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Abstract: Historic topographic maps, which are georeferenced and made publicly available by
the United States Geological Survey (USGS) and the National Map’s Historical Topographic Map
Collection (HTMC), are a valuable source of historic land cover and land use (LCLU) information
that could be used to expand the historic record when combined with data from moderate spatial
resolution Earth observation missions. This is especially true for landscape disturbances that have
a long and complex historic record, such as surface coal mining in the Appalachian region of the
eastern United States. In this study, we investigate this specific mapping problem using modified
UNet semantic segmentation deep learning (DL), which is based on convolutional neural networks
(CNNs), and a large example dataset of historic surface mine disturbance extents from the USGS
Geology, Geophysics, and Geochemistry Science Center (GGGSC). The primary objectives of this
study are to (1) evaluate model generalization to new geographic extents and topographic maps and
(2) to assess the impact of training sample size, or the number of manually interpreted topographic
maps, on model performance. Using data from the state of Kentucky, our findings suggest that DL
semantic segmentation can detect surface mine disturbance features from topographic maps with a
high level of accuracy (Dice coefficient = 0.902) and relatively balanced omission and commission
error rates (Precision = 0.891, Recall = 0.917). When the model is applied to new topographic
maps in Ohio and Virginia to assess generalization, model performance decreases; however,
performance is still strong (Ohio Dice coefficient = 0.837 and Virginia Dice coefficient = 0.763).
Further, when reducing the number of topographic maps used to derive training image chips
from 84 to 15, model performance was only slightly reduced, suggesting that models that generalize
well to new data and geographic extents may not require a large training set. We suggest the
incorporation of DL semantic segmentation methods into applied workflows to decrease manual
digitizing labor requirements and call for additional research associated with applying semantic
segmentation methods to alternative cartographic representations to supplement research focused on
multispectral image analysis and classification.

Keywords: semantic segmentation; UNet; deep learning; convolutional neural networks; topographic
maps; feature extraction; surface mining; resource extraction

Remote Sens. 2020, 12, 4145; doi:10.3390/rs12244145 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-4412-5599
https://orcid.org/0000-0001-8856-3059
https://orcid.org/0000-0001-9580-9213
http://dx.doi.org/10.3390/rs12244145
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/24/4145?type=check_update&version=2


Remote Sens. 2020, 12, 4145 2 of 25

1. Introduction

Patterns of land cover and land use (LCLU) change can be very complex, especially when
investigated over long time periods and/or in areas with multiple and changing drivers of alteration [1–6].
Mapping and quantifying LCLU change is particularly difficult in topographically complex landscapes
where inaccurate terrain correction can result in misalignment between analyzed datasets [7] and in
heterogenous landscapes with many and varied transitions between thematic classes [8–10]. Long time
series of moderate spatial resolution satellite imagery have been of great value in documenting and
quantifying LCLU change during their operational lifespans [1,5,6]. For example, the Landsat program,
which first collected data in the early 1970s and currently collects data with the instruments onboard
Landsat 8, has been used to map changes across the United States (US) as part of the National Land
Cover Database (NLCD) [5,6]. Unfortunately, such products have a limited historic scope since
moderate spatial resolution Earth observation data from civilian sensors only extend back to the early
1970s, with more frequent collections and finer temporal resolutions only offered more recently [11,12].
Thus, in order to more completely document and quantify the historic extent and associated impacts of
LCLU change, additional data sources should be investigated.

As a specific example, understanding LCLU change and associated environmental impacts
resulting from surface coal mining and subsequent reclamation could benefit from extending the land
change record. In the Appalachian region of the eastern United States specifically, coal mining began
in the late 1800s, with significant intensification in the early-to-mid-1900s resulting from railroad
expansion, industrialization, and increased demand [13–15]. Further, the modes and intensity of
mining have changed substantially over time as a result of technological advances and economic
drivers. For example, in the coalfields of southern Appalachia, including southern West Virginia
(WV), eastern Kentucky (KY), southwestern Virginia (VA), and eastern Tennessee (TN), surface mining
was historically dominated by highwall and contour mining while more recent extraction has relied
on mountaintop removal [16–18]. Additionally, mine reclamation practices have changed over time;
for example, reclamation requirements were greatly expanded by the US Surface Mining Control and
Reclamation Act (SMCRA) of 1977 [19,20].

In the US, 1:24,000-scale, 7.5-min quadrangle topographic maps offer a wealth of historic
information that could be integrated with Earth observation data to expand the historic record.
The United States Geological Survey (USGS) topographic map program was operational from 1947 to
1992, with some map revisions continuing until 2006, during which time more than 55,000 maps were
produced across the 48 states of the conterminous US [21]. Thus, such data could offer a means to
extend change mapping by several decades for disturbances that were consistently documented on
these maps. Unfortunately, such features are not commonly in a format that can be easily integrated
into analyses (e.g., geospatial vector point, line, or polygon data).

Figure 1 shows an area of surface mine disturbance represented on a 1:24,000-scale topographic map
of the Offutt quadrangle in the state of KY. This map represents the 1954 landscape, and surface mining
disturbance is denoted using a pink “disturbed surface” symbol. As evident in this example, mining is
well differentiated on these maps; however, automating the extraction of such features is complicated
by inconsistencies between maps, differences in mine disturbance symbology, and overprinting with
contour lines, text and labels, and other features [22–25].

Given the complexity of extracting such features, in this study, we investigate the use of deep
learning (DL), modified UNet semantic segmentation using convolutional neural networks (CNNs)
as a technique for extracting surface mine features from historic topographic maps. We make use
of digitized and georeferenced historic topographic maps made publicly available by the USGS [26]
along with manually digitized extents produced by the USGS Geology, Geophysics, and Geochemistry
Science Center (GGGSC) [23]. Our primary objectives are to (1) quantify how well models trained on a
subset of topographic maps in KY generalize to different maps in KY, VA, and Ohio (OH) and (2) assess
the impact of training sample size, or the number of manually digitized topographic maps available,
on model performance. This study does not attempt to develop a new DL semantic segmentation
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algorithm or compare a variety of existing algorithms for this specific mapping task. Our primary
focus in this study is the use of DL-based semantic segmentation for extracting historic information
from cartographic maps, which provide a wealth of information to extend land change studies and
further quantify anthropogenic landscape alterations. Such methods are needed to take full advantage
of current and historic data.
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Figure 1. Example of surface mine features as represented on part of a historic topographic map
(Quad = Offutt, State = Kentucky (KY), Year = 1954, SCANID = 709431). Topographic map obtained
from the United States Geological Survey (USGS) and the National Map’s Historical Topographic
Map Collection.

1.1. Topographic Maps

The first USGS topographic map was produced in 1879; however, the number of maps produced
was limited until the 1940s and 1950s when aerial photo acquisition and photogrammetric methods
became routine for deriving elevation data from overlapping stereo images. The largest-scale maps
produced for the entire conterminous US, which are used in this study, were produced on a 1:24,000
scale and span 7.5 min of latitude and longitude, known as 7.5-minute quadrangles [27]. When the
program ended in 2006, it was replaced by the US Topo program, which generates digital maps and
associated geospatial databases. Paper maps from the prior program were scanned and georeferenced
into the National Map’s Historical Topographic Map Collection (HTMC) and can be accessed as digital
raster graphics (DRGs) for use in geographic information systems [28–31]. Currently, maps can be
viewed and downloaded using topoView, which includes an interactive web map (https://ngmdb.usgs.
gov/topoview/) [32].

Historic topographic maps document a wide variety of mining and prospecting features including
pits, strip mines, disturbed surfaces, mine dumps, quarries, and tailings using point symbols,
areal symbols, and text, which are the product of manual photograph interpretation and some field
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validations. Areas of surface mining disturbance are generally symbolized using a generic brown
and/or pink pattern (see Figure 1) with some more unique symbols for specific features, such as
tailings [23]. Such areal, thematic features are the focus of this study.

1.2. Surface Mine Mapping

Despite the large database of historic cartographic representations of mining, much effort has been
placed on the use of remotely sensed data for mapping and monitoring surface mining and subsequent
reclamation. For example, Townsend et al. [33] documented surface mine extent change in portions
of central Appalachia from 1976 to 2006 using a Landsat time series, while Pericak et al. [34] and
Xiao et al. [35] used Landsat data and Google Earth Engine cloud-based computation to map surface
mining in the mountaintop mining region of the eastern US and the Shengli coalfields of Inner Mongolia,
respectively. Also using Landsat data, Sen et al. [36] applied disturbance/recovery trajectories for
differentiating mining and mine reclamation from other forest displacing practices. Several studies
have compared commercial satellite imagery, aerial orthophotography, and the combination of imagery
and light detection and ranging (LiDAR) for mapping of mining and mine reclamation [37–40].

Despite the existing research on mine mapping from remotely sensed data, a review of the
literature suggests that there is a lack of studies focused on extracting surface mine features from
topographic maps and other cartographic representations. In fact, research on the use of machine
learning (ML) or DL to extract features from topographic maps is generally limited. Li et al. [24] explored
the recognition of text on topographic maps using DL while Uhl et al. [25] investigated the mapping of
human settlements from maps using CNNs. Lui et al. [41] explored CNNs for the general segmentation
of topographic maps. There has been some success in applying DL methods to other types of digital
data, beyond the primary focus on multispectral satellite or aerial imagery. For example, DL has
been applied to the detection of features from digital terrain data; Behrens et al. [42] investigated the
application of digital elevation data and DL for digital soil mapping while Trier et al. [43] investigated
the mapping of archeological features from LiDAR data. In a mining-related study, Maxwell et al. [44]
used LiDAR-derived slopeshades and the Mask Regional-CNN (Mask R-CNN) DL algorithm for
detecting instances of valley fill faces, which are an artificial landform resulting from mountaintop
removal mining and reclamation practices. As these studies highlight, DL methods have been shown to
be of value for mapping and extracting features from a variety of geospatial data layers, suggesting that
further investigation of their application to historic topographic maps is merited.

1.3. Deep Learning Semantic Segmentation

Extraction of thematic information from geospatial data is both a common operational task and
an active area of research [45]. Supervised classification, which relies on user-provided training data,
using ML algorithms is often undertaken since these methods have been shown to be more robust to
complex feature space than parametric methods [46,47]. However, the incorporation of spatial context
information is limited when the pixel is used as the unit of analyses and no textural measures are
included as predictor variables [48,49]. To overcome this lack of spatial context, especially when high
spatial resolution data are used, geographic object-based image analysis (GEOBIA) first groups adjacent
pixels into objects or polygons based on similarity. These regions then become the unit for subsequent
analysis and classification [48,50,51]. CNN-based DL for semantic segmentation further expands the
incorporation of spatial context information, and offers a natural extension of prior methods [52–55].

DL is an extension of artificial neural networks (ANNs). An ANN consists of neurons organized
into layers where input layers represent input predictor variables, such as image bands, while output
layers represent the desired output, such as land cover categories. Between the input and output layers
are one or more hidden layers containing multiple neurons. Within the network, connections between
neurons have associated weights that can be learned or updated. By applying a bias and a non-linear
activation function while iteratively adjusting the weights through multiple passes, or epochs, on the
training data while monitoring a loss metric, patterns in the data can be learned to make new
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predictions [46,56,57]. DL expands upon this ML framework to include many hidden layers and
associated nodes (i.e., tens or hundreds), which can allow for the modeling of more complex patterns
and a greater abstraction of the input data [52–55].

DL and its applications in remote sensing science and image analysis have expanded greatly
with the inclusion of convolutional layers, which allow CNNs to learn spatial patterns by updating
weights associated with spatial filters or kernels. These learned filters then pass over the image as a
moving window to perform convolution and generate spatial abstractions of the data, or feature maps.
When applied to DL, it is common for hundreds of such filters to be learned. Initially, CNNs were
applied to scene labelling problems where an entire image is categorized. Advancements in CNNs
have allowed for semantic segmentation, where each pixel is classified, similar to traditional remote
sensing classification methods, or instance segmentation, where individual instances of a class are
differentiated [52–55]. We make use of semantic segmentation in this study.

Fully convolutional neural networks (FCNs) offer one means to perform semantic segmentation
with CNN-based architectures using a combination of convolution and deconvolution with up-sampling
(i.e., increasing the size of the data array that represents the image). Example FCNs include SegNet [58],
which was originally developed for semantic segmentation of digital photographs and introduced in
2017, and UNet [59–61], which was developed for segmentation of medical imagery and introduced in
2015. In this study, we use a modified version of UNet.

A conceptualization of a generic UNet is provided in Figure 2. First, in the convolution, contracting,
or encoder component, spatial patterns are modeled at multiple scales by iteratively adjusting weights
associated with a series of 3 × 3 2-dimensional (2D) convolutional layers and by applying 2 × 2 max
pooling, which decreases the size of the data array by returning the maximum value of the feature maps
within 2 × 2 pixel windows. This allows for spatial patterns to be learned at multiple scales since feature
maps generated by the prior convolutional layer are used as input to the subsequent layer following
the max pooling operation. Next, these same feature maps are used to convert the data back to the
original dimensions using 2D deconvolution to output a semantic, or pixel-level, classification from
the reconstruction. This is the deconvolution, expanding, or decoding component [59–61].

In Figure 2, the example UNet accepts training data as image chips with dimensions of 128 pixels
(height) × 128 pixels (width) × 3 channels (for example, red, green, and blue). As the data are fed
through the encoder component, 3× 3 2D convolution is used to learn spatial filters, and the dimensions
of the data array decrease (128→ 64→ 32→ 16→ 8) as a result of the max pooling operations while the
number of filters increases (64→ 128→ 256→ 512→ 1024). In the decoding component, the size of the
array increases as a result of 2 × 2 2D deconvolution applied to the feature maps learned in the encoding
component while the number of filters decreases. In the final phase of the architecture, 64 channels
or feature maps are used as input to perform a classification at each pixel location, where each pixel
location is treated as a vector containing 64 values or predictor variables. The output is a probability of
each pixel belonging to each of the defined classes, with the total of all class probabilities at each pixel
location summing to 1.

UNet and other semantic segmentation methods have been applied to a variety of feature extraction
and classification problems and have also been applied to a variety of geospatial and remotely sensed
data. For example, modifications of UNet have been applied to the mapping of general land cover
change [62], coastal wetlands [63], palm trees [64], cloud and cloud shadows [65], urban buildings and
change detection [66–68], roads [69], and landslides [70]. Generally, UNet and other FCNs have shown
great promise due to their ability to model complex spatial patterns and context while generating
data abstractions that generalize well to new data [54,55]. Given the complex patterns present in
topographic maps, where features may be overprinted with contour lines, points symbols, and/or text,
and inconsistencies between different scanned topographic maps in regard to tone, hue, contrast,
and/or sharpness, we hypothesize that this is an optimal method to explore for this mapping problem.
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2. Materials and Methods

2.1. Study Areas and Input Data

In this study, we focus on the surface coal mining region of Appalachia in the eastern US due to
the availability of historic topographic maps and training data and an abundance of historic surface
mine disturbance. As shown in Figure 3, eastern KY is the primary area of study. Within this region,
100 7.5-minute quadrangles were selected (Table 1). Since multiple maps can be generated for each
quadrangle representing different dates and historic conditions, a total of 122 maps were included
in the study. Any topographic map that did not include any mapped surface mine disturbance was
removed. In order to assess how well the trained models generalize to different topographic maps and
new geographic extents, we selected 23 additional topographic maps in OH and 25 in VA based on
the prevalence of surface mine features. A total of 170 historic topographic maps were included in
the study.

Table 1. Number of unique 1:24,000-scale, 7.5-minute topographic quadrangles within each dataset.
A unique map is defined based on a SCANID. The Unique Quads column provides the number of
unique quadrangle names in each dataset. The chips columns represent the number of 128-by-128 pixel
chips in each dataset that contain mining and/or not mining pixels, only no mining pixels, and the
total number of chips. The compilation years of the oldest and newest maps within each dataset are
also provided.

Dataset Unique Maps
(SCANID)

Unique Quads
(Name)

Mining and
Absence Chips

Absence
Only Chips Total Chips Oldest Year Newest

Year

KY Training 84 70 17,792 12,600 30,392 1949 1980
KY Testing 18 15 2588 2700 5288 1953 1992

KY Validation 20 15 3849 3000 6849 1951 1992
OH Validation 23 10 6849 3450 10,299 1960 2002
VA Validation 25 12 12,140 3750 15,890 1957 1968

KY = Kentucky, OH = Ohio, and VA = Virginia.
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Example mine extents were obtained from the publicly available USGS GGGSC prospect- and
mine-related features database. This is an ongoing project, and data are not currently available for all
historic maps and states. For example, data for WV is not yet complete [23]. This database contains
manually digitized point and polygon features interpreted from mine symbols on historic topographic
maps available in the HTMC. Examples of the historic topographic maps and mining features data are
shown in Figure 4. We only used polygon features digitized from 1:24,000-scale maps in this study.
Also, any features categorized as a pond were removed from the dataset, and we maintained all
features that were denoted using the standard brown or pink “surface disturbance” pattern or symbols
associated with tailings. In the public HTMC database, each historic topographic map is identified
with a unique SCANID. We found that it was not possible to simply match the digitized features with
the correct map based on this identifier, as features near quadrangle boundaries were not re-digitized
if they were already captured in adjacent quads or if the features were captured in a prior version of
the topographic map and did not change. So, all features that intersected the extent of the quadrangle
were extracted and then manually inspected for all 170 maps. Features that were not present on the
map were removed, and any missing features were added; however, missing features were a rare
occurrence, as the database was very comprehensive.
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Figure 4. Example of input data. (a) shows examples of surface mine features as represented on the
historic topographic maps. (b) orange areas represent the mapped extent of historic mining provided
by the USGS Geology, Geophysics, and Geochemistry Science Center (GGGSC) and used as training
data in this study. Scale bars represent a distance of 1 kilometer.

DL models that make use of CNNs require that training data be provided as small image chips.
When semantic segmentation is being performed, labels must be provided as raster masks where
each category is assigned a unique code or cell value [52–55]. Image chips and associated label masks
were generated using the Export Training Data for Deep Learning Tool in the ArcGIS Pro software
environment [71,72]. Chips were produced at a size of 128-by-128 pixels, as this allowed for the
generation of a large number of chips, the use of a large batch size during training and validation,
and did not overwhelm the computational resources. Given the large number of available chips, and to
decrease correlation amongst the data, no overlap was used so that each chip covered a unique extent.
Moreover, only full chips were produced. Thus, chips from near the edge of maps, which do not
allow for a complete set of 128-by-128 rows and columns of data, were not included. All chips that
contained at least some cells occurring in the historic mine extents were used. In order to incorporate
a variety of examples of the background, absence, or “not mining” class, we randomly selected an
additional 150 absence-only chips from each topographic map. This subsample from the complete
dataset of absence-only chips was selected to reduce class imbalance in the training process. Table 1
above summarizes the number of chips used in each dataset. In total, the model was trained using
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30,392 examples (KY Training) and evaluated at the end of each training epoch with 5288 chips (KY
Testing). To validate the final model, 6849 chips were withheld from the KY data (KY Validation);
these chips did not overlap with the training or testing data. We also validated in the new regions
within OH and VA using 10,299 and 15,890 chips, respectively (OH Validation and VA Validation).
Example image chips and associated masks are shown in Figure 5.
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the USGS and the National Map’s Historical Topographic Map Collection.

In order to minimize autocorrelation in the training, testing, and validation datasets, all image
chips from the same SCANID were included in the same partition. Moreover, all chips from the same
quadrangle, as identified by the quad name, were included in the same partition. These divisions were
determined using random sampling.

2.2. Modeling Training

DL model training and assessment were conducted using the R statistical and data science
computational environment and language [73]. Specifically, models were generated using the keras [74]
and tensorflow [75] packages. The keras package interfaces with the Keras Application Programming
Interface (API) [76], which is written in Python [77] and can interface with several DL and tensor math
backends, including Google’s TensorFlow [78]. The reticulate package [79] allows for an interface
between R and Python, and was used to allow the keras package to make use of the Python API.
For image manipulation and preparation, we used the magick package [80], which provides bindings
to the ImageMagick open-source image processing library. In order to implement and modify UNet
specifically, we referenced the UNet example provided by RStudio and available on GitHub and as part
of the online keras package documentation [81,82]. All experiments were conducted on a Microsoft
Azure virtual machine, which provided access to an NVIDIA Tesla T4 graphics processing unit (GPU).
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The UNet model used in this study is described in Table 2. Similar to the default architecture, we used
4 downsampling blocks in the encoder and 4 upsampling blocks in the decoder. The downsampling blocks
each contained 2 convolutional layers, while the upsampling blocks contained 3. The default number of
filters per block and kernel size were maintained. The architecture was designed to accept input tensors of
shape 128 × 128 × 3 (height, width, channels) and differentiate two classes: mining features, coded to 1,
and not-mining features, coded to 0. Since this is a binary classification problem, a sigmoid activation
function [83] was used in the final layer, which resulted in a probabilistic prediction between 0 and 1,
where 1 represents a predicted high likelihood of a mine feature occurring at the pixel location. In order
to maintain the size of the arrays, padding was used along with a max pooling size and stride of 2 × 2.
A total of 34,527,041 trainable parameters were included in the model.

Table 2. Semantic segmentation algorithm architecture used in this study and modified from UNet.

Parameter Value

Trainable Number of Parameters 34,527,041
Non-Trainable Number of Parameters 13,696

Input Image Size (Height ×Width × Channels) 128 × 128 × 3
Kernel Size 3 × 3

Padding “Same”
Max Pooling 2 × 2

Max Pooling Stride 2 × 2
Number of Downsampling Blocks 4

Number of Upsampling Blocks 4
Convolutional Layers per Block (Downsampling) 2

Convolutional Layers per Block (Upsampling) 3
Number of Filters 64, 128, 256, 512, 1024
CNN Activation Leaky ReLU

Classification Activation Sigmoid
Loss Metric Dice Coefficient Loss
Optimizer AdaMax

Some changes were made to the default UNet architecture. First, we used the leaky rectified
linear unit (ReLU) activation function as opposed to a traditional ReLU in the convolutional layers to
avoid “dying ReLU” issues [84]. We also used the AdaMax optimizer [85] instead of Adam (Adaptive
momentum estimation) or RMSProp (Root Mean Square Propagation) and included a callback to
reduce the learning rate if the loss plateaued for more than 5 epochs. Lastly, we used Dice coefficient
loss as opposed to binary cross-entropy loss due to issues of class imbalance and our desire to balance
omission and commission error rates for the mine features class [86–88].

The model was trained for 100 epochs using all the training examples in batches of 32 image
chips, and the final model was selected as the model with the lowest Dice coefficient loss for the KY
Testing data. The training examples were randomly shuffled between each epoch, and random data
augmentations were included to increase the data variability and combat overfitting. Specifically,
image chips were randomly flipped left-to-right and/or up-and-down. Slight random adjustments
of brightness, contrast, saturation, and/or hue were also applied. Lastly, batch normalization was
implemented for all convolutional layers. The model took roughly 24 h to train on the Microsoft Azure
virtual machine using the available GPU.

2.3. Prediction and Model Validation

Once a final prediction was obtained, the keras package was used to predict the withheld
validation image chips in KY, OH, and VA and to calculate assessment metrics. We also developed a
custom R script to apply the prediction to entire topographic maps, which broke the input data into
128-by-128 pixel arrays, used the model to predict each subset, then merged the results to reproduce
the topographic map extent. In order to remove poor predictions near edges of each chip, the outer
20 rows and columns of each chip were removed, and a 50% overlap between adjacent chips was
applied so that only the center of each chip was used in the final, merged prediction. Any cell with
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a mine feature probability higher than 0.5 was coded to the mine features class while all other cells
were coded to the not mine feature class. Using our custom script, an entire topographic map could be
predicted in roughly 15 minutes.

For validation, we relied on common binary classification accuracy assessment metrics including
precision, recall, specificity, the F1 score, and overall accuracy. Table 3 describes the terminology used
to define these metrics. True positive (TP) samples are those that are in the positive class and are
correctly mapped as positive, in this case mine features, while false positives (FPs) are not in the
positive class but are incorrectly mapped as a positive. True negatives (TNs) are correctly mapped
as negative, while false negatives (FNs) are mapped as negative when they are actually positive.
Precision (Equation (1)) represents the proportion of the samples that is correctly classified within the
samples predicted to be positive, and is equivalent to the user’s accuracy (1—commission error) for the
positive class. Recall or sensitivity (Equation (2)) represents the proportion of the reference data for the
positive class that is correctly classified, and is equivalent to producer’s accuracy (1—omission error)
for that class. The Dice coefficient or F1 score (Equation (3)) are equivalent and represent the harmonic
mean of precision and recall, while specificity (Equation (4)) represents the proportion of negative
reference samples that is correctly predicted, and is thus equivalent to the producer’s accuracy for the
negative class. Lastly, overall accuracy or binary accuracy (Equation (5)) represents the proportion of
correctly classified features [86–89].

Precision =
TP

TP + FP
(1)

Recall or Sensitivity =
TP

TP + FN
(2)

Dice Coefficient or F1 Score =
2 × Precision × Recall

Precision + Recall
(3)

Specificity =
TN

TN + FP
(4)

Overall Accuracy or Binary Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Table 3. Example binary confusion matrix and associated terminology.

Reference Data

True False

Classification Result
True TP FP

False FN TN

Model assessments were performed using the validation image chips in KY, OH, and VA, a total of
33,038 examples. Given that these chips did not incorporate all areas of the topographic maps, we also
calculated assessment metrics for each validation topographic map. We argue that this is a more robust
validation of the map products, as the entire extent of each map is assessed as opposed to just chips
containing surface mine features or a subset of randomly selected absence-only chips. The model was
validated on a total of 68 topographic maps that were not include in the KY Training or KY Testing sets.

2.4. Sample Size Comparisons

In order to assess the impact of sample size on model performance and model generalization,
we also trained models on subsets of the available KY Training dataset. This was accomplished by
randomly selecting all chips assigned to a defined number of topographic maps. In the random
selection, the probability of selection was weighted by the relative land area of mining in each
topographic map, since it was assumed that analysts undertaking manual digitizing over a small set
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of available maps would select maps with many mining examples present. In order to assess model
variability at different sample sizes, 5 random subsets of the training topographic maps and associated
chips were selected for 2, 5, 10, and 15 topographic maps each, or a total of 20 models. All models were
trained for 100 epochs using the same settings used for the model that incorporated all KY Training
image chips. We also included the same random image augmentations. The model, which consists of
the learned weights at the end of the training epoch, with the largest Dice coefficient for the KY Testing
data was selected as the final model for each sample. We also evaluated the results by predicting to the
KY, OH, and VA validation datasets. We did not perform a validation at the topographic map scale due
to computational constraints and processing time required to predict all the validation topographic
maps using all 20 models.

3. Results

Figure 6 summarizes the results of the training process for the KY Training and KY Testing datasets
for the 100 training epochs. As the model iterated through the KY Training set and the weights were
updated, the training accuracy continued to increase while the pattern for the testing data was more
variable or noisy. However, the overall trend was that accuracy for both the training and testing
datasets stabilized quickly (i.e., after roughly 30 epochs). Following the initial rapid improvement,
small gains in the training data accuracy were observed while the testing data performance stopped
improving. Generally, overfitting was not observed. Performance on the KY Testing data stabilized
with a Dice coefficient of 0.960 to 0.970 (Figure 6a), and the best performance on the testing data
occurred at epoch 75, which was selected as the final model for predicting to the three validation
datasets. Also, precision and recall were similar, suggesting a balance between errors of commission
and omission for the mining features class (Figure 6c,d).
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score, (b) overall accuracy, (c) precision, and (d) recall.

3.1. Chip-Based Assessment

Figure 7 provides example results for a random selection of image chips from the KY Validation
dataset. This visualization generally suggests the model can identify most of the mine areas, based on
the strong similarities between the reference and predicted masks, despite the presence of clutter such
as text, other annotated features, and/or contour lines. Some errors of commission, or false positives,
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were observed, such as the inclusion of features that used similar thematic symbology. For example,
some highways and small ponds were incorrectly detected.
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Figure 7. Reference labels, image data, and classification results for 36 randomly selected image chips
from the KY Validation set. Topographic maps obtained from the USGS and the National Map’s
Historical Topographic Map Collection.

Table 4 summarized the assessment results for all datasets as calculated using the image chips.
Assessment results for the KY Training data were included for comparison; however, this assessment
could be misleading due to overfitting. Generally, overall or binary accuracies were high, which we
attribute to the large number of background pixels in the image chips. For the KY Testing and Validation
data, precision and recall were generally well balanced, whereas precision rates were higher for the
OH and VA validation data in comparison to recall, which suggest higher levels of omission error than
commission error when the model is generalized to new geographic areas. This could potentially be
attributed to differences in the representation or presentation of mine features in the new data. For the
KY Testing and KY Validation data, the Dice coefficients or F1 scores were above 0.944. For the OH
and VA validation chips, the Dice coefficients were 0.894 and 0.837, respectively. Similar to the results
of Maxwell et al. [44], who investigated the mapping of valley fill faces from high spatial resolution
digital elevation data, these results suggest some reduced performance when DL models are used to
predict to new geographic extents; however, performance is still strong, suggesting that the model is
valuable for predicting new data.
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Table 4. Validation results using image chips. N = number of chips in the dataset.

Dataset Dice/F1 Score Precision Recall Accuracy N

KY Training 0.959 0.967 0.951 0.990 30,392
KY Testing 0.965 0.967 0.963 0.993 5288

KY Validation 0.949 0.954 0.944 0.989 6849
OH Validation 0.894 0.966 0.835 0.963 10,299
VA Validation 0.837 0.971 0.741 0.942 15,890

3.2. Topographic Map-Based Assessment

Table 5 summarizes the assessment results for the topographic map-based assessment while Figure 8
provides some example results as two topographic maps from each state validation dataset. These results
generally agree with those obtained using the chip-based validation. Strongest performance was generally
observed when predicting to new topographic maps within KY (i.e., the KY Testing and KY Validation
datasets). Overall accuracy and specificity were generally high, suggesting that most of the background
pixels were correctly classified. For the OH and VA validation datasets, recall was generally lower
than precision, suggesting higher levels of omission error. For all datasets, precision was above 0.890,
suggesting low commission error rates.
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Figure 8. Example predicted mine disturbance results for entire 1:24,000-scale quadrangles (a)
Quad = Williamsburg, State = KY, Year = 1969, SCANID = 710018; (b) Quad = Pineville, State = KY,
Year = 1974, SCANID = 709535; (c) Quad = Macksburg, State = Ohio (OH), Year = 1961, SCANID = 225684;
(d) Quad = Addison, State = OH, Year = 1960, SCANID = 224689; (e) Quad = Gundy, State = Virginia (VA),
Year = 1963, SCANID = 185241; (f) Quad = Pound, State = VA, Year = 1957, SCANID = 186333.
Topographic maps obtained from the USGS and the National Map’s Historical Topographic Map Collection.
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Table 5. Validation results using topographic maps. Values represent the mean values for all topographic
maps in the set. N = number of image chips in the dataset.

Dataset Dice/F1 Score Precision Recall Specificity Accuracy N

KY Testing 0.920 0.914 0.939 0.999 0.999 18
KY Validation 0.902 0.891 0.917 0.999 0.998 20
OH Validation 0.837 0.905 0.811 0.998 0.992 23
VA Validation 0.763 0.910 0.686 0.998 0.983 25

Figure 9 further summarizes the distribution of model performance for the testing and validation
data. Generally, there was more variability in the prediction of the VA data than the other datasets.
However, all datasets had some outlying topographic maps where model performance was poor.
Visual inspection of these poorly classified maps suggest that they were obtained for maps with a small
percentage or land area of surface mining where small proportions of omission or commission error
had large weight and thus greatly impacted the reported metrics.
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3.3. Sample Size Comparisons

Figures 10 and 11 below describe the results of the sample size comparison. Figure 10 shows
the changes in performance metrics for predicting the KY Training and KY Testing chips by epoch.
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Generally, reducing the number of topographic maps used to train the model decreased model
performance and increased variability between the different random subsets, as represented with the
ribbons in the graphs that represent the range at each epoch. When chips from only two topographic
maps were used, the Dice coefficient, precision, and recall (Figure 10a–c) varied greatly at the same
training epoch, even after many training iterations. Also, the model generalized poorly to the KY
Testing data; for example, the mean Dice coefficient for all five models across all epochs never rose
above 0.800 for the KY Testing set but stabilized above 0.950 for the KY Training data. When the
number of topographic maps was increased to 10 or 15, variability between the models decreased,
overfitting was reduced, based on a comparison between the training and testing results, and the
performance approached that obtained when using the entire training datasets of 84 maps and
associated chips. This generally suggests that quality results can be obtained with a smaller dataset,
which reduces manual labor requirements for training and validating DL models and adds practicality
to including DL semantic segmentation into production-level data generation over large spatial extents
and/or large volumes of data.
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Adding to the results summarized in Figure 10, Figure 11 shows the results when the models
trained with a reduced sample size were used to predict to the KY, OH, and VA validation sets.
Similar to the results for the model trained with all the training samples, these models generalized
better to the KY Validation data as opposed to the OH and VA sets. For all sample sizes, the performance
for the VA data was the lowest. Variability between different random sets tended to decrease as the
number of topographic maps used in the training process increased. Models using 15 topographic maps
approached the performance levels reached with the full training dataset in which chips were derived
from 84 topographic maps. For example, the average Dice coefficients for the 15 topographic map
models were 0.940, 0.875, and 0.813 for the KY, OH, and VA validation sets, respectively. For comparison,
the model using all the training samples yielded Dice coefficients of 0.949, 0.894, 0.837 for the same
validation sets. This generally suggests that, although more samples can improve the results, a reduced
sample size can be adequate, which would minimize manual labor requirements for generating and
validating models.

4. Discussion

Based on an evaluation on multiple datasets, our results suggest that DL semantic segmentation can
be successfully applied to historic topographic maps to extract the extent of mining-related landscape
disturbance. Although model performance decreased when generalized to new geographic extents,
performance was still strong with Dice coefficients above 0.760. Practically, DL semantic segmentation
can offer a means to reduce workloads and manual digitizing time for deriving vector geospatial data
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from historic, georeferenced topographic maps. This is especially true given that a reduced sample size
can still yield accurate results, as demonstrated by our sample size reduction experimentation. Further,
errors when generalizing to new data and geographic extents were dominated by omission error,
as measured with recall, and precision remained above 0.890 for all datasets, even when the number
of training topographic maps in the datasets were reduced to 15. In general, we would recommend
large-area mapping projects to take advantage of DL methods to decrease manual labor and shorten
project timelines. Results from DL models can then be further refined using manual interpretation
by digitizing missing features, removing false positives, and refining feature outlines, a process that
would require much less time than manually digitizing all features from scratch. Some components
would still need to rely on manual interpretation, such as labeling the feature type associated with
the digitized polygons. Given that DL semantic segmentation and its application to geospatial data
has not yet matured, there is still a need to integrate these methods into data creation workflows
and routine and operational mapping tasks. It should be noted that DL methods, including UNet,
have been integrated into commercial, geospatial software tools, such as ArcGIS Pro [90]. This further
simplifies their use in applied mapping tasks.

Generally, this research supports the value of topographic maps as a source of historic landscape
data to assess change and reinforces some prior study’s findings, such as the work of García et al. [22]
that explored changes in river corridors and Uhl et al. [25] that mapped human settlement footprints.
Reinforcing the findings of Uhl et al. [25] specifically, our study highlights the value of large,
quality training datasets for training DL semantic segmentation algorithms to recognize features in
topographic maps. Lastly, our study reinforces the documented strong performance of the UNet
semantic segmentation method for extracting features and classifying pixels from a wide variety of data
sources to support varying mapping tasks (for example, [54,55,62–67,69,70,91–93]). Such techniques,
including future advancements and modifications, may eventually replace traditional ML methods,
such as random forests (RF) and support vector machines (SVM), as operational standards in the
field [46,52–55].

This study has some notable limitations. First, it was not possible to fully assess the impact of
hyperparameter selection and UNet architecture due to required computational time and cost, an issue
which has been raised in prior DL studies (for example, [44]). The Dice coefficient was a valuable loss
measure in this study due to class imbalance and because overall accuracy was generally high and did
not adequately quantify errors. The use of the Dice coefficient, precision, and recall allowed for a more
detailed quantification of omission and commission errors. Our sample size experimentation was
informative but could be expanded to include more replicates and sample sizes. However, training
many models is computationally demanding; for example, the 20 models used in this study to assess
sample size impacts took over a week to train on a Microsoft Azure virtual machine with GPU support.
In future research, we plan to further assess the impact of training data size and the number of available
manually interpreted topographic maps and using transfer learning to refine models trained in on area
for use in new geographic extents were the presentation of surface mining may be different. We also
plan to combine surface mining extents extracted from historic topographic maps with recent maps of
mine disturbance, such as those generate by Pericak et al. [34], to more fully quantify the cumulative
landscape alterations and impacts of surface coal mining in Appalachia.

Future research should investigate the mapping of additional features from historic topographic
maps, such as the extent of forests and wetlands. DL could also be applied to other cartographic
representations that characterize historic landscapes, represent the cumulative efforts of many
professionals over many decades, and are not readily available for use in spatial analysis and
change studies. For example, features could be extracted from historic reference and geologic maps.
As in the lead author’s prior study [44], we argue that there is a need to develop multiple and varied
benchmark datasets to support DL semantic segmentation research, including those derived from
image datasets and other geospatial data, such as digital terrain data, historic topographic maps,
and other cartographic presentations. Such datasets will be of great value in comparative studies and
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for further development and refinement of algorithms. Comparisons of algorithms were not a focus of
this study. Since DL semantic and instance segmentation algorithm development and refinement are
still actively being studied, there will be a continued need to investigate these new and refined methods
for a wide variety of mapping tasks. For example, high-resolution networks (HRNets) [94–97] have
recently been shown to be of value for dealing with issues of intra-class heterogeneity and inter-class
homogeneity. Further, gated shape CNNs have been shown to be useful for differentiating features
based on unique shape characteristics [98,99]. This further highlights the need for the development of
a wide variety of benchmark datasets. Comparison of DL algorithms is complicated by processing time
and computational costs, which makes it difficult to consistently and systematically compare algorithms,
assess the impact of algorithm settings and architecture, experiment with reductions in sample size
and generalization to new data and/or geographic extents, and incorporate multiple datasets into
studies [44,54,55]. Since this study relied on a modified UNet algorithm and explored a single mapping
task and input dataset, our findings associated with sample size and model generalization may not
translate to other algorithms and/or classification problems, which further highlights the need for
additional research.

5. Conclusions

This study highlights the value of DL semantic segmentation methods for extracting data from
historic topographic maps, which offer a valuable record of historic landscape conditions that can
be combined with more recent data, such as those derived from moderate spatial resolution satellite
imagery, for extending the LCLU change record and more completely quantifying anthropogenic
landscape alterations. This is especially true for disturbances with a long and complex historic record
that pre-date the era of satellite-based Earth observation missions. We further documented model
generalization to new data and geographic extents and the impact of reduced sample size. Overall,
this research suggests that currently available semantic segmentation methods are applicable and
generalizable, with some reduced performance. Further, large sample sizes may not be necessary to
train models that generalize well, which can greatly reduce manual labor requirements.

DL techniques should be applied to these historic datasets to further extend the land change
record. For programs that are attempting to digitize such features, such as the USGS GGGSC,
augmenting processes with DL output will allow for more efficient production, which is very important
given the volume of data that needs to be interpreted. To obtain accurate results, operational workflows
must be developed that allow for training data generation, model development, prediction to new
geographic extents and data, and manual digitizing to improve results where necessary. The data
used in this study are made available through the West Virginia View website (http://www.wvview.
org/data_services.html) while the code can be obtained from the associated GitHub repository
(https://github.com/maxwell-geospatial/topoDL). We hope that these data and resources will aid in
future DL research.
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Acronyms

Acronym Meaning
Adam Adaptive Momentum Estimation
ANNs Artificial Neural Networks
API Application Programming Interface
CNN Convolutional Neural Network
DL Deep Learning
DRG Digital Raster Graphic
FCNs Fully Convolutional Neural Networks
FN False Negative
FP False Positive
GEOBIA Geographic Object-Based Image Analysis
GGGSC USGS Geology, Geophysics, and Geochemistry Science Center
GPU Graphics Processing Unit
HTMC Historic Topographic Map Collection
KY Kentucky
LCLU Land Cover and Land Use
LiDAR Light Detection and Ranging
Mask R-CNN Mask Regional-Convolutional Neural Networks
ML Machine Learning
NLCD National Land Cover Database
OLI Operational Land Imager
ReLU Rectified Linear Unit
RF Random Forests
RMSProp Root Mean Square Propagation
SMCRA US Surface Mining Control and Reclamation Act
SVM Support Vector Machines
TN Tennessee
TN True Negative
TP True Positive
US United States
USGS United States Geological Survey
VA Virginia
WV West Virginia
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