

Article – Supplementary material

Single-Pass UAV-Borne GatorEye LiDAR Sampling as a Rapid Assessment Method for Surveying Forest Structure

Gabriel Atticciati Prata ^{1,*}, Eben North Broadbent ¹, Danilo Roberti Alves de Almeida ^{1,2}, Joseph St. Peter ³, Jason Drake ^{3,4}, Paul Medley ^{3,4}, Ana Paula Dalla Corte ^{1,5}, Jason Vogel ⁶, Ajay Sharma ⁷, Carlos Alberto Silva ^{6,8}, Angelica Maria Almeyda Zambrano ⁹, Ruben Valbuena ¹⁰ and Ben Wilkinson ¹¹

- ¹ Spatial Ecology and Conservation (SPEC) Lab, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA; eben@ufl.edu (E.N.B.); daniloraa@usp.br (D.R.A.d.A.); anacorte@ufpr.br (A.P.D.C.)
- ² Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo (USP/ESALQ), Piracicaba, SP 13418-900, Brazil
- ³ Center for Spatial Ecology and Restoration (CSER), School of the Environment, Florida A&M University, Tallahassee, FL 32307, USA; joseph.stpeter@famu.edu (J.S.P.); jason.drake@famu.edu (J.D.); paul.medley@famu.edu (P.M.)
- ⁴ USDA Forest Service, National Forests in Florida, Tallahassee, FL 32303, USA
- ⁵ Department of Forest Engineering, Federal University of Paraná–UFPR, Curitiba, PR 80060-000, Brazil
- ⁶ School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA; jvogel@ufl.edu (J.V.); c.silva@ufl.edu (C.A.S.)
- ⁷ West Florida Research and Education Center, University of Florida, Milton, FL 32583 USA; ajay.sharma@ufl.edu
- ⁸ Department of Geographical Sciences, University of Maryland, College Park, MD 20740, USA
- ⁹ Spatial Ecology and Conservation (SPEC) Lab, Center for Latin American Studies, University of Florida, Gainesville, FL 32611, USA; aalmeyda@ufl.edu
- ¹⁰ School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK; r.valbuena@bangor.ac.uk
- ¹¹ Geomatics Program, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA; benew@ufl.edu
- * Correspondence: gprata@ufl.edu or gprata@ufl.com; Tel.: +1-(352)-792-3323

Received: 12 November 2020; Accepted: 15 December 2020; Published: 16 December 2020

Figure S1. A) GatorEye (red) and Aircraft (blue) LiDAR points density profile (pts m⁻²). B) Points density profile for all returns for aircraft (1-4) and (C) for GatorEye (2).

Figure S2. Relation between distance from flightline and scan angle, combining 10 thousand sample points from each of the 43 plots.

Figure S3. Relation between distance from the flightline and scan angle. Black line is the mean value of the observed angles and grey lines are plus and minus standard deviations. Red lines show the main thresholds found, at 40m, 60m, 95m, 120m and 175m, and the correspondent approximated angle, 30°, 40°, 55°, 60° and 70°, respectively.

Table S1. Thresholds for best of	nuality	GatorEve's	products in th	he single-pass	approach
rubic of, fillesholds for best	Juanty	Gutor Lyc 5	producto in ti	ic onigic pubb	upprouch

Product	Flightline distance	FOV(≌)	
DTM	195	145	
СНМ	95	110	
ITD	160 to 180	140	
Tree height	160 to 180	140	
Crown delineation	40 to 60	60 to 80	