
remote sensing  

Article

Detecting Individual Tree Attributes and
Multispectral Indices Using Unmanned Aerial
Vehicles: Applications in a Pine Clonal Orchard

José Luis Gallardo-Salazar and Marín Pompa-García *

Faculty of Forest Sciences, University of Juarez del Estado de Durango, Río Papaloapan and Blvd. Durango,
Valle del Sur s/n, Durango 34120, Mexico; 1107805@alumnos.ujed.mx
* Correspondence: mpgarcia@ujed.mx; Tel.: +52-61-81-301096

Received: 5 November 2020; Accepted: 15 December 2020; Published: 18 December 2020 ����������
�������

Abstract: Modern forestry poses new challenges that space technologies can solve thanks to the
advent of unmanned aerial vehicles (UAVs). This study proposes a methodology to extract tree-level
characteristics using UAVs in a spatially distributed area of pine trees on a regular basis. Analysis included
different vegetation indices estimated with a high-resolution orthomosaic. Statistically reliable results
were found through a three-phase workflow consisting of image acquisition, canopy analysis,
and validation with field measurements. Of the 117 trees in the field, 112 (95%) were detected by the
algorithm, while height, area, and crown diameter were underestimated by 1.78 m, 7.58 m2, and 1.21 m,
respectively. Individual tree attributes obtained from the UAV, such as total height (H) and the crown
diameter (CD), made it possible to generate good allometric equations to infer the basal diameter (BD)
and diameter at breast height (DBH), with R2 of 0.76 and 0.79, respectively. Multispectral indices were
useful as tree vigor parameters, although the normalized-difference vegetation index (NDVI) was
highlighted as the best proxy to monitor the phytosanitary condition of the orchard. Spatial variation
in individual tree productivity suggests the differential management of ramets. The consistency of the
results allows for its application in the field, including the complementation of spectral information
that can be generated; the increase in accuracy and efficiency poses a path to modern inventories.
However, the limitation for its application in forests of more complex structures is identified; therefore,
further research is recommended.
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1. Introduction

The world’s forests offer a great diversity of goods and services that have led the scientific
community to continuously look for new modern and efficient management schemes [1,2]. In fact,
the vulnerability of forest ecosystems to climate change [3] and the anthropogenic pressure to which
they are exposed [4,5] makes it necessary to better understand the dynamics of forest growth to
strengthen decision making for their sustainability.

Given the ecological complexity of forest landscapes, several studies have been directed to
promote innovation in forest inventories. In particular, the accurate and automated estimation of tree
attributes has been a research trend in recent years. According to a recent study [6], such technologies
represent a more efficient means of obtaining detailed information of individual trees, such as
total height, diameter at breast height, basal area, tree count, crown delimitation, and volume
estimation. For example, Gollob, et al. [7] documented a methodology for diameter estimation,
diameter-at-breast-height (DBH) measurement, and tree detection in forest inventory. Lefsky, et al. [8]
conducted an approach for the estimation of forest standing volume, obtaining a 95% confidence
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interval for the total volume. Similarly, Puliti, et al. [9] measured tree attributes to estimate volume
without the use of field data.

The measurement of height and diameter at breast height are fundamental parameters in forest
management. Usually, these conjugated variables are essential for the subsequent estimation of volume,
biomass, and carbon stocks, so that their proper measurement has a direct impact on the quantification
of inventories and thus on decision making [10]. On the other hand, measurements of tree-crown
dimensions are important because the tree crown is where trees interact with their surrounding
environment, including via diverse physiological processes such as photosynthesis and respiration;
consequently, its accurate quantification is crucial to designing strategies of cultural labors on the
individual-tree level [11].

In all these studies, a constant has been the application of spatial technologies (i.e., remote sensing)
that make estimates more efficient than traditional methods of in situ data collection. Since forest
inventories are a laborious and expensive task, the collection of data by remote sensing becomes
important in the innovation of forest monitoring. Therefore, the advent of unmanned aerial vehicles
(UAVs) and integration with remote sensing have been a turning point in forest management towards
the transition of “precision forestry” [6,12].

Furthermore, when these devices are integrated with multispectral sensors, their predictive ability
is potentially increased to aspects not visible to the human eye. An evident example is the generation
of vegetation indices (e.g., normalized-difference vegetation index (NDVI), green NDVI (GNDVI),
and leaf chlorophyll content (LCI)) [13,14] that can provide information on tree vigor and productivity.
The recognition of such ecological parameters allows for the early detection of phytosanitary problems
and the determination of the conditions of plant phenology [15].

Thus, UAVs represent an area of opportunity with great potential in Mexico, given its floristic
diversity and the importance of forest management [16]. Specifically, homogeneous and even-aged
forests form an ideal pilot area to study the relevance of using UAVs as modern tools to support modern
forestry. In the north of Mexico, there is an established 15-year-old seed orchard of Pinus arizonica [17]
as a source for preservation and improvement of tree genetic quality. P. arizonica, commonly known
as the Arizona pine, is one of the most important timber resources in Mexico [18]. Arizona pine is a
widely distributed conifer species in the Sierra Madre Occidental, from Southern Arizona to Southern
Durango. This species also provides the highest volume and value to the timber industry in northern
Mexico due to its abundance and high wood quality. Environmentally, Arizona pine plays a significant
role as a source of food and protection for wildlife [17].

Continuous plant-growth monitoring in this seed orchard is a matter of concern for the scientific
community and decision makers. Periodic monitoring has led to research new measurement strategies that
would increase its effectiveness [19] without undermining its statistical validity. Monitoring quantitative and
qualitative variations in individual productivity has serious implications for orchard management [20].
Moreover, these areas require individual and precise measurements to differentially guide management
according to inherent spatial characteristics [21,22] to optimize cultural practices [23]. Usually, monitoring the
orchard is manual, expensive, and harshly laborious [17]; however, advantages of temporal and spatial
resolution offered by UAVs represent a strategic opportunity to improve our geospatial knowledge of
the individual dynamics of trees.

Several studies reported the estimation of production parameters such as biomass [24], the measurement
of crown structures [25], applications in irrigation [26], pruning architecture [27] and tree counting [28].
Although all these applications mainly used UAVs in fruit growing, to our knowledge, there is still
no procedure for the extraction of tree-level characteristics applied to individual trees in Mexico.
Knowing these parameters is essential for optimal management in seed orchards, including the
proper selection of pruning techniques, irrigation needs, phytosanitary management regimes, and the
calculation of tree-level characteristics. In addition, UAV use enables the production of various advanced
data such as videos [29,30], orthomosaics [31–33], and digital terrain and surface models [34,35],
which contain the basic inputs for subsequent estimates on the individual-tree level.



Remote Sens. 2020, 12, 4144 3 of 22

Under the hypothesis that UAV use significantly improves tree-level estimates regarding direct
field measurements, this study proposes a method to estimate tree counts, total height, diameter,
and crown area, including basal-diameter (BD) and diameter-at-breast-height (DBH) inferences on the
individual-tree level in a pilot area in the north of Mexico. As a complementary objective, an estimation
of spectral indices is shown as a strategy for determining the vigor of the clonal orchard.

2. Materials and Methods

2.1. Study Area

The study site is in the Sierra Madre Occidental in northern Mexico (27◦8′57′′N, 107◦6′41′′W;
2400 m asl) (Figure 1). This region has a variety of ecosystems where pine and oak forests dominate,
which resulted from the complexity of physiographic units and climates, and it is located at the
transition between the Holarctic and Neotropical regions [36]. The dominant soils are Regosols and
Leptosols with loam textures. The climate of the region is semicold, subhumid, with long fresh
summers and monsoon rains that are combined with winter precipitation to reach an annual average
of 779 mm, and an annual average temperature between 5 and 12 ◦C [17,37].

Figure 1. View of clonal orchard of Pinus arizonica Engelm. and climatogram in the Papajichi ejido,
state of Chihuahua, north of Mexico.

This region is one of the most important wood reserves in Mexico, and it is important for
commercial timber production and forest conservation [29]. In addition to supplying more than 25% of
the timber in Mexico, these forests preserve the main source of springs and streams that feed rivers and
reservoirs, which are used for agricultural and public water supplies in the western states of Mexico.

This area is an important and valuable source of ecosystem services (e.g., water, biodiversity,
and forest resources) to local populations, and it is a strategically important region for conservation
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studies. Particularly since 2005, a portion of 1.10 ha has been considered a clonal orchard area of
Pinus arizonica Engelm. (Figure 1).

The pine clonal seed orchard was established in 2005 using clones obtained by transplants
previously carried out in nurseries. The orchard design is regular, with a real frame arrangement with
approximately 6 m spacing between ramets.

2.2. Workflow

The general process for the estimates of tree-level characteristics of individual trees using a UAV
is illustrated in Figure 2. The first step was flight planning that involved defining the height, and the
overlap between images and between lines for the subsequent execution of the flight and image capture.

Figure 2. Workflow of stages of unmanned aerial vehicle (UAV) image preprocessing, canopy analysis,
and validation with field measurements.

Images were processed and analyzed with photogrammetric procedures to derive the digital
surface model (DSM) and digital terrain model (DTM) [35]. The canopy height model (CHM)
was calculated from the difference in elevation between DSM and DTM. At the same time,
multispectral vegetation indices were calculated as a strategy to test the phytosanitary status
of the orchard. Canopy analysis involved detecting and geolocating trees in the clonal orchard,
estimating heights, and delimiting crowns to obtain diameters and crown areas. Lastly, the estimation
of tree-level characteristics calculated with the UAV was evaluated with respect to those recorded in
the field by correlation analysis.

2.3. UAV Image Acquisition and Processing

On 17 October 2020, the study area was overflown using a DJI Phantom 4 Multispectral (P4M)
quadcopter (Figure 3a). The P4M camera has a total of 6 imaging sensors—5 multispectral sensors
(i.e., blue, green, red, red-edge, and near-infrared bands) and 1 RGB sensor, all with a global 2 MP
shutter (Table 1). The focal length of the P4M camera is 5.74 mm, image size is 1600 × 1300 pixels,
and sensor size is 4.87 × 3.96 mm [38]. The P4M demonstrated good accuracy, yield, and consistent
data generation [39].
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Figure 3. (a) DJI Phantom 4 Multispectral UAV used for image acquisition; (b) first and (c) second grid
of flight planning, both made using DJI Ground Station Pro application.

Table 1. Spectral-band information for Dà-Jiāng Innovations (DJI) Phantom 4 Multispectral (P4M).

Band Central Wavelength (nm) Wavelength Width (nm)

Blue 450 32
Green 560 32
Red 650 32

Red-edge 730 32
Near-infrared 840 52

The flight plan for automatic image acquisition was programmed with the DJI Ground Station
Pro application [40]. A 109 × 107 m double grid was established, covering the entire clonal orchard
with an overlap of 80% between photos and 70% between lines. Flight height was 60 m above ground
level (AGL) with a camera angle of 90◦ and 75◦ for the first and second grid, respectively (Figure 3b).
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The P4M operates under the principle of direct onboard georeferencing. In other words, it is
equipped with a global positioning system (GPS) that geotags the coordinates of each acquired image.
This indicates that the acquired images were directly georeferenced by the GPS capability during
the flight mission [41]. It was not necessary to use the real-time-kinematic (RTK) system because the
P4M manufacturer reported that the georeferencing system can reach vertical and horizontal location
pressure of ±0.1 and ±0.3 m, respectively [42].

From the captured RGB and multispectral images, photogrammetric and computer-vision
procedures were applied using free and open-source software OpenDroneMap (ODM) [43]. Outputs from
ODM and the commercial options are similar; however, a major advantage is cost and its inherent
feature of being an open-source software offers multiple options to customize photogrammetric
procedures, decrease processing time, and increase documentation available to users. [44].

This software implements the modern Structure from Motion (SfM) and Multi-View Stereo (MVS)
algorithms, showing common characteristics in images with a high percentage of overlap. It then
generates a 3D point cloud of 1000–20,000 points m−2 [9] from which it filters and interpolates a DSM
and DTM, which, in turn, are used to orthorectify each image and construct an orthomosaic [45,46].
This process generated the RGB orthomosaic, multispectral orthomosaic, DSM, and DTM of the clonal
orchard. The raster calculator was used with free and open-source QGIS software [47], and the
following equation was applied [48] to generate a canopy-height model (CHM) to represent the
potential height of each tree:

CHM = DSM−DTM (1)

where CHM is the canopy-height model, DSM is the digital surface model, and DTM is the digital
terrain model.

2.4. Estimates of Tree-Level Attributes

There are many methods for the detection and delimitation of individual tree crowns in different
forest scenarios [49,50]. The ForestTools package [51] from statistical software R [52] was used in this study.
This package was designed to work with CHM LiDAR data or photogrammetric point cloud derived
from UAV photogrammetry. In short, the package automatically detects tree crowns, obtains tree
height (m), generates polygons, and calculates the crown area (m2). From there, the following formula
was used to find the crown diameter (m) of each tree present in the clonal orchard:

d = 2

√
a
π

, (2)

where d is the crown diameter and a is the crown area.
Initially, a Gaussian filter was applied to smooth the CHM to remove heterogeneity in pixel

values [53]. The size of the filter was determine by setting the standard deviation parameter (0.75),
which is in units of grid cells using free and open-source WhiteboxTools software [54]. Subsequently,
the ForestTools package was implemented as a tool to individually geolocate trees and delimit
tree crowns through the variable-window-filter (vwf) algorithm [55] and the marker-controlled
segmentation algorithm proposed by Beucher and Meyer [56], respectively.

Field data were collected on the same day of the flight (17 October 2020) and correspond to
the beginning of the species’ dormancy stage [17]. Each individual tree in the clonal orchard was
detected, manually tagged, and rigorously measured. Basal diameter (BD; cm) and diameter at breast
height (DBH; cm) were recorded using a diameter tape. Tree heights (m) were recorded using a level
staff. Average crown diameter (m) was also obtained by recording the width of the horizontal crown
projections (east–west and north–south) for each tree using a measuring tape. Crown area (m2) was
obtained from the average crown diameter, and the following formula was applied:

a = π
d2

4
, (3)
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where a is the crown area and d is the average crown diameter.
However, crown-area calculation assumes a circular geometric pattern, which in the field is usually

irregular in shape and spatial extension. For this reason, delimitation of this attribute by means of
a UAV recovers relevance, since it is considered to be a better approximation to the precise spatial
conformation of the individual.

To compare the estimates of tree-level characteristics obtained with the UAV with respect to field
measurements, we used correlation analysis to estimate the degree of correspondence between estimated
variables and those recorded with field data. Moreover, simple regression models were used to estimate
adjustment efficiency regarding the determination coefficient (R2) and root-mean-square-error (RMSE)
by means of statistical software R [52]. Furthermore, the fulfillment of regression assumptions [57]
used in forest modeling was verified. Attributes were classified to increase the goodness of fit and
explore the potential improvements of statistical parameters [58].

Given the goodness of estimation of certain variables from the UAV, using allometric relations
equations were obtained to predict the BD and the DBH. From a practical point of view, this strategy
allows for enhancing the use of individual tree-level attribute measurements, saving time and
improving certainty.

2.5. Multispectral Image Analysis

Since vegetation indices are proxies of vegetation vigor or productive status [13,14], we also
tested multispectral vegetation indices recorded from the UAV in the study area. These indices were
estimated from the multispectral orthomosaic with the QGIS raster calculator (Equations (4)–(11)):

NDVI =
NIR−RED
NIR + RED

(4)

GNDVI =
NIR−GREEN
NIR + GREEN

(5)

LCI =
NIR−RedEdge

NIR + RED
(6)

NDRE =
NIR−RedEdge
NIR + RedEdge

(7)

OSAVI =
NIR−RED

NIR + RED + 0.16
(8)

RVI =
NIR
RED

(9)

TVI =

√
NIR−R
NIR + R

+ 0.05 (10)

NDGI =
GREEN−RED
GREEN + RED

(11)

where NDVI, the normalized difference vegetation index that is the most used indicator of the
chlorophyll content in vegetation, provided information about vegetation growth and nutrients.
GNDVI, green NDVI, uses a green band, which represents the surface, instead of the red used in NDVI.
GNDVI can show whether vegetation is lacking water or nutrients or is suffering from postmaturity
biomass recession. LCI, leaf chlorophyll content, is an important index for evaluating vegetation
growth and yield. It is also an indicator for evaluating plant nutrient stress, disease, growth, and aging.
NDRE, normalized difference red-edge index, uses a red-edge band instead of the red used in NDVI.
This red-edge band is a spectral region in the transition zone from the red spectrum to the near-infrared
spectrum. NDRE can be used for managing vegetation based on variables such as chlorophyll and
sugar content. OSAVI, soil-adjusted vegetation index, is based on NDVI and relevant observation
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data. This index is used for removing the impact of soil conditions on vegetation. RVI, ratio vegetation
index, indicates the presence of vegetation and correlates with the amount of vegetation in particular
fields. Its values can increase far beyond 1; very high values are generally on the order of 30. TVI,
transformed vegetation index, modifies NDVI by adding a constant of 0.5 to all its values and taking the
square root of the results. The 0.5 constant is introduced in order to avoid operating with negative NDVI
values. Moreover, there is no technical difference between NDVI and TVI in terms of image output
or active vegetation detection. NDGI, normalized difference greenness index, is based on reflectance
values in the visible spectrum of radiation. This index can provide information about differences in the
content of various pigments and variation throughout the entire vegetation season [59].

3. Results

A total of 2340 images were captured. Of these, 390 images were from the RGB sensor. Figure 4
shows the RGB orthomosaic, DMT, DSM, and CHM derived from the photogrammetric process with
ODM. The coverage area of these products is 1.10 ha and has a spatial resolution [60] or ground
sampling distance (GSD) of 4 cm.

Figure 4. (a) RGB orthomosaic, (b) digital surface model, (c) digital terrain model, and (d) canopy-height
model derived from UAV flight.

In the field study, 117 trees in the clonal orchard were recorded and measured. Table 2 shows the
descriptive statistics of tree-level characteristics recorded in the field. Using the variable-window-filter
algorithm of the ForestTools package, 95% of the trees (i.e., 112 out of 117) were detected, and their
tree crowns were delimited. Although the trees are the same age, the phenotypic conformation is
variable [17], and their open and regular canopy (Figure 5) was strategic for the purposes of the study.
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Table 2. Descriptive statistics of 117 trees from Pinus arizonica Engelm. clonal orchard.

Descriptive
Measurement BD (cm) DBH (cm) H (m) CD (m) CA (m2)

Minimum 7.64 2.22 1.15 0.76 0.45
First quarter 16.55 13.21 4.60 3.37 8.94

Average 21.22 16.25 5.63 4.72 19.26
Median 20.69 15.59 5.70 4.63 17.53

Third quarter 26.10 19.99 6.70 6.00 28.27
Maximum 36.76 38.19 10.20 8.65 58.76

Note: BD, basal diameter; DBH, diameter at breast height; H, height; CD, crown diameter; CA, crown area.

Figure 5. Detection and delimitation of individual tree crowns from canopy-height model (CHM) with
the ForestTools package.

Statistical evaluations of tree-level characteristics recorded with field data and those estimated
with UAV are summarized in Table 3. Height, area, and crown diameter were underestimated by
the UAV by 1.78 m, 7.58 m2, and 1.21 m, respectively. High and positive correlation was observed
between height, area, and crown diameter recorded with field data and those estimated with the
UAV. That is, the values of correlation coefficients (r) are close to 1.0 (0.97, 0.95, and 0.95, respectively).
In general, RMSE and bias values indicated high consistency between measurements of tree-level
characteristics. Although class rankings were made as suggested by Wang, Lehtomäki, Liang, Pyörälä,
Kukko, Jaakkola, Liu, Feng, Chen, and Hyyppä [58], no better estimates were found than those obtained
in total, as presented below.
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Table 3. Statistical evaluations of tree-level characteristics recorded and estimated from 112 trees
detected in the clonal orchard.

Height (m) Crown Area (m2) Crown Diameter (m)

c e c e c e

Minimum 2.05 1.05 1.59 0.06 1.42 0.27
First quarter 4.79 3.12 9.59 3.80 3.49 2.20

Average 5.76 3.98 19.93 12.35 4.75 3.54
Median 5.77 3.93 18.28 10.16 4.82 3.59

Third quarter 6.78 4.76 28.57 18.81 6.03 4.89
Maximum 10.20 7.25 58.76 46.60 8.65 7.70

RMSE 0.36 3.88 0.47
Bias −5.46 × 10−5 2.17 × 10−4

−3.57 × 10−5

r (p < 0.001) 0.97 0.95 0.95

c, recorded with field data; e, estimate using UAV; RMSE, root-mean-square error.

Figure 6 shows the results of linear regression applied in order to determine the relationship
between data recorded with field data and those estimated with UAV; a graph of residues against
predicted values (i.e., height, area, and crown diameter) is also included. For height recorded in the
field, corresponding to the 112 trees detected, the model was able to explain 95% of variability observed
from that tree-level characteristic (R2 = 0.95) with an RMSE of 0.36 m (Figure 7). Similarly, the linear
model for the crown-area variable had a determination coefficient of 90% (R2 = 0.90) and an RMSE of
3.88 m2 (Figures 6b and 7). Lastly, the model for the crown diameter was able to explain variability
observed in 91% of that tree-level characteristic (R2 = 0.91) with an RMSE of 0.47 m (Figures 6c and 7).

For the inference of BD and DBH, all attributes calculated with the UAV (i.e., height, crown area,
and crown diameter) were tested. The best-fitting predictor variables were determined by the following
equations:

DBH = 0.4966 + 4.1123 H, (12)

where DBH is the diameter at breast height and H is the height estimate using a UAV.

BD = 10.3006 + 3.2024 CD, (13)

where BD is the basal diameter and CD is the crown-diameter estimate using a UAV.
The DBH and BD models showed favorable goodness of fit. The estimated height with UAV was

the predictor variable that better explained DBH variability (R2 = 79%, p value 2.2 × 10−16) and an
RMSE of 2.81 cm, while BD was better inferred by CD, explaining the variability of this parameter
in 76% (R2) with an RMSE of 2.73 cm. The p value of both models was significant (2.2 × 10−16),
which confirmed a statistical relationship (not random). The statistical significance of the coefficients
of the independent variables is shown in Table 4.

Table 4. Simple regression coefficients predicting basal diameter and diameter at breast height.

Dependent Variable Independent Variables B Standard Error t Significance

Diameter at breast height Constant 0.4966 0.8031 0.603 0.548
Height estimate using UAV 4.1123 0.1979 20.781 <2 × 10−16

Basal diameter
Constant 10.3006 0.5825 17.68 <2 × 10−16

Crown-diameter estimate using UAV 3.2024 0.1469 21.80 <2 × 10−16
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Figure 6. Regression analysis and graph of residues against predicted values for tree-level characteristics
with field data vs. those estimated with UAV from 112 trees detected. (a) Height; (b) crown area; (c)
crown diameter.
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Figure 7. Absolute RMSE of simple regression models for tree-level characteristics with field data vs.
those estimated with UAV.

Figures 8 and 9 show the scatter diagrams between each predictor and residues for each model.
Therefore, it was possible to check the condition of the linear relationship between numerical predictors
and response variable (i.e., if the relationship were linear, residuals would be randomly distributed
around 0 with constant variability along the X axis).

Figure 8. Graph of residues against predicted model values. (a) Diameter at breast height and total
height estimated with UAV; (b) basal diameter and crown diameter estimated with UAV.
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Figure 9. Vegetation indices in Pinus arizonica Engelm. clonal orchard.

Regarding vegetation-index estimates, 1950 images were captured with P4M’s multispectral
sensors (i.e., blue, green, red, red-edge, and near-infrared bands). Figure 9 shows the different
vegetation indices calculated for the clonal orchard from the multispectral orthomosaic derived from
photogrammetric processing with ODM. Moreover, Figure 10 shows the distribution of the average
values of vegetation indices corresponding to tree crowns. The estimated indices were NDVI, TVI,
LCI, GNDVI, RVI, OSAVI, NDRE, and NDGI; Table 5 shows the descriptive statistics of the values of
these indices.
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Table 5. Descriptive statistics of vegetation indices in Pinus arizonica Engelm. clonal orchard.

Descriptive Measurement NDVI TVI LCI GNDVI RVI OSAVI NDRE NDGI

Average 0.36 0.63 0.16 0.39 2.74 0.10 0.13 −0.02
Maximum 0.92 0.99 0.55 0.87 28.85 0.59 0.42 0.52
Minimum −0.26 0.008 −0.12 −0.21 0.52 −0.10 −0.11 −0.45

Standard deviation 0.18 0.14 0.08 0.14 2.32 0.09 0.06 0.11

NDVI, normalized difference vegetation index; TVI, transformed vegetation index; LCI, leaf chlorophyll index;
GNDVI, green NDVI; RVI, ratio vegetation index; OSAVI, optimized soil adjusted vegetation index; NDRE,
normalized difference red edge index; NDGI, normalized difference greenness index.

Figure 10. Individual-tree vegetation-index distribution in Pinus arizonica Engelm. clonal orchard.
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Tree-crown vegetation-index values were visually recognizable on the higher levels (i.e., green and
yellow shades; Figure 9). Difference was evident between tree crowns and surfaces different from
tree crowns (i.e., orange and red shades), corresponding to bare soil or provided with herbaceous
vegetation. However, for all indices, high and low values could be recognized within the tree crowns,
attributable to different levels of health or stress. Consequently, each index had a different histogram
shape (Figure 10). According to Minařík and Langhammer (2016), the divergent shape of histograms
implies the different sensitivity of the indices to separate categories of forest disturbance and/or
productivity, highlighting NDVI as the one with the best capacity.

Regarding the distribution of the average values of the vegetation indices, NDVI showed an
average of 0.70, with 86% of the trees having values between 0.66 and 0.78. From qualitative analysis,
trees with high NDVI values coincided with those of GNDVI; however, the average value of this index
was 0.65 for most of the trees (91%), with values from 0.62 to 0.71. NDRE had an average value of
0.2, which could be attributed to the fact that this index is a good indicator when large quantities of
chlorophyll have already accumulated. On the other hand, LCI determines chlorophyll content, so it is
in a lower range than that of the above-mentioned indices; the maximal value for this index was 0.36
and the minimal was 0.19, with an average of 0.30. For OSAVI, tree crowns had average values between
0.20 and 0.34, and 59% of the trees were in a range of values of 0.23 and 0.27. TVI removes negative
NDVI values; the average of this index was 0.68, ranging from 0.49 to 0.86. This highlighted the higher
values at the tree crowns and allowed for them to be differentiated from the rest of the coverage in the
orchard. RVI is characterized by discriminating the presence of vegetation with high greenness with
respect to other types of cover. The average value for this index was 3.5 with a minimum of 1.5 and a
maximum of 7.7. NDGI values fluctuated from 0.29 to 0.65. This index is highly sensitive to minimal
changes in vegetation under subsequent fire or drought conditions. Figure 10 shows that this index is
less contrasting to define tree crowns and highlights the photosynthetic activity in the surrounding
areas with the presence of herbaceous vegetation.

4. Discussion

To our knowledge, this is the first approach to estimate tree-level attributes and multispectral
indices using UAV in a pine clonal orchard; although it is an area with trees regularly distributed in
space and of similar age, findings may lead to improving the context of current inventories.

In fact, the recent literature reported exponential interest of UAV applications in the estimation of
structural attributes during the last five years [6], and contributes to improving those technologies
with limitations in temporality and spatial resolution that complicate more realistic mapping in small
areas [61]. Thus, our findings in terms of the calculation of height, crown attributes, and tree counts
estimated using UAV offer a promising future in forest-resource management towards precision
forestry [2,6,62].

Height estimation is a typical parameter in forest management since it is a basic input for
calculating volume, and it is usually a parameter of forest productivity, including carbon stocks [63].
Although the study orchard was directly and rigorously telescoped (some cases involving tree climbing),
accuracy and precision were limited to higher heights [58]. Optionally, our remote-sensing methodology
offered a solid estimate (Table 3); however, it underestimated by 1.78 m, which could be attributed to
the limited generation in the cloud of points at the tree apex. According to Krause, Sanders, Mund,
and Greve [63], the photogrammetric dataset implicitly had this error, and it is considered acceptable
and often attributed to the leaning angle. Furthermore, according to the standardization of typical
forest inventories, an error of 10% is allowed, which is valid for practical purposes [64].

Height measurements by a technician in the field are usually performed with indirect methods
where clear visibility is required from the base to the top of the tree; despite the technician’s attempts to
control this error, under natural conditions visibility can be restricted due to the complexity of the shape
of the crown, the occlusion of neighboring trees, very steep slopes, etc. Therefore, the implication of
errors in the field could be greater than that obtained by the UAV (Figure 7), so our approach is viable in
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operational terms. However, to significantly improve accuracy, Krause, Sanders, Mund, and Greve [63]
recommended repeating the missions with the consequent gain in data quality and quantity, especially in
new and fast-growing species. Likewise, georeferencing individuals to an acceptable level of precision
gives them a strategic advantage over expensive and time-consuming fieldwork.

Comparatively, the results of height estimation can be considered acceptable in their estimates with
those of Wu, et al. [65] (R2 = 0.89, RMSE = 0.19 m, rRMSE = 5.37%); Roşca, et al. [66] (RMSE 0.11–0.63 m);
Krause, Sanders, Mund and Greve [63] (RMSE values of 0.304 m (1.82%) and 0.34 m (2.07%),
respectively (n = 34)); and Falkowski, et al. [67] measurements of tree height (r = 0.97) and crown
diameter (r = 0.86), albeit in different species and under different environmental conditions, so further
research should be conducted as suggested on variations in slopes, densities, complexity, and crown
classes [58]. Although the same author reported that the results were improved by the classification of
attributes, our study found no benefit when classifying them (R and RMES values were lower).

With respect to contour and crown-area measurements, these estimates are more important
as tree-level characteristics that can be used to estimate other attributes such as volume, biomass,
and carbon. Wu, Johansen, Phinn, Robson and Tu [65] highlighted the importance of this characteristic
to design better cultural practices on the individual-tree level, detect physiological activity, and for
phenological monitoring (production, cone quality, pruning). Above all, its metric input is potentially
strategic for precision forestry [2,12]. Assessing the absolute accuracy of UAV-based results requires
independent and alternative measures. However, for the measurements of diameter and crown area,
it was not possible to have real data because of irregular geometrical tree characteristics. Real field
measurements are laborious and inaccurate because they assume a circular geometric model, unlike the
more accurate results offered by the aerial perspective where tree crowns are favorably visualized
according to their exact shape and spatial extension.

Therefore, to achieve a more accurate estimation of crown area and crown diameter, it is advisable
to take multiple measurements with the UAV until standard deviations are minimized to the desired
level. Other mission parameters must be considered to find the optimal one (e.g., flight heights) [68].
Compared to the study by Johansen, Raharjo and McCabe [68], the GEOBIA algorithm and eCognition
Developer 9.2 software found an R2 = 0.96 and RMSE of 0.6 m, although they tested different heights,
and the crown area was not measured in the field. In addition, in such a study, mapping was improved
in the youngest (smallest) trees, which showed differential estimates according to tree dimensions;
however, as mentioned in this study, such classification did not yield statistical improvements.

Despite the promising results (Table 3 and Figure 6), crown delineation is complicated in trees that
occlude neighboring trees with their branches, so caution is required in applying this approach with
those dense stands [58]. It is also recommended to complement with other technologies such as those
of 2D spatial-wavelet analysis by Falkowski, Smith, Hudak, Gessler, Vierling, and Crookston [67].

Although analysis incorporating two or more species is beyond the objectives of this research,
we expect that high tree densities would make it difficult to model, at least with these sensors,
since tree-crown measurements in old growth stands are labor-intensive and imprecise because of the
difficulty of observing them from the ground. In this case, sensors such as terrestrial laser scanning that
can cross the canopy are recommended. According to Ritter and Nothdurft [69], these technologies
have proven their efficiency in other geographical areas.

In relation to tree count, the potential usefulness of the developed algorithm is evident; the high
rate of found precision (112/117), despite phenotypical differences in individuals, reflects the relevance
of the followed approach. This coincides with recent findings generated in other latitudes, such as
the case of Jiménez-Brenes, López-Granados, de Castro, Torres-Sánchez, Serrano, and Peña [27],
which reported 80% of the trees in an olive orchard. It is recommended to research in more detail
the configuration of different parameters of the flight [68], which could yield better tree-counting
efficiency. On the other hand, the large amount of travel time required for individual field counts is
drastically reduced by the procedure followed here. This gives a high degree of practical application to
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the results towards aerial inventories [9], which, combined with allometric equations, could calibrate
forest-growth models, forest management, and studies of forest ecology.

Thus, our workflow is solid and important, particularly for monitoring small sites on a
continuous and permanent basis, including the complementation of spectral information that could be
generated. For example, tree-level attributed results were obtained only by RGB imaging (Figure 4a),
while multispectral sensors (i.e., blue, green, red, red-edge, and near-infrared bands) augmented the
data quality of the results. Taken together, the derived products are revolutionizing forest monitoring.

The use of UAVs has been increasing, and multiple innovation choices are projected for forest
monitoring and assessing tree attributes [6,58]. The capacity for capturing high-resolution imagery,
even in the presence of clouds, comparatively enhances the quality of data with respect to traditional
Earth-observing satellites. Hence, research perspectives are expanded to tree-level attribute detection
and forest-health monitoring. Particularly, the emergence of modern sensors and linked platforms are
stand-out opportunities to improve the knowledge of forest dynamics.

By combining remotely sensed data products from UAV with other related disciplines, it is
possible to more accurately detect tree-level characteristics, including tree physiological stress, due to
the high sensibility of multispectral sensors. Furthermore, the cost of UAVs and their associated
platforms is rapidly decreasing, while the number of sophistication and flexibilization procedures is
increasing [6]. Opportunities offered by processing methods indicate significant progress to augment
analysis framework capabilities. For instance, free and open-source software platforms are becoming
popular and provide alternatives for the estimation of tree-level attributes, such as above-ground
biomass and stem volume [44].

However, there is still the need to improve the distortion of camera calibration. Some authors
suggested to increase the checkpoints using on-board differential GPS systems, such as real-time-kinematic
(RTK) or postprocessing-kinematic (PPK) technologies, although in practical applications, they are
costly, and most forestry applications on this geographic scale are enough, as shown here [19].
Results also cannot be extrapolated to forests with more complex structures, such as unevenly aged
stands. They are different from those studied here, where uniformity and spatial arrangement allowed
for the easy distinction of individuals. Therefore, the next challenge is to continue with further research
in natural forests that are representative of forest ecosystems that are under some kind of management,
including areas of conservation and protection.

The application of vegetation indices represents a significant contribution towards precision
forestry. For example, spatial distribution in Figure 9 describes local variations in vigor that an orchard
manager cannot detect on the field. This spatial variation in individual productivity suggests a tool
for growers in terms of differential individual-tree management. Similar results were documented by
Grulke, et al. [70].

The values of vegetation indices showed a different histogram shape (Figure 10). According to
Zhao, et al. [71], the divergent form of histograms reflects the different sensitivity of indices in terms of
separating categories of forest disturbance and/or productivity, highlighting NDVI as the index with
the greatest capacity. This is in line with the results of Brovkina, et al. [72], who considered NDVI to be
a good vigor indicator.

GNDVI values were higher than those reported by Wahab, et al. [73], which may indicate
greater photosynthetic activity, so it is recommended as a parameter for monitoring variations in
leaf chlorophyll and vegetation health [74]. In addition, the OSAVI threshold for tree crowns in the
clonal orchard suggested that green aerial biomass stored was greater than that of the subsoil [75].
According to Minařík and Langhammer [76], NDRE results suggested that P. arizonica crowns are
consistent with mostly healthy trees in Picea abies forests. However, our RVI results were lower than
those reported by Xing, et al. [77], which is probably attributed to differences in the used sensors
since, to our knowledge, this is the first study that generated such values from a UAV; consequently,
comparisons with others studies lack contrasting parameters.
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We recognize the limitations of vegetation-index approaches, such as phytosanitary parameters.
For example, although NDVI was the best vigor proxy, it is necessary to improve its discrimination
values; grass or weed residues can decrease the predictive capacity of NDVI, and crown size and
superposition can reduce the use of remote sensing on the tree level [78,79]. In this case, soil-management
practices such as drainage, tillage, and traffic control are recommended, with implicit benefits for tree
development. Another difficulty is related to the problem of estimating the differentiated temporal
rates of physiological and phenological processes in the ramets. NDVI values reflect orchard vigor
during the evaluation period from a static point of view. Consequently, further research is needed to
disentangle the responses of multispectral index values on temporal scales.

5. Conclusions

The major goal of this research was to extract tree-level attributes from a UAV. Estimates of total
height, diameter, and crown surface were consistent with those reported in the literature. Furthermore,
allometric relationships proved to be efficient in predicting diameter at breast height and basal diameter
from attributes calculated with the UAV. The diversity of the used indices described the phytosanitary
status of the orchard, with NDVI as the most recommended to evaluate productivity without
discarding periodic evaluations. In this way, our hypothesis was confirmed; these measurements
are reliable, and contribute to making solid and better-informed decisions on the individual-tree
level. The application of the proposed workflow demonstrated solid parameters in estimates with
consistent time saving and effort. Consistency in the measurement of tree-level characteristics on
the individual-tree level has potential applications to improve current inventories. Nevertheless,
recognizing its scopes and limitations, it is advisable to be cautious with the application of this approach
in areas of greater complexity, such as the one studied here. Therefore, it is desirable to test different
flight configurations and repeat missions to optimize the results and enrich the usefulness of the data.

Author Contributions: M.P.-G. planned and designed the research; J.L.G.-S. gathered field data; M.P.-G. and
J.L.G.-S. contributed to data analysis; and M.P.-G. led the manuscript with contributions from J.L.G.-S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research and the APC was funded by CONACyT and COCYTED grant number A1-S-21471.

Acknowledgments: The authors are grateful to the Mexican National Science and Technology Council (CONACYT)
for supporting the studies of the first author. We recognize CONACyT and COCYTED projects (A1-S-21471),
as well https://dendrored.ujed.mx/ and Ejido Papajichi for the facilities provided. Also, we acknowledge to the
UTT students for helping to gather the field data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.;
Lyver, P.O.B.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the
provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [CrossRef]

2. Holopainen, M.; Vastaranta, M.; Hyyppä, J. Outlook for the Next Generation’s Precision Forestry in Finland.
Forests 2014, 5, 1682–1694. [CrossRef]

3. Williams, A.P.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.;
Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest
drought stress and tree mortality. Nat. Clim. Chang. 2013, 3, 292–297. [CrossRef]

4. Fornal-Pieniak, B.; Ollik, M.; Schwerk, A. Impact of different levels of anthropogenic pressure on the plant
species composition in woodland sites. Urban For. Urban Green. 2019, 38, 295–304. [CrossRef]

5. Hedwall, P.-O.; Gustafsson, L.; Brunet, J.; Lindbladh, M.; Axelsson, A.-L.; Strengbom, J. Half a century of
multiple anthropogenic stressors has altered northern forest understory plant communities. Ecol. Appl. 2019,
29, e01874. [CrossRef]

6. Gallardo-Salazar, J.L.; Pompa-García, M.; Aguirre-Salado, C.A.; López-Serrano, P.M.; Meléndez-Soto, A.
Drones: Tecnología con futuro promisorio en la gestión forestal. Rev. Mex. Cienc. For. 2020, 11. [CrossRef]

https://dendrored.ujed.mx/
http://dx.doi.org/10.1007/s10531-017-1453-2
http://dx.doi.org/10.3390/f5071682
http://dx.doi.org/10.1038/nclimate1693
http://dx.doi.org/10.1016/j.ufug.2019.01.013
http://dx.doi.org/10.1002/eap.1874
http://dx.doi.org/10.29298/rmcf.v11i61.794


Remote Sens. 2020, 12, 4144 19 of 22

7. Gollob, C.; Ritter, T.; Nothdurft, A. Forest Inventory with Long Range and High-Speed Personal Laser
Scanning (PLS) and Simultaneous Localization and Mapping (SLAM) Technology. Remote Sens. 2020, 12, 1509.
[CrossRef]

8. Lefsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. Lidar Remote Sensing for Ecosystem Studies. BioScience
2002, 52, 19–30. [CrossRef]

9. Puliti, S.; Breidenbach, J.; Astrup, R. Estimation of Forest Growing Stock Volume with UAV Laser Scanning
Data: Can It Be Done without Field Data? Remote Sens. 2020, 12, 1245. [CrossRef]

10. Bokalo, M.; Stadt, K.J.; Comeau, P.G.; Titus, S.J. The Validation of the Mixedwood Growth Model (MGM) for
Use in Forest Management Decision Making. Forests 2013, 4, 1–27. [CrossRef]

11. Li, Y.; Wang, W.; Zeng, W.; Wang, J.; Meng, J. Development of Crown Ratio and Height to Crown Base
Models for Masson Pine in Southern China. Forests 2020, 11, 1216. [CrossRef]

12. Corona, P.; Chianucci, F.; Quatrini, V.; Civitarese, V.; Clementel, F.; Costa, C.; Floris, A.; Menesatti, P.;
Puletti, N.; Sperandio, G.; et al. Precision forestry: Riferimenti concettuali, strumenti e prospettive di
diffusione in Italia. Forest@ Riv. Selvic. Ecol. For. 2017, 14, 1–12. [CrossRef]

13. Modica, G.; Messina, G.; De Luca, G.; Fiozzo, V.; Praticò, S. Monitoring the vegetation vigor in heterogeneous
citrus and olive orchards. A multiscale object-based approach to extract trees’ crowns from UAV multispectral
imagery. Comput. Electron. Agric. 2020, 175, 105500. [CrossRef]

14. Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications.
J. Sens. 2017, 2017, 1353691. [CrossRef]

15. Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of Green-Red Vegetation Index for
Remote Sensing of Vegetation Phenology. Remote Sens. 2010, 2, 2369–2387. [CrossRef]

16. Bray, D.B.; Merino-Pérez, L.; Barry, D. The Community Forests of Mexico: Managing for Sustainable Landscapes;
University of Texas Press: Austin, TX, USA, 2005.

17. Alvarado-Barrera, R.; Pompa-García, M.; Zúñiga-Vásquez, J.M.; Jiménez-Casas, M. Spatial analysis of
phenotypic variables in a clonal orchard of Pinus arizonica Engelm. in northern Mexico. Rev. Chapingo Ser.
Cienc. For. Ambiente 2019, 25, 185–199. [CrossRef]

18. Farjon, A. A Handbook of the World's Conifers; Brill: Leiden, The Netherlands, 2010; Volume 1, p. 1111.
19. Dempewolf, J.; Nagol, J.; Hein, S.; Thiel, C.; Zimmermann, R. Measurement of Within-Season Tree Height

Growth in a Mixed Forest Stand Using UAV Imagery. Forests 2017, 8, 231. [CrossRef]
20. Mazzetto, F.; Calcante, A.; Mena, A.; Vercesi, A. Integration of optical and analogue sensors for monitoring

canopy health and vigour in precision viticulture. Precis. Agric. 2010, 11, 636–649. [CrossRef]
21. Caruso, G.; Tozzini, L.; Rallo, G.; Primicerio, J.; Moriondo, M.; Palai, G.; Gucci, R. Estimating biophysical and

geometrical parameters of grapevine canopies (‘Sangiovese’) by an unmanned aerial vehicle (UAV) and
VIS-NIR cameras. Vitis 2017, 56, 63–70. [CrossRef]

22. Uribeetxebarria, A.; Daniele, E.; Escolà, A.; Arnó, J.; Martínez-Casasnovas, J.A. Spatial variability in orchards
after land transformation: Consequences for precision agriculture practices. Sci. Total Environ. 2018, 635,
343–352. [CrossRef]

23. Arnó-Satorra, J.; Martínez-Casasnovas, J.A.; Ribes Dasi, M.; Rosell Polo, J.R. Review. Precision Viticulture.
Research topics, challenges and opportunities in site-specific vineyard management. Span. J. Agric. Res.
2009, 7. [CrossRef]

24. Ballesteros, R.; Ortega, J.F.; Hernandez, D.; Moreno, M.A. Onion biomass monitoring using UAV-based RGB
imaging. Precis. Agric. 2018, 19, 840–857. [CrossRef]

25. Tu, Y.-H.; Johansen, K.; Phinn, S.; Robson, A. Measuring Canopy Structure and Condition Using Multi-Spectral
UAS Imagery in a Horticultural Environment. Remote Sens. 2019, 11, 269. [CrossRef]

26. Jorge, J.; Vallbé, M.; Soler, J.A. Detection of irrigation inhomogeneities in an olive grove using the NDRE
vegetation index obtained from UAV images. Eur. J. Remote Sens. 2019, 52, 169–177. [CrossRef]

27. Jiménez-Brenes, F.M.; López-Granados, F.; de Castro, A.I.; Torres-Sánchez, J.; Serrano, N.; Peña, J.M.
Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D
modelling. Plant Methods 2017, 13, 55. [CrossRef] [PubMed]

28. Salamí, E.; Gallardo, A.; Skorobogatov, G.; Barrado, C. On-the-Fly Olive Tree Counting Using a UAS and
Cloud Services. Remote Sens. 2019, 11, 316. [CrossRef]

29. Leduc, M.-B.; Knudby, A.J. Mapping Wild Leek through the Forest Canopy Using a UAV. Remote Sens. 2018,
10, 70. [CrossRef]

http://dx.doi.org/10.3390/rs12091509
http://dx.doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
http://dx.doi.org/10.3390/rs12081245
http://dx.doi.org/10.3390/f4010001
http://dx.doi.org/10.3390/f11111216
http://dx.doi.org/10.3832/efor2285-014
http://dx.doi.org/10.1016/j.compag.2020.105500
http://dx.doi.org/10.1155/2017/1353691
http://dx.doi.org/10.3390/rs2102369
http://dx.doi.org/10.5154/r.rchscfa.2018.11.086
http://dx.doi.org/10.3390/f8070231
http://dx.doi.org/10.1007/s11119-010-9186-1
http://dx.doi.org/10.5073/vitis.2017.56.63-70
http://dx.doi.org/10.1016/j.scitotenv.2018.04.153
http://dx.doi.org/10.5424/sjar/2009074-1092
http://dx.doi.org/10.1007/s11119-018-9560-y
http://dx.doi.org/10.3390/rs11030269
http://dx.doi.org/10.1080/22797254.2019.1572459
http://dx.doi.org/10.1186/s13007-017-0205-3
http://www.ncbi.nlm.nih.gov/pubmed/28694843
http://dx.doi.org/10.3390/rs11030316
http://dx.doi.org/10.3390/rs10010070


Remote Sens. 2020, 12, 4144 20 of 22

30. Jun, W.; Zhongkui, D.; Guoqing, Z. Geo-registration and mosaic of UAV video for quick-response to forest
fire disaster. In Proceedings of the MIPPR 2007: Pattern Recognition and Computer Vision, Wuhan, China,
15 November 2007; Volume 678810.

31. Suziedelyte Visockiene, J.; Brucas, D.; Ragauskas, U. Comparison of UAV images processing softwares.
J. Meas. Eng. 2014, 2, 111–121.

32. Mesas-Carrascosa, F.-J.; Notario García, M.D.; Meroño de Larriva, J.E.; García-Ferrer, A. An Analysis of
the Influence of Flight Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to
Survey Archaeological Areas. Sensors 2016, 16, 1838. [CrossRef]

33. Liba, N.; Berg-Jürgens, J. Accuracy of Orthomosaic Generated by Different Methods in Example of UAV
Platform MUST Q. IOP Conf. Ser. Mater. Sci. Eng. 2015, 96, 012041. [CrossRef]

34. Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Accuracy of Digital Surface Models and
Orthophotos Derived from Unmanned Aerial Vehicle Photogrammetry. J. Surv. Eng. 2017, 143, 04016025.
[CrossRef]

35. Giannetti, F.; Puletti, N.; Puliti, S.; Travaglini, D.; Chirici, G. Assessment of UAV photogrammetric
DTM-independent variables for modelling and mapping forest structural indices in mixed temperate
forests. Ecol. Indic. 2020, 117, 106513. [CrossRef]

36. González-Elizondo, M.S.; González-Elizondo, M.; Tena-Flores, J.A.; Ruacho-González, L.; López-Enríquez, I.L.
Vegetación de la Sierra Madre Occidental, México: Una síntesis. Acta Bot. Mex. 2012, 100, 351–403. [CrossRef]

37. González-Cásares, M.; Pompa-García, M.; Camarero, J.J. Differences in climate–growth relationship indicate
diverse drought tolerances among five pine species coexisting in Northwestern Mexico. Trees 2017, 31,
531–544. [CrossRef]

38. P4 Multispectral. Available online: www.dji.com/mx/p4-multispectral (accessed on 3 September 2020).
39. Lu, H.; Fan, T.; Ghimire, P.; Deng, L. Experimental Evaluation and Consistency Comparison of UAV

Multispectral Minisensors. Remote Sens. 2020, 12, 2542. [CrossRef]
40. DJI Ground Station Pro. Available online: www.dji.com/mx/ground-station-pro (accessed on 3 September 2020).
41. Syetiawan, A.; Gularso, H.; Kusnadi, G.I.; Pramudita, G.N. Precise topographic mapping using direct

georeferencing in UAV. IOP Conf. Ser. Earth Environ. Sci. 2020, 500, 012029. [CrossRef]
42. P4 Multispectral Specs. Available online: https://www.dji.com/p4-multispectral/specs (accessed on 23 November 2020).
43. OpenDroneMap. Available online: www.opendronemap.org (accessed on 10 September 2020).
44. Groos, A.R.; Bertschinger, T.J.; Kummer, C.M.; Erlwein, S.; Munz, L.; Philipp, A. The Potential of Low-Cost

UAVs and Open-Source Photogrammetry Software for High-Resolution Monitoring of Alpine Glaciers:
A Case Study from the Kanderfirn (Swiss Alps). Geosciences 2019, 9, 356. [CrossRef]

45. Burdziakowski, P. Evaluation of Open Drone Map Toolkit for Geodetic Grade Aerial Drone Mapping—Case
Study. Int. Multidiscip. Sci. Geoconf. 2017, 17, 101–109. [CrossRef]

46. Lee, S.; Yu, B.-H. Automatic detection of dead tree from UAV imagery. In Proceedings of the 39th Asian
Conference on Remote Sensing, Kuala Lumpur, Malaysia, 15–19 October 2018.

47. QGIS. A Free and Open Source Geographic Information System. Available online: www.qgis.org (accessed on
10 September 2020).

48. Iizuka, K.; Yonehara, T.; Itoh, M.; Kosugi, Y. Estimating Tree Height and Diameter at Breast Height (DBH)
from Digital Surface Models and Orthophotos Obtained with an Unmanned Aerial System for a Japanese
Cypress (Chamaecyparis obtusa) Forest. Remote Sens. 2018, 10, 13. [CrossRef]

49. Ke, Y.; Quackenbush, L.J. A review of methods for automatic individual tree-crown detection and delineation
from passive remote sensing. Int. J. Remote Sens. 2011, 32, 4725–4747. [CrossRef]

50. Larsen, M.; Eriksson, M.; Descombes, X.; Perrin, G.; Brandtberg, T.; Gougeon, F.A. Comparison of six
individual tree crown detection algorithms evaluated under varying forest conditions. Int. J. Remote Sens.
2011, 32, 5827–5852. [CrossRef]

51. ForestTools: Analyzing Remotely Sensed Forest Data. Available online: https://CRAN.R-project.org/package=

ForestTools (accessed on 15 September 2020).
52. The R Project for Statistical Computing. Available online: www.r-project.org/ (accessed on 15 September 2020).
53. Abdalla, A.; Elmahal, A. Augmentation of vertical accuracy of digital elevation models using Gaussian linear

convolution filter. In Proceedings of the 2016 Conference of Basic Sciences and Engineering Studies SGCAC,
Khartoum, Sudan, 20–23 February 2016; pp. 206–210.

http://dx.doi.org/10.3390/s16111838
http://dx.doi.org/10.1088/1757-899X/96/1/012041
http://dx.doi.org/10.1061/(ASCE)SU.1943-5428.0000206
http://dx.doi.org/10.1016/j.ecolind.2020.106513
http://dx.doi.org/10.21829/abm100.2012.40
http://dx.doi.org/10.1007/s00468-016-1488-0
www.dji.com/mx/p4-multispectral
http://dx.doi.org/10.3390/rs12162542
www.dji.com/mx/ground-station-pro
http://dx.doi.org/10.1088/1755-1315/500/1/012029
https://www.dji.com/p4-multispectral/specs
www.opendronemap.org
http://dx.doi.org/10.3390/geosciences9080356
http://dx.doi.org/10.5593/sgem2017/23/S10.013
www.qgis.org
http://dx.doi.org/10.3390/rs10010013
http://dx.doi.org/10.1080/01431161.2010.494184
http://dx.doi.org/10.1080/01431161.2010.507790
https://CRAN.R-project.org/package=ForestTools
https://CRAN.R-project.org/package=ForestTools
www.r-project.org/


Remote Sens. 2020, 12, 4144 21 of 22

54. The Whitebox Geospatial Analysis Tools Project and Open-Access GIS. Available online: https://jblindsay.
github.io/ghrg/WhiteboxTools/index.html (accessed on 9 November 2020).

55. Popescu, S.C.; Wynne, R.H. Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with
Local Filtering and Variable Window Size for Estimating Tree Height. Photogramm. Eng. Remote Sens. 2004,
70, 589–604. [CrossRef]

56. Beucher, S.; Meyer, F. The Morphological Approach to Segmentation: The Watershed Transformation.
In Mathematical Morphology in Image Processing; Dougherty, E.R., Ed.; CRC Press: Boca Raton, FL, USA, 1993;
Volume 34, pp. 433–481.

57. Gujarati, D.N. Basic Econometrics; The McGraw-Hill Education: New York, NY, USA, 2004.
58. Wang, Y.; Lehtomäki, M.; Liang, X.; Pyörälä, J.; Kukko, A.; Jaakkola, A.; Liu, J.; Feng, Z.; Chen, R.; Hyyppä, J.

Is field-measured tree height as reliable as believed—A comparison study of tree height estimates from field
measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest. ISPRS J. Photogramm.
Remote Sens. 2019, 147, 132–145. [CrossRef]

59. DJI TERRA Index Descriptions. Available online: https://www.dji.com/dji-terra (accessed on 25 November 2020).
60. He, J.; Li, Y.; Zhang, K. Research of UAV Flight Planning Parameters. Positioning 2012, 3, 43–45. [CrossRef]
61. Gougeon, F.; Leckie, D. The Individual Tree Crown Approach Applied to Ikonos Images of a Coniferous

Plantation Area. Photogramm. Eng. Remote Sens. 2006, 72, 1287–1297. [CrossRef]
62. Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry

in Forestry: A Review. Curr. For. Rep. 2019, 5, 155–168. [CrossRef]
63. Krause, S.; Sanders, T.G.M.; Mund, J.-P.; Greve, K. UAV-Based Photogrammetric Tree Height Measurement

for Intensive Forest Monitoring. Remote Sens. 2019, 11, 758. [CrossRef]
64. SEMARNAT-NOM-152. Available online: http://www.diariooficial.gob.mx/nota_detalle.php?codigo=5064731&

fecha=17/10/2008 (accessed on 20 September 2020).
65. Wu, D.; Johansen, K.; Phinn, S.; Robson, A.; Tu, Y.-H. Inter-comparison of remote sensing platforms for height

estimation of mango and avocado tree crowns. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102091. [CrossRef]
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