 , κ = 0.8542

* 95% confidence interval.

Table 8. Confusion matrix of the classified land use map using the BN(SC, SAGNN)∗ method based on the
ZY3 image. UA, PA and OA refer to user accuracy, producer accuracy and overall accuracy. RH, RL, CM,
IW, GE, UN, and OT refer to land use classes of high-density residential, low-density residential, commercial,
industrial and warehouses, green space and entertainment land, undeveloped land, and others, respectively.

Reference Class

Map Class RH RL CM IW GE UN OT UA *

RH 35 1 1 3 0 1 1 0.83 ± 0.11
RL 0 36 1 0 0 0 5 0.86 ± 0.11
CM 2 0 30 0 1 0 4 0.81 ± 0.13
IW 0 0 0 35 0 0 0 1.00 ± 0.00
GE 0 0 0 0 37 1 1 0.95 ± 0.07
UN 3 0 1 1 2 37 1 0.82 ± 0.11
OT 0 3 7 1 0 1 28 0.70 ± 0.14

PA * 0.88 ± 0.10 0.90 ± 0.09 0.75 ± 0.11 0.88 ± 0.09 0.92 ± 0.08 0.92 ± 0.08 0.70 ± 0.12

OA * = 0.85 ± 0.04 , κ = 0.8250

* 95% confidence interval.
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Figure 6. Demonstration of land use samples of the GF2 and ZY3 images.

For the study area, two big rivers (i.e., Min River and Wulong River) cross the city, which results
in some land use units filled with water. These land use units can be easily identified based upon the
coverage ratio of water. We created an additional land use class, i.e., water body, for those land use units
with a large portion of water. Here, we set the threshold for the coverage ratio of water to 0.85. Figure 7
shows the derived land use maps using the BN(SC, SAGNN)

∗ method from both the GF2 and ZY3 images.



Remote Sens. 2020, 12, 4158 16 of 21

Figure 7. (a) Land use map of the Fuzhou study area derived from GF2 image, and (b) from ZY3 image.

5. Discussion

This study focused on the comparison of land use classifications between different graph-based
methods, and between different high resolution remote sensing images. We investigated three kinds
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of graph-based methods, i.e., by the handcrafted method (i.e., feature engineering), graph kernels,
and graph convolutional networks (GCNs), in order to extract structural features for the classification.
The GCNs and graph kernels methods have been recently used as state-of-the-art methods for dealing with
graph-structural data. We compared ten different land use classifications that are based upon the extracted
structural features, and experimented on two remote sensing images, i.e., a very high resolution (VHR)
image from the GF2 satellite with a spatial resolution of 0.8 m and a high resolution (HR) image from the
ZY3 satellite of 2.5m. Our results reveal that the structural features that are derived from GCNs and graph
kernels provide better classification performance than that using handcrafted methods, and they have
a high potential for different applications. In general, the classification accuracies that were obtained by the
GF2 image are higher than that of the ZY3 image, due to a higher spatial resolution. Nonetheless, the ZY3
satellite has a larger swath, and can be used for collecting images with broader coverage, facilitating to land
use mapping over large areas. Previous research has highlighted the importance of the spatial arrangement
of land cover objects for land use mapping from VHR images [9], and shown that graph-based methods,
like GCNs [11], can effectively model the spatial arrangement information. However, to the best of our
knowledge, little research has been conducted on the comparison of land use classifications between
popular graph-based methods while using VHR images, particularly less using HR images. This study
contributes to adding such gap information.

We model the pair-wise relations between neighboring land cover objects into a graph. Thus, it is
essential to identify key types of land cover objects preliminarily. This study uses a deep learning
method that is based upon the UNet model in order to classify land cover from the GF2 and ZY3 images.
The classified land cover maps from the two images show similar attribute accuracies in terms of confusion
matrix when using a point-by-point evaluation. Regarding the geometrical accuracy, the classified land
cover map of the GF2 image has a better delineation of the boundaries of individual land cover objects than
the ZY3 image due to higher spatial resolution (Figure 6). For example, on a ZY3 image of 2.5 m resolution,
small buildings and buildings in densely populated areas are difficult to be delineated. This difficulty may
affect the modelling of urban structures based on the pair-wise relations of land cover objects. This could
also explain that the highest user accuracy of the classified land use map of the ZY3 image was given
by industrial and warehouses class, where the buildings usually have relatively homogeneous spectral
reflectance and regular shapes. Besides, a previous study showed that the classification accuracy of land
use is positively correlated with the accuracy of classified land cover [9].

A number of methods using the structural features that were extracted from graph-structured data are
applied to land use classifications. Among them, we highlighted the use of graph kernels and GCNs for
automatically learning high-level structural features. Recent studies investigated the effectiveness of using
GCNs for feature learning from graph-structured data, and provided a technique for data compression
by adjacency unit matrix (AUM) [11]. As follow-up research of [11], this study added the extraction of
high-level structural features that are based on a state-of-the-art graph kernel, i.e., the Weisfeiler–Lehman
subtree kernel [43]. Our results showed that both GCNs and graph kernels performed better than the
handcrafted method in terms of classification accuracy. When comparing with graph kernels, the GCNs
achieved the best classification performance in terms of classification accuracy. On the other hand, graph
kernels can be naturally integrated with support vector machine, showing merits from the perspective of
the applicability of methods. In this study, the parameters that are associated with feature learning and
classification methods were set according to the literature. Further work can be conducted in order to
analyze the effect of key parameters on classification performance. It is also interesting to compare the
land use classifications while using high-level structural features that were learnt from graph-structured
data with those using deep image features learnt from grid-structured data [50–52], leading to our future
study. Moreover, from the statistical point of view, further improvement can be conducted in order to
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increase the number of training and testing land use samples using a more sophisticated sampling strategy
for accuracy assessment and performance evaluation.

We tested the effectiveness of the proposed method for land use mapping on one study area in Fuzhou,
China. One may be interested in the applicability of the method to other areas of the world. This method
follows a hierarchical land use classification framework that was proposed in [9]. The framework
starts from the classification of land cover, proceeds to the characterization of spatial arrangement and
composition of land use, and ends at the classification of land use. It also highlights the importance of
characterizing spatial arrangement effectively. This study used a data-driven method that was based on
GCN to automatically learn high-level structural features in order to characterize the spatial arrangement.
Hence, we expect this method can also be used in other different areas. Although the proposed land use
classification achieved satisfactory results in this study by giving 40 land use samples per class, it is helpful
to conduct a sensitivity analysis of the effect of the number of samples on the learning power of spatial
arrangement features by GCN, and on the subsequent land use classification, leading to future study.

The derivation of homogenous land use units is essential in classifying land use with high accuracy,
because the errors that are involved in the delineation of land use boundaries affect classification
accuracy [53]. We used official data regarding land use boundaries from the local surveying department
to obtain land use units. By doing so, the produced land use maps maintain high geometric accuracy.
On the other hand, such practice may constrain the use of the classification method for cases without
existing data of land use boundaries. For such cases, it is important to investigate an automatic method
in order to directly obtain land use units from remote sensing images, which is out of the scope of this
study. However, such an investigation leads to a challenging topic and it is insufficiently addressed in
the literature.

Last but not the least, in this study, we distinguished six main land use classes, i.e., high-density
residential, low-density residential, commercial, industrial and warehouses, green space and entertainment
land, and undeveloped land from high resolution remote sensing images, while grouping the rest into
others. Within the class of others, land use may involve different subclasses, such as land for special use
or with multiple categories, showing a large variety of characteristics. Future efforts can be conducted
to refine the definition of land use classes, or look for more effective strategy to deal with mixed land
use type.

6. Conclusions

This study investigated the use of graph convolutional networks (GCNs) in order to extract high-level
structural features for land use mapping from high resolution satellite images. We compared it with two
other popular graph-based methods: feature engineering and graph kernels, and made a comparison with
two remote sensing images of 0.8 m and 2.5 m spatial resolution, respectively. Our results showed that the
structural features that are derived from GCNs and graph kernels are more effective than handcrafted
features for both images. When comparing it with graph kernels, the GCNs achieved the best classification
performance in terms of classification accuracy. Combining spatial composition features with structural
features further improved the accuracy. Moreover, the improvement by the structural features varies
between different land use classes for the two images due to the different spatial resolution. By comparing
ten different land use classification methods, we conclude that integrating the structural features that are
derived from GCNs and graph kernels with spatial composition serves as an effective means for land use
mapping from high resolution remote sensing images, and has a high potential for different applications
due to the automation of feature extraction.
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