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Abstract: Multi-sensor data on the same area provide complementary information, which is helpful
for improving the discrimination capability of classifiers. In this work, a novel multilevel structure
extraction method is proposed to fuse multi-sensor data. This method is comprised of three steps:
First, multilevel structure extraction is constructed by cascading morphological profiles and structure
features, and is utilized to extract spatial information from multiple original images. Then, a low-rank
model is adopted to integrate the extracted spatial information. Finally, a spectral classifier is
employed to calculate class probabilities, and a maximum posteriori estimation model is used to
decide the final labels. Experiments tested on three datasets including rural and urban scenes validate
that the proposed approach can produce promising performance with regard to both subjective and
objective qualities.

Keywords: multi-sensor fusion; hyperspectral image (HSI); multilevel structure extraction;
light detection and ranging (LiDAR); synthetic aperture radar (SAR)

1. Introduction

With the advance of imaging techniques, the amount of remote sensing data collected by
various remote sensors is growing, which allows us to combine multiple types of data for earth
observation [1–3]. Such data record different reflectance characteristics, e.g., rich spectral information,
high spatial resolution, and height information. The availability of such datasets makes it possible to
merge multi-sensor data to further boost the identification accuracy of different materials. For example,
a hyperspectral image (HSI) can provide abundant spectral information which is helpful for
distinguishing different types of land covers [4–6]. Nevertheless, when the land covers are composed
of the same material, i.e., roads and roofs, the spectral curves of such objects are very similar. In this
situation, it is hard to distinguish these objects with the same spectral curves using HSI data. Different
from the HSI, a light detection and ranging (LiDAR) image can characterize the height and structure
information of various objects. Therefore, by integrating the advantages of the two types of data,
the fusion of HSI and LiDAR has exhibited better identification performance over single sensor [7–10].

In the past decades, a diversity of multi-sensor fusion techniques has been investigated to boost
the spatial resolution of HSI so as to obtain higher classification performance, including RGB and HSI,
multispectral (MS) and HSI, HSI and panchromatic (PAN). Integration of RGB/PAN and HSI data
aims to improve the spatial resolution of HSI with the help of RGB/PAN data. For example, in [11],
a directional total variation model was used to fuse the HSI and RGB images. In [12], a component
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decomposition-based method was proposed to enhance resolution of HSIs for the first time. Promising
results were obtained to identify different kinds of minerals. In [13], a structure tensor-based image
enhancement method was used to improve the spatial resolution of HSI. Integration of MS and HSI
involves combining the spatial details of MS and spectral resolution of HSI to obtain high spatial
and spectral resolution data. For instance, in [14], a spectral embedding technique was used to fuse
MS and HSI, in which the manifold and low-rank structures were exploited. In [15], a novel image
decomposition scheme was used to integrate the spatial information of MS and spectral information of
HSI, in which the original data was decomposed by coupled sparse tensor factorization technique.

Lately, diverse deep learning techniques have been also applied to enhance the resolution of the
HSI [16–18]. In [16], a novel deep cross-modal network was proposed to increase the classification
accuracies. This is the first time to introduce the cross-modality learning into networks with the
application to the classification of remote sensing data, showing significance of milestone. In [17],
a pretrained convolutional neural network (CNN) was used to regularize the fusion issue. In [18],
a spatial-spectral reconstruction network was applied to merge MS and HSI, where the spatial
information and spectral information is injected into the HSI, respectively.

Different from resolution enhancement techniques, fusion of LiDAR and HSI aims to combine
the height information of LiDAR and spectral information of HSI. In such a way, the classification
performance can be greatly improved. Many different kinds of schemes have been developed to
achieve the integration of LiDAR and HSI, which can be roughly divided into two categories: fusion
rule [19–21] and feature extraction [22–24]. For instance, a generalized graph-based fusion rule was
constructed to achieve fusion of HSI and LiDAR [19]. Rasti et al. applied a dimension reduction
technique, e.g., total variation component analysis, to fuse multiple features [20]. Ghamisi et al.
used a composite kernel method to merge spatial information obtained from original images [21].
Besides, many advanced feature extraction techniques have been utilized to characterize the spatial and
contextual information from source images. For example, in [22], an extinction profile was exploited
to acquire the spatial features from source images, and the sparse and low-rank model was used to
fuse the extracted spatial features. In [23], different kinds of features, including spectral and spatial
information, were considered to model the spatial information of original images. These techniques
have demonstrated that the characterization of spatial features for multi-sensor data is an efficient way
to enhance the classification accuracy. Nevertheless, how to improve the discrimination of different
objects is still an open problem.

Furthermore, in recent years, deep learning-based schemes have also been applied for fusion
of HSI and LiDAR [7,25,26]. For example, a coupled residual CNN was proposed for fusion LiDAR
and HSI [25]. In [26], a dual-tunnel CNN is exploited to extract spectral-spatial features, in which a
pixelwise affinity architecture was applied to build the correlation of different objects with different
elevation information from LiDAR. In [7], deep CNN was employed to classify the fused features
obtained by extinction profiles. However, the classification performance of these deep learning-based
methods relies heavily on the amount of the labeled training samples.

In this work, a novel fusion approach based on multilevel structure extraction (MSE) is developed,
which is comprised of three steps. First, the multilevel structure extraction method is constructed
to capture the discriminative spatial features from multiple source images. Then, the low rank
representation is adopted to fuse the high-dimensional features into low-dimensional subspace.
Finally, the fused features are fed into the MLR classifier to obtain class probabilities, and the
maximum posteriori estimation model is used to optimize the class probabilities to yield the final
map. Experiments performed on three different scenes validate that the proposed method shows
superiority compared to several state-of-the-art fusion approaches. The main contributions of this
work is summarized as follows.

• A multilevel structure feature extractor is constructed and exploited to model the spatial and
contextual information from input images, which can better characterize the discrimination
between different land covers.



Remote Sens. 2020, 12, 4034 3 of 17

• A general multi-sensor fusion framework is proposed based on feature extraction and probability
optimization, which can effectively fuse multi-sensor remote sensing data, such as HSI, LiDAR,
and synthetic aperture radar (SAR).

• Classification quality of the proposed method is examined on three datasets, which indicates
that our method obtains outstanding performance over other state-of-the-art multi-sensor fusion
techniques with regard to both classification accuracies and maps. We will also make the codes
freely available on author’s Github repository: https://github.com/PuhongDuan.

The remaining section of this article is given as follows. The methodology is introduced in
Section 2. Section 3 mainly describes the experimental results and analyses. Finally, Section 5
summarizes several concluding remarks.

2. Methodology

Figure 1 displays the flow-process diagram of our method, which is comprised of three key steps:
First, the multilevel structure extraction is built and is employed to extract the spatial and semantic
information from original data. Then, the extracted features are merged with a low rank model. Finally,
the MLR classifier is tested on the fused features to obtain class probabilities followed by maximum a
posteriori estimation model.

Figure 1. The schematic of the proposed multilevel structure extraction method.

2.1. Multilevel Structure Extraction

Structure extraction aims at decomposing the input data into two components, i.e., a structure
component that reflects the salient spatial structures and a texture component that contains noise and
details. However, a single structure feature cannot effectively characterize the spatial characteristics
of different kinds of land covers in a scene as different objects usually have different shapes and
sizes. To provide a more complete characterization of different objects, a multilevel structure
feature extraction approach is developed to characterize the spatial features from multi-sensor data.
Specifically, morphological attribute filtering is first used to extract the multilevel architecture of the
input because the morphological attribute filtering has been proven to be a multilevel shape-size
descriptor [27,28]. Suppose the input I, the spectral dimension of I, is first decreased using principal
component analysis (PCA) so as to preserve the first principal component Î. Then, the multilevel
attribute profiles of the dimension reduced image Î can be computed as follows,

A(Î) = {φλL(Î), φλL−1(Î), ..., φλ1(Î), γλ1(Î), ..., γλL−1(Î), γλL(Î)}, (1)

https://github.com/PuhongDuan
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where φ and λ stand for attribute thinning and thickening operators, respectively. Λ = {λi|i =

1, 2, ..., L} denotes a series of threshold values for the predefined predicate T.
Next, the structure extraction is performed on the multilevel attribute profiles A(Î) to obtain

the multilevel structure features. Specifically, a relative total variation-based structure extraction
approach [29] is adopted to remove the texture component from A(Î).

arg min
S

T

∑
i=1

(Si −Ai)
2 + α · ( Dx(i)

Lx(i) + ε
+

Dy(i)
Ly(i) + ε

), (2)

where T denotes the amount of image pixels. S indicates the desired result. α represents a weight
which controls the smoothness. ε is used to avoid dividing by zero. The solution of the energy function
in Equation (2) can be found in [29].

Here, Dx and Dy denote the total variations (TV) in the horizontal and vertical axes, respectively.
This TV mainly measures the spatial differences within the local region R(i).

Dx(i) = ∑
j∈R(i)

gi,j · |(∂xS)j|

Dy(i) = ∑
j∈R(i)

gi,j · |(∂yS)j| (3)

where ∂xS and ∂yS mean the partial derivatives in the horizontal and vertical axes, respectively.
gi,j indicates a weight as follows,

gi,j = exp

(
−
(xi − xj)

2 + (yi − yj)
2

2σ2

)
. (4)

where σ represents the window size. Finally, in order to decrease the computational burden and
further improve the discrimination among different land covers, the kernel PCA technique is used to
reduce the dimension of the multilevel structure features so as to obtain dimension reduced features,
where 80% principal components are preserved for the following fusion in this work.

2.2. Feature Fusion

Assume Si, i = 1, 2 to be the spatial features extracted from source images, a low rank
representation method [30] is adopted to merge the extracted spatial information from multi-source
images to reduce the redundant information between the extracted features. Accordingly, the low rank
model is expressed as

S̄ = FPT + N (5)

where S̄ = [S1, S2] denotes the stacked spatial features. F is the low-dimensional features, and P
represents the subspace basis. N stands for the error term. Our goal is to estimate the low-dimensional
features F and subspace basis P with only S̄. To solve this problem, a total variation prior is adopted to
retain the spatial structure of the input. The corresponding energy function is as follows.

arg min
F,P

1
2

∥∥∥S− FPT
∥∥∥2

F
+ β‖F‖TV s.t. PTP = I (6)

To solve the nonconvex problem Equation (6) mentioned above, a cyclic descent algorithm [31] is
adopted, which is as follows.

(1) F step: By fixing variable P, Equation (6) can be solved by split Bregman algorithm [32]:

Fm+1 = SplitBregman(G, β). (7)

Here, G = [g(i)] = SPm.
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(2) P step: By fixing variable F, Equation (6) becomes an orthogonal Procrustes issue, which can
be solved by low-rank Procrustes rotation.

Pm+1 = QRT , (8)

where Q and R are calculated by singular value decomposition STF = Q ∑ RT .

2.3. Probability Optimization

When the fused features F are obtained, a spectral classifier, i.e., multinomial logistic regression
(MLR), is performed on F to obtain the class probabilities P(Y |F ). Then, maximum a posteriori
estimation is exploited to optimize the class probabilities P(Y |F ), which can be calculated as

arg max P(Y |F ) = arg max ∏
i

P(yi|Fi)

P(yi)
P(Y), (9)

where P(yi) is assumed to be equally distributed. By using the logarithm operation, Equation (9) can
be written as

Ŷ = arg max{∑
i

log P(yi|Fi) + log P(Y)}, (10)

where Ŷ is the final map. P(yi|Fi) is the class probabilities obtained by MLR classifier. P(Y) is prior
probability which is usually estimated with an isotropic pairwise multilevel logistic model [33].

3. Experiments

In the experiment section, three datasets located in rural and urban regions are used to examine
the fusion effect of the proposed approach. To illustrate the advantage of the proposed MSE,
several state-of-the-art multi-sensor fusion schemes are adopted for comparison, including the MLR
classifier [34], orthogonal total variation component analysis (OTVCA) [22], sparse and smooth
low-rank analysis (SSLRA) [35], and subspace-based fusion method (SubFus) [36]. For the competitive
approaches, we have used exactly similar hyperparameters suggested in their original papers.

(1) MLR [34]: The MLR classifier is a spectral classification method based on logistic regression.
(2) OTVCA [22]: The OTVCA method is a low-rank-based dimension reduction model. First,

morphology filters are utilized to extract spatial information from original images. Then, the low-
rank-based dimension reduction model is used to fuse the spatial information. Finally, the fused
features are fed into a random forest classifier.

(3) SSLRA [35]: The SSLRA method is a feature fusion technique. First, the spatial features of
original data are extracted with morphology filters. Then, a sparse and smooth low-rank model is
used to fuse the spatial features. Finally, random forest is used as a spectral classifier.

(4) SubFus [36]: The SubFus method is a recently proposed fusion method. Morphology filters
are used to extract the spatial information from source images. Then, the spatial features are merged
into a low-dimensional subspace. Finally, the fused features are fed into the random forest classifier to
obtain the final map.

Furthermore, in order to quantitatively appraise the classification quality of all considered
schemes, three widely used quality indexes [37–39], i.e., overall accuracy (OA), average accuracy
(AA), and Kappa coefficient, are employed, which are shown as follows.

(1) OA: OA calculates the percentages of correctly identified samples.

OA =
C

∑
i=1

Mii/N (11)

where M is the confusion matrix. Mii is the amount of the ith class which is identified into the ith class.
C and N denotes the total amount of classes and test set, respectively.
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(2) AA: AA measures the average of the percentage of correctly identified samples for each
land cover.

AA =

C
∑

i=1
(Mii

/
C
∑

j=1
Mij)

C
(12)

where Mij stands for the amount of the ith object which is identified into the jth object.
(3) Kappa coefficient (Kappa): Kappa indicates the percentage of correctly identified samples

corrected by the number of agreements.

Kappa =

N
C
∑

i=1
Mii −

C
∑

i=1

(
C
∑

j=1
Mij

C
∑

j=1
Mji

)

N2 −
C
∑

i=1

(
C
∑

j=1
Mij

C
∑

j=1
Mji

) (13)

3.1. Datasets

(1) Trento dataset:
The Trento dataset was taken from a rural area in Trento, a southern city in Italy. It includes an

HSI and a LiDAR-derived DSM [22]. The HSI was gained by the AISA Eagle sensor, and the LiDAR
DSM was produced using first and last point cloud pulses obtained by the Optech ALTM 3100EA
sensor. Both sensors are equipped with a spatial resolution of 1 m and a spatial size of 600 × 166 pixels.
The HSI has 63 spectral channels varying from 402.89 to 989.09 nm and its spectral resolution is 9.2 nm.
This scene contains six different land covers: Apple Tree, Building, Ground, Wood, Vineyard, and Road.
Figure 2 shows the original images, training label, testing label, and class name.

(2) Berlin dataset:
The Berlin dataset was acquired over an urban scene in Berlin, which is composed of an HSI

and a SAR. The EnMAP benchmark HSI can be downloaded from the website: http://doi.org/10.
5880/enmap.2016.002, which has 244 spectral channels varying from 400 to 2500 nm with spatial
resolution of 30 m. Its spatial size is of 797 × 220 pixels. Based on the geographic coordinates,
the corresponding region of the SAR image is downloaded from the Sentinel-1 satellite. The SAR image
has four polarimetric bands with spatial resolution of 13 m, and its spatial size is of 1723 × 476 pixels.
Before performing the fusion operation, the HSI is upsampled to the same size as the SAR image
using the linear interpolation operation. Figure 3 presents the original images, training samples,
testing samples, and class names.

(3) Houston 2013 dataset:
The Houston 2013 dataset was acquired over an urban region of Houston, USA on 23 June 2012,

which is comprised of an HSI image and a LiDAR-derived image. This image was released by the
2013 GRSS Data Fusion Contest [40]. Both the datasets are of 349 × 1905 pixels. The HSI was collected
by the Compact Airborne Spectrographic Imager, which records 144 spectral bands varying from
380 to 1050 nm with spatial resolution of 2.5 m. The LiDAR was captured by NSF-funded Center for
Airborne Laser Mapping. This scene contains 15 classes of interest. Figure 4 shows the original images,
groundtruth, and class names. The amount of training and test set is listed in Table 1.

http://doi.org/10.5880/enmap.2016.002
http://doi.org/10.5880/enmap.2016.002
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Figure 2. Trento dataset. (a) False color image of hyperspectral image (HSI) (No. 28, 18, and 8). (b) Light
Detection and Ranging (LiDAR). (c) Training image. (d) Testing image. (e) Class name.
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Figure 3. Berlin dataset. (a) False color image of HSI (No. 30, 20, and 10). (b) Synthetic aperture radar
(SAR). (c) Training image. (d) Testing image. (e) Class name.
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Figure 4. Houston 2013 dataset. (a) False color image of HSI (No. 60, 40, and 20). (b) LiDAR.
(c) Groundtruth. (d) Class name.

Table 1. Number of training and test set

No.
Trento Dataset Berlin Dataset Houston 2013 Dataset

Name Train Test Name Train Test Name Train Test

1 Apple tree 129 3905 Forest 1423 3249 Healthy Grass 50 1201

2 Building 125 2778 Residential 961 2373 Stressed Grass 50 1204

3 Ground 105 374 Industrial 623 1510 Synthetic Grass 50 647

4 Wood 154 8969 Low Plants 1098 2681 Tree 50 1194

5 Vineyard 184 10,317 Soil 728 1817 Soil 50 1192

6 Road 122 3252 Allotment 260 747 Water 50 275

7 Total 819 29,595 Commerical 451 1313 Residential 50 1218

8 Water 144 256 Commercial 50 1194

9 Total 5688 13,946 Road 50 1202

10 Highway 50 1177

11 Railway 50 1185

12 Parking Lot1 50 1183

13 Parking Lot2 50 419

14 Tennis Court 50 378

15 Running Track 50 610

Total 750 14,279

3.2. Classification Results

3.2.1. Trento Dataset

Figure 2 exhibits the visual maps obtained by all considered approaches on Trento dataset.
The MLR method produces an obvious noisy phenomenon in the classification map because the
MLR fails to take the spatial information into consideration (see Figure 2a,b). In addition, the MLR



Remote Sens. 2020, 12, 4034 10 of 17

method on the LiDAR image can better identify the Building and Water classes compared to HSI
(Figure 5). This is due to the fact that the height and structure information in the LiDAR image
make a great contribution in classifying these land covers. The OTVCA method greatly improves
the visual appearance in removing the misclassified noisy labels. Nevertheless, there are still some
mislabels in the Vineyard class. The SSLRA method yields an over-smoothed phenomenon for the
Road class. The reason is that the SSLRA method performs wavelet transformation before projecting a
low-dimensional space. The SubFus method fails to distinguish classes 3 and 5 well, in which many
pixels in class 3 are misclassified into class 5. In general, the proposed approach obtains a better visual
map in improving homogeneous regions. The key reason is that the constructed feature extractor can
better extract the spatial information from HSI and LiDAR data compared to other techniques.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Classification maps obtained by different approaches on Trento dataset. (a) MLR on HSI.
(b) MLR on LiDAR. (c) OTVCA. (d) SSLRA. (e) SubFus. (f) Our method on HSI. (g) Our method on
LiDAR. (h) Our method.

Table 2. Classification accuracies of all considered techniques on Trento dataset.

Class
MLR OTVCA SSLRA SubFus Our Method

HSI LiDAR HSI + LiDAR HSI + LiDAR HSI + LiDAR HSI LiDAR HSI + LiDAR

Apple tree 48.53 13.97 99.60 99.88 100.0 99.36 90.29 99.60

Building 58.56 53.99 95.15 95.55 97.76 97.77 93.21 97.00

Ground 84.10 0.00 43.35 80.96 98.75 54.99 43.23 100.0

Wood 59.49 90.93 99.98 100.0 99.85 99.92 99.98 100.0

Vineyard 62.20 65.41 100.0 100.0 89.12 96.04 78.91 99.52

Road 74.03 97.15 80.68 71.94 79.55 96.69 77.68 98.27

OA 59.15 72.55 95.03 95.25 93.79 96.68 86.50 99.31

AA 64.49 53.57 86.46 91.38 94.17 90.80 80.55 99.07

Kappa 46.59 61.70 93.47 93.75 91.85 95.56 81.66 99.07

Furthermore, the objective quality of different approaches is given in Table 2. It can be observed
that the proposed MSE produces the highest objective indexes concerning OA, AA, and Kappa,
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which confirms the effectiveness of the proposed MSE from the quantitative perspective. In addition,
our method also yields the highest CA in three land covers: Ground, Wood, and Road.

3.2.2. Berlin Dataset

Figure 6 presents the visual maps of different techniques on the Berlin dataset. As shown in this
figure, the MLR method on the original HSI image still yields “noisy” results (see Figure 6a). The MLR
method cannot identify different land covers using the SAR image well (see Figure 6b). This is because
the SAR image does not contain rich spectral information. By comparing Figure 6a,f (or Figure 6b,g),
it is found that our method on HSI or SAR can effectively improve the classification quality. The reason
is that the proposed feature extractor can effectively improve the discrimination between different
objects. By fusing the spatial features of HSI and SAR, the proposed approach can produce better
classification performance over the single sensor image, e.g., HSI or SAR.

Besides, the objective qualities of different approaches are listed in Table 3. The OTVCA method
fails to effectively classify the Water class. The SSLRA and SubFus methods obtain low accuracy on
the Allotment class. It is easy to observe that the proposed MSE obtains outstanding classification
performance with respect to other techniques. Consequently, the proposed MSE can also be applied to
fuse HSI and SAR data.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Visual maps obtained by different approaches on Berlin dataset. (a) MLR on HSI. (b) MLR
on SAR. (c) OTVCA. (d) SSLRA. (e) SubFus. (f) Our method on HSI. (g) Our method on SAR.
(h) Our method.
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Table 3. Classification accuracies of all considered techniques on Berlin dataset.

Class
MLR OTVCA SSLRA SubFus Our Method

HSI LiDAR HSI + LiDAR HSI + LiDAR HSI + LiDAR HSI LiDAR HSI + LiDAR

Forest 90.27 33.24 100.00 99.97 97.20 97.36 41.82 99.54

Residential 69.19 34.59 63.04 76.27 85.59 76.39 51.57 73.62

Industrial 71.81 52.33 70.76 63.45 65.17 75.11 61.33 66.25

Low Plants 91.71 11.7 91.61 98.24 94.41 86.34 47.71 94.06

Soil 91.81 22.69 94.07 100.00 89.21 100.00 44.36 100.00

Allotment 65.54 0.00 100.00 59.24 17.27 14.33 100.00 94.37

Commerical 76.53 68.52 95.28 75.92 78.90 57.28 75.18 88.40

Water 55.88 22.22 56.96 100.00 75.78 88.39 51.16 100.00

OA 82.79 32.89 84.45 86.25 83.78 79.74 50.25 87.50

AA 76.59 30.66 83.96 84.14 75.44 74.40 59.14 89.53

Kappa 79.29 17.77 81.43 83.66 80.54 75.86 40.09 85.01

3.2.3. Houston 2013 Dataset

The third experiment is conducted on a challenging dataset, i.e., Houston 2013. This image consists
of various urban land covers, and it is corrupted by shadow. Figure 7 displays the classification maps
obtained by different approaches. By observing these classification results, several obvious phenomena
can be concluded. First, the spectral classifier, i.e., MLR on HSI or LiDAR, yields different levels of
“noise” in the classification maps, while other spatial-spectral feature extraction approaches can greatly
improve this problem. Second, the SubFus method cannot identify the shadow region well. In addition,
the Grass class is misclassified into the Road class. Third, the proposed method provides better visual
map among these considered approaches, in which the edges of different types of objects are well
aligned with the labeled land covers. The main reason is that the multilevel structure extraction
method can effectively increase the discrimination between different land covers. Furthermore,
the classification accuracies listed in Table 4 also confirm the superiority of the proposed MSE.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Visual maps obtained by different approaches on Houston 2013 dataset. (a) MLR on HSI.
(b) MLR on LiDAR. (c) OTVCA. (d) SSLRA. (e) SubFus. (f) Our method on HSI. (g) Our method on
LiDAR. (h) Our method.
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Table 4. Classification accuracies of all considered techniques on Houston 2013 dataset.

Class
MLR OTVCA SSLRA SubFus Our Method

HSI LiDAR HSI + LiDAR HSI + LiDAR HSI + LiDAR HSI LiDAR HSI + LiDAR

Healthy Grass 89.94 11.55 89.01 91.00 81.39 91.66 82.46 82.13

Stressed Grass 98.46 8.69 89.20 86.11 80.17 80.05 2.14 94.33

Synthetic Grass 89.69 46.38 100.00 100.00 99.60 100.00 72.24 100.00

Tree 78.85 31.32 84.88 87.97 87.31 76.21 64.73 98.68

Soil 89.16 6.26 98.24 98.32 100.00 99.13 64.58 89.71

Water 100.00 8.61 100.00 100.00 100.00 85.60 68.84 100.00

Residential 82.78 0.00 84.44 84.23 73.32 90.45 56.43 93.69

Commercial 81.96 0.00 93.04 96.54 54.04 88.80 77.70 99.37

Road 78.09 11.40 67.08 69.70 85.74 84.73 15.70 91.78

Highway 43.66 18.16 75.30 80.29 68.53 74.64 40.00 95.71

Railway 70.50 7.43 85.05 87.30 99.72 68.84 67.60 80.25

Parking Lot1 85.39 0.00 89.19 87.17 74.54 88.61 87.30 96.59

Parking Lot2 41.00 6.25 66.72 59.94 69.82 50.69 21.58 38.85

Tennis Court 94.13 36.63 92.27 100.00 99.60 66.99 20.30 94.57

Running Track 93.31 40.04 99.24 97.01 100.00 100.00 58.92 97.01

OA 76.33 20.24 86.01 86.77 82.41 82.56 46.04 88.96

AA 81.13 15.52 87.58 88.37 84.92 83.09 53.37 90.18

Kappa 74.42 15.13 84.88 85.71 80.98 81.19 42.37 88.09

4. Discussion

4.1. The Influence of Different Parameters

In this subsection, the influence of different parameters to the performance of the proposed MSE
is discussed. In our method, there are three free parameters that need to be determined, including the
smoothing parameter α, the window size σ, and the number of the fused features K. An experiment is
tested on the Trento dataset with standard training and test samples. When α is analyzed, σ and K are
set to be 2 and 30, respectively. Figure 8a gives the influence of the proposed method with different
α to the classification accuracy. We can observe that the objective quality first increases, and then
tends to decrease. This is mainly because the smoothing parameter α easily removes some important
structural features when α is relatively large. Thus, α = 0.003 is selected as the default parameter.
When σ is analyzed, α and K are fixed, i.e., α = 0.003 and K = 30. Figure 8b presents the change trend.
It is easy to see that the proposed MSE is able to yield promising accuracy when σ = 2. Similarly,
when we discuss the effect of the proposed MSE with different K, σ and α are fixed. Figure 8c exhibits
the influence of the proposed method with different K. When K is 30, the proposed MSE yields higher
classification accuracy. Therefore, α, σ, and K are set to be 0.003, 2, and 30, respectively, which are
regarded as the default parameters for all used datasets in this work.

(a) (b) (c)

Figure 8. The influence of the proposed multilevel structure extraction (MSE) with different parameters.
(a) The smoothing parameter α. (b) The window size σ. (c) The number of the fused features K.
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4.2. The Influence of Different Feature Extractors

To prove the superiority of the proposed multilevel structure extraction, several popular feature
extraction approaches in remote sensing community are adopted for comparison, including KPCA,
structure extraction (SE), intrinsic image decomposition (IID), image fusion and recursive filtering
(IFRF), and extended morphological attribute profiles (EMAP). An experiment is tested on the Trento
dataset. The classification accuracy of the proposed MSE with different feature extractors is presented
in Table 5. It is found that the proposed multilevel structure extractor yields the highest classification
accuracies regarding OA, AA, and Kappa coefficient among all considered approaches, which confirms
the effectiveness of the proposed feature extractor.

Table 5. Classification quality of the proposed MSE with different feature extractors.

KPCA [41] SE [42] IID [43] IFRF [44] EMAP [45] MSE

OA 97.76 98.31 97.40 95.09 97.99 99.31
AA 94.36 97.20 95.41 84.54 97.93 99.07

Kappa 97.03 97.74 96.52 93.52 97.31 99.07

4.3. Computing Time

The running time of all considered approaches on three datasets is given in Figure 9. In this work,
all experiments are carried out a laptop with 8 GB RAM and 2.6GHz with Matlab 2014a. It is found
from Figure 9 that spectral classifier is computationally efficient as it does not have feature extraction
and fusion steps. The SSLRA method is relatively time-consuming. This is because the feature fusion
step needs to solve a nonconvex objective function. The running time of the proposed approach is
moderate. Taking the Trento dataset as an example, the running time is about 316s.

Figure 9. Running time of different approaches on three datasets.

5. Conclusions

In this study, we developed multilevel structure extraction method for fusion of multi-sensor
images. The fusion scheme is composed of three key steps: First, the multilevel structure
extraction approach is designed to characterize the spatial and elevation features from the original
images. Then, the low rank representation model is exploited to merge the extracted information.
Finally, the spectral classifier is conducted on the fused features to produce the class probabilities
followed by a maximum posteriori estimation model. Experiments were performed on the rural (Trento)
and urban (Berlin and Houston 2013) scenes, which have revealed several conclusions as follows.

(1) The multilevel structure extraction method exhibits outstanding performance in extracting
spatial and contextual features from multiple types of data (e.g., HSI, LiDAR, and SAR) compared to
other feature extractors.

(2) Experimental results prove that the proposed MSE can considerably boost the classification
performance over several popular approaches with regard to both visual maps and objective indexes.

(3) The proposed MSE can yield better classification accuracy compared to single sensor image.
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In the future, we will focus on designing novel fusion technique to effectively integrate large-scale
multi-sensor data.
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