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Abstract: Increased exposure to artificial light at night can affect human health including disruption
of melatonin production and circadian rhythms which can extend to increased risks of hormonal
cancers and other serious diseases. In addition, multiple negative impacts on fauna and flora are
well documented, and it is a matter of fact that artificial light at night is a nuisance for ground-based
astronomy. These impacts are frequently linked to the colour of the light or more specifically to its
spectral content. Artificial light at night is often mapped by using spaceborne sensors, but most of
them are panchromatic and thus insensitive to the colour. In this paper, we suggest a method that
allows high-resolution mapping of the artificial light at night by using ground-based measurements
with the LANcube system. The newly developed device separates the light detected in four bands
(Red, Green, Blue and Clear) and provides this information for six faces of a cube. We found
relationships between the LANcube’s colour ratios and (1) the Melatonin Suppression Index, (2) the
StarLight Index and (3) the Induced Photosynthesis Index. We show how such relationships combined
with data acquisition from a LANcube positioned on the top of a car can be used to produce spectral
indices maps of a whole city in a few hours.

Keywords: artificial light at night; intrusive light; direct light pollution; radiometry; multispectral;
multiangular; Melatonin Suppression Index; Star Light Index; spectroscopy; measurement;
synthetic photometry

1. Introduction

For several decades, the increase of artificial light at night (ALAN) has greatly altered the nocturnal
integrity. ALAN contributes to the disruption of daily, lunar and seasonal cycles of natural light [1]
and has significant consequences on fauna [1,2], flora [3], the starry sky [4] and human health [5].

It is well known that day/night light cycles regulate circadian rhythms and synchronise the
circadian clock in humans [6] and other animals. Light has also been shown to impact several
physiological functions such as melatonin suppression [7]. Indeed, melatonin is a hormone produced
by the pineal gland in relation to the light detected by a non-visual retina photoreceptor, the melanopsin.
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This photoreceptor has a maximum spectral sensitivity at blue wavelengths [8,9]. There is strong
evidence that many biological effects of artificial light at night (ALAN) are directly related to its spectral
content. For example, some studies have shown that exposure to blue-enriched light may increase
the risk of hormone-dependent cancers [10–12]. One accurate way to detect the impact of ALAN on
circadian systems is to monitor the level of melatonin in biofluids [13], but such a procedure can be
complex to perform on large samples and/or large areas.

In 2013, Aubé et al. [14] proposed the Melatonin Suppression Index (MSI) as a new metric to
evaluate the potential effect of the spectral distribution of the light on the melatonin suppression
mechanism. The MSI only requires the knowledge of the ambient spectral content of ALAN to be
determined. This index was designed to disentangle the effect associated with the spectral content
from the one related to the absolute visual light level. The MSI typically ranges on a scale from 0
to ≈1, 0 being a spectrum with no impact on melatonin suppression and 1 being the impact of the
sunlight spectrum. The sun-like CIE standard illuminant D65 [15] was taken as a reference in the
calculation of this index because the sun is the main natural source of light under which the human
body adapted over time. It contains the whole visible part of the light spectrum. The MSI uses a
fit of the Melatonin Suppression Action Spectrum (MSAS) data acquired by Thapan et al. [16] and
Brainard et al. [9] as a weighting function. The MSI is mostly affected by blue-enriched light due to
the high sensitivity of the melanopsin to this spectral range [17]. Lamps can have a MSI higher than
1 even if it is not common in typical lighting technologies. Garcia-Saenz et al. [10,11] used the MSI
as a proxy for the blue light content effect on breast, prostate and colorectal cancers in Madrid and
Barcelona. They found correlations between the MSI from street lights nearby homes of participants to
the MCC-Spain epidemiological study for the three cancers evaluated.

In a similar way to the MSI, the Star Light Index (SLI; [14]) can be used to monitor the impact of
the spectrum of ALAN on stellar observations. The threat to astronomical observation capacities is
caused by the scattering of ALAN by molecules and aerosols in the atmosphere. The light travelling
upward can then be redirected to an observer and hence compete with the low light levels coming
from astronomical objects. The SLI also typically spans from 0 to ≈1, 0 being a colour that does not
compete with stars visibility and 1 being a colour that affects star visibility like a D65 spectrum would
do. The SLI uses the scotopic sensitivity as a weighting function. Blue-enriched light has also revealed
to give higher SLI values, because that the SLI is more sensitive in the blue region.

Finally, the Induced Photosynthesis Index (IPI; [14]) can be used to monitor the impacts of the
spectrum of artificial lights on plants. As for the MSI and the SLI, the IPI typically spans from 0 to ≈1,
0 being a colour that does not stimulate the photosynthesis process and 1 being a colour that affects
photosynthesis like a D65 spectrum would do. The IPI uses the Photosynthesis Action Spectrum (PAS;
DIN5031–10 [18]) as a weighting function.

The calculation of the MSI, SLI and IPI for a given light radiant flux depends on the shape of its
spectral power distribution. This calculation requires the use of a spectrometer to sample the lamp
spectrum. However, spectral measurements are not the easiest to obtain, especially if many of them
are required. It has been shown that three-band Red, Green, Blue (RGB) photometric data can be used
to determine spectral indices or photoreceptor stimuli from values recorded by a Digital single-lens
reflex camera (DSLR) [19,20]. This method is much faster and easier to perform.

In this paper, we developed a similar method of calculating the MSI, SLI and IPI out of
four-band RGB and Clear (RGBC) photometric data detected by the newly developed LANcube
system. This method relies on a cross-calibration between RGBC values of the LANcube obtained
using synthetic photometry method applied on a large spectral database along with the MSI, SLI and
IPI determination by the integration of the same spectra.

Very few methods are available to map the measured ALAN-related parameters over large
territories. A number of instruments may help to perform such remote sensing tasks, with each
instrument having its specific capacities and limitations. Hänel et al. [21] provided a good review
of the most common instruments available. Basically they can be separated in two classes: imaging
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and non-imaging devices. For each class, we can distinguish between spectrum sensitive devices
and panchromatic devices. For the sake of the present work, where we want to determine spectral
indices, panchromatic devices cannot be of any help. It is clear that colour imaging systems installed
on airborne or spaceborne platforms are well suited for such mapping. This can be performed using
stratospheric balloons experiments [22,23], astronauts photography taken from the International
Space Station [20] of from unmanned aerial observing platforms [24,25]. However, there are very few
stratospheric balloon flights being performed for that purpose and astronauts are more likely to shot
at large emblematic cities than any other site. Unmanned aerial platforms are still sparsely available
but they offer increasing potential as they become more and more readily common. In this paper,
we show how the LANcube system installed on top of a moving vehicle can be used as an alternative
to spaceborne and aerial imaging techniques.

2. Materials and Methods

In this section, we explain how the raw RGBC values of the LANcube can be converted into the
MSI, SLI and IPI after determining relationships between colour–colour ratios and each index.

2.1. The LANcube System

The LANcube, also known as LAN3, is a new device developed by Pr. Aubé’s research group.
It is intended to sample the multispectral and multidirectional properties of the Direct Artificial Light
At Night (DALAN) into any environment (indoor or outdoor). It was designed to evaluate the impact
of DALAN on human health and ecosystems.

The LAN3 is a cube-shaped device having a sensor with four visible spectral bands (red, green,
blue and clear) on each of its six faces. The spectral sensitivity of each band is shown in Figure 1.
The sensor used is the TCS 34725 colour sensor manufactured by Texas Advanced Optoelectronic
Solutions Inc., Plano, Texas, United States (TAOS). A watch glass protects the sensor electronics.
The spectral response of each band, including the effect of the spectral transmittance of the watch glass,
was determined at the LICA optical laboratory of the Universidad Complutense de Madrid. We used a
monochromator, a calibrated photodiode and an integration sphere. The sensor has a Field of View
that is very close to a cosine function. Aside from the light sensors, the LAN3 contains a real-time
clock, a micro-SD card to store the data, a GPS module and a temperature sensor. The raw Analog
to Digital Units (ADU) recorded in each band, the integration time and the gain, are stored on the
SD card along with the date, time, GPS coordinates, and temperature. The first version of the LAN3

(LAN3v1) uses the Arduino open source microcontroller. All the required documentation to learn how
to build the device is available online [26].

A new version of the device (LAN3v2) will be released soon. It will have shorter acquisition time.
That version will allow an access to the data from a mobile device. The Arduino microcontroller is
replaced by a Raspberry Pi computer. In addition, the LAN3v2 has an Uninterruptible Power Supply
(UPS) to protect the system against power failures. Pictures of LAN3v1 and LAN3v2 are shown in
Figure 2. A quick comparison of the the two versions is available in Table 1.

The minimum light level detected is of the order of 0.015 lux (Signal to Noise Ratio≥ 3). The LAN3

is equipped with an automated gain and integration time adjustment algorithm allowing the setup
of optimal values that maximise the photometric resolution of each light sensor while keeping the
integration time as low as possible. This procedure aim to maximise the data acquisition rate.
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(a)

(b)
Figure 1. Spectral response of the LAN3 as determined at the LICA laboratory at Universidad
Complutense de Madrid. The calibration curves are for a gain of 1 and an integration time of 1 s.
In panel (a) we show the original spectral responses R(λ), G(λ), B(λ), and C(λ) (Red, Green, Blue and
Clear bands). In panel (b) we show r(λ), g(λ), b(λ) and c(λ), which are the band responses after
removal of an estimate of the Infrared contribution (see Equations (1) and (2)).

Table 1. Features comparison of LAN3 versions.

Feature v1 v2

Sensors TCS 34725 TCS 34725
Number of sensors 6 5
Minimum acquisition time 7 s 1 s
Maximum acquisition time 11 s 2 s
Processing unit Arduino atMega 2560 Raspberry Pi 4b computer
Access to data Removal of the microSD card Download from wifi
System state indicator RGB LED RGB LED + wifi web server
Environment sensor DTH22 (temp. and Hum.) Onboard Raspberry pi temp. sensor
Power source 5 V—USB/A 5 V—USB/C
Power protection Nothing Integrated UPS
Positioning GPS GPS
Real time clock DS 3231 DS 3231
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(a) v1 (b) v2
Figure 2. The LAN3 devices.

2.2. Synthetic Photometry

With the spectral responses of the sensor/glass window known, synthetic photometry can be
used to simulate the signal that must be detected by the LAN3 for any given spectrum. This is done by
taking the weighted integral of the spectra over each of the sensors bands with the known spectral
response of each band (see Figure 1a). To convert the RGBC response to rgbc, we removed an estimate
of the infrared signal (IR) by using RGBC signals (see Figure 1b). The infrared spectral response can be
computed using Equation (1).

IR(λ) ≈ R(λ) + G(λ) + B(λ)− C(λ)
2

(1)

The resultant spectral sensitivity in the infrared (IR(λ)) is presented in Figure 3.
Therefore, r(λ), g(λ), b(λ) and c(λ) can be obtained with Equation (2).

r(λ) ≈ R(λ)− IR(λ) g(λ) ≈ G(λ)− IR(λ) b(λ) ≈ B(λ)− IR(λ) c(λ) ≈ C(λ)− IR(λ) (2)

Finally, the readings excluding the infrared are given by Equation (3),

r =
∫

J(λ) r(λ) dλ g =
∫

J(λ) g(λ) dλ b =
∫

J(λ) b(λ) dλ c =
∫

J(λ) c(λ) dλ (3)

where r, g, b and c are the simulated ADU values of the LAN3 sensor excluding the infrared,
when looking to a given light radiant flux. J(λ) is the spectrum of the given light radiant flux
and r(λ), g(λ) and b(λ) are, respectively, the spectral response of the Red, Green and Blue bands of
the LAN3 after removal of the infrared response.

In order to establish a relationship between LAN3 measurements and MSI/SLI/IPI values,
314 different spectra were measured with a Stellarnet’s Black comet spectrometer. The spectrometer
operates in the spectral range of 280 to 900 nm with a resolution of 1 nm. The sample set
contains 172 street lights, indoor lamps and other types of conventional lighting commonly
available. These spectra are coming from the Lamp Spectral Power Distribution Database (LSPDD;
Roby et al. [27]). The remaining 142 spectra were acquired in situ. This allowed us to have mixed
spectra combining multiple sources and environments. The wide variety of spectra is a key to establish
a robust relationship over the colour ratios space defined by the

[
b
g

]
and

[
r
g

]
.
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Figure 3. Estimated infrared spectral response.

2.3. Calculation of the Indices from Spectral Data

The calculation of the MSI, SLI and IPI is done using the method described in Aubé et al. [14]
over the LSPDD and in situ spectra. The spectral responses used to calculate the indices come from
Aubé et al. [14] for MSAS, Vos [28] for Scotopic (V′(λ)), DIN5031–10 [18] for PAS and Wyszecki and
Stiles [29] for Photopic (V(λ)). These spectral responses can be downloaded from the LSPDD. The CIE
standard illuminant D65 spectrum, also used in the indices calculations, was taken from the LSPDD.

2.4. Fitting the Indices 3D Surface in the
[

b
g

]
−
[

r
g

]
Space

Once the MSI, SLI and IPI values are calculated with the spectra, they are compared with the
LAN3 colour ratios

[
b
g

]
and

[
r
g

]
of each spectrum as determined by the synthetic photometry method

explained in Section 2.2. This creates three 3D spaces, one for MSI (Figure 4), one for SLI and one for
IPI, with each one having 314 data points. For each 3D space, a 3D surface is fitted to the data and the
Equation (4) of this surface becomes the transformation equation between the LAN3 colour ratios and
the respective index value. The equation is the same for each index but the parameters α to ζ differ.
The purpose of the division by the g value is to remove the effect of absolute luminous intensity on the
radiometric measurements of the instrument. We used a Python code to fit a 2nd order polynomial 3D
surface into the data for each index (see Equation (4)).

Index = α + β

[
b
g

]
+ γ

[
r
g

]
+ δ

[
b
g

] [
r
g

]
+ ε

[
b
g

]2
+ ζ

[
r
g

]2
(4)
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Figure 4. Fit of a second-order polynomial surface for the Melatonin Suppression Index. The light blue
circles are the 314 spectra. The r, g and b values are determined from synthetic photometry using the
r(λ), g(λ) and b(λ) spectral responses shown in Figure 1b. The dots are the projection of the point on

each orthogonal plane (red =
[

r
g

]
−MSI; green =

[
b
g

]
−
[

r
g

]
; dark blue =

[
b
g

]
−MSI)..

3. Results

The method described above was applied to a large variety of spectral power distributions and
indices. The results for MSI is presented in Figure 4. In that figure, the light blue circles are the
314 spectra. The light blue transparent surface is the result of a fit of a 3D 2nd order polynomial surface
to the whole dataset. The fitted parameters of Equation (4) for each index are given in Table 2.

Table 2. Fitted coefficients of Equation (4) for the MSI, SLI and IPI.

Index α β γ δ ε ζ

MSI 0.0769 0.6023 −0.1736 −0.0489 0.3098 0.0257
SLI 0.6624 −0.4308 −0.2891 0.2913 0.6801 0.0015
IPI −0.4118 −0.3824 −0.0955 0.7048 0.3305 −0.0463

For the three indices, the most important colour ratio is
[

b
g

]
. This reflects in the higher values of β

and ε. Nevertheless,
[

r
g

]
cannot be neglected at all. In the search for the optimal equation, we tried

lower order polynomial functions but the results were not satisfying. In order to evaluate the intrinsic
errors associated with the use of the fitted equations, we used them to calculate the three indices and
compared the resultant indices to the accurate indices calculations obtained with the spectra. This is
shown in Figures 5–7. The figures show a good correlation between the two ways of determining the
indices. In these figures, the solid line is the 1:1 relation and the right panel of each figure shows the
residuals. For the MSI, the standard deviation of the residuals is 0.024 while it is 0.056 for the SLI.
The correlation is slightly lower for the IPI with a standard deviation of 0.107. The standard deviations
translate in the margin of error (95 percent confidence interval) of±0.05 for MSI,±0.1 for SLI, and±0.2
for IPI. The complete dataset used in the fit is available on the project github repository [30].
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(a) (b)
Figure 5. Comparison of the LAN3 derived MSI vs. MSI calculated with the spectrum.
Panel (a) is showing the scatter plot and the 1:1 slope, while panel (b) give the residuals
MSI(LANcube)-MSI(spectrum).

(a) (b)
Figure 6. Comparison of the LAN3 derived SLI vs. SLI calculated with the spectrum.
Panel (a) is showing the scatter plot and the 1:1 slope, while panel (b) give the residuals
SLI(LANcube)-SLI(spectrum).

(a) (b)
Figure 7. Comparison of the LAN3 derived IPI vs. IPI calculated with the spectrum. Panel (a) is showing
the scatter plot and the 1:1 slope, while panel (b) give the residuals IPI(LANcube)-IPI(spectrum).
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3.1. Maps of the MSI and SLI for Sherbrooke, Canada

As a direct result of the method that we developed, and to demonstrate the new possibility
it delivers, we scanned the region of Sherbrooke City in Québec, Canada using the LAN3 device
installed on top of a car. Sherbrooke is a city of ∼160,000 inhabitants spread over an area of ∼350 km2.
Sherbrooke is the sixth largest city in the province of Québec and the thirtieth largest in Canada. It is
located in the southern part of the Québec province, next to the US border. Sherbrooke is part of the
first International DarkSky Reserve. Its commitment to protecting the night sky translates in a lighting
regulation that restricts the blue light content of any new lighting installation. As a result, a significant
part of the street lights are phosphor-converted amber LEDs.

During the experiment, the LAN3 was aligned parallel to the moving direction and only the
lateral sensors (toward houses) were used. Before the scan, we verified that the car headlights were
not impacting the lateral sensors measurements by turning on and off the headlights. Using the lateral
sensors allows us to form a better idea on the light pollution that can enter bedrooms and potentially
impact human health. We have circulated in the city streets for 12 non-consecutive evenings. The r,
g and b are calculated with data R, G, B and C data collected with the LAN3 using Equations (5)–(7),

IR ≈ R′ + G′ + B′ − C′

2
(5)

r ≈ R′ − IR g ≈ G′ − IR b ≈ B′ − IR (6)

with

R′ = R/A/ti G′ = G/A/ti B′ = B/A/ti (7)

where A and ti are, respectively, the sensor gain and the integration time(s) recorded by the LAN3.
Note that in Equation (7), ti is expressed in seconds while the LAN3 is recording it in units of
milliseconds. The recorded values have to be divided by 1000 prior to using Equation (7). In general,
it is better to make the correction because the spectral response curves of Figure 1a were determined
for gain = 1 and ti = 1 s. However, in the present study, it is not mandatory because, for a given
sensor, the gain and integration time are the same for all bands and then taking the bands’ ratios cancel
their effect. In the LAN3, the gain varies from 1 to 60 and the integration time from 2.4 to 614 ms
depending on the ambient light level.

The
[

b
g

]
and

[
r
g

]
values were converted into MSI, SLI and IPI values using Equation (4).

We excluded extrapolated data that are outside the span of values of data used for the fit. This was
done by excluding indices lower than zero and higher than two. During the calculation of an index,
all recorded R, G, B and C values are subject to a threshold value set at 20. Such a threshold value
ensure that the Signal to Noise Ratio is higher than 20 (i.e., noise represents less than 5% of the signal).
The two criteria excluded 410 measurements out of 14,894 raw data. It represents less than 3% of
the database. In order to generate the maps from the localised measurements, we used the nearest
neighbour interpolation with a maximum interpolation distance of 30 m. The resulting maps are
shown in Figures 8–10. The relation between the lighting technologies and the map index classes are
given in Tables 3–5. The complete dataset used to produce the maps is available on the project github
repository [30].
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B

MSI

<= 0.1

0.1 - 0.2

0.2 - 0.3

0.3 - 0.4

0.4 - 0.5

0.5 - 0.6

> 0.6

C

A

(a) (b)
Figure 8. Map of the MSI for Sherbrooke, Canada. We used Equation (4) and Table 2 with LAN3 data.
The panel (b) shows a zoomed view of MSI for the Mi-Vallon sector of Sherbrooke, Canada (black
square A in panel (a)). Zones B–D are outlining three residential zones of Sherbrooke. In the map,
blue colour is associated with the higher values.

B

SLI

<= 0.2

0.2 - 0.4

0.4 - 0.6

0.6 - 0.8

> 0.8

C

A

(a) (b)
Figure 9. Map of the SLI for Sherbrooke, Canada. We used Equation (4) and Table 2 with LAN3 data.
The panel (b) shows a zoomed view of SLI for the Mi-Vallon sector of Sherbrooke, Canada (black
square A in panel (a)). Zones B–D are outlining three residential zones of Sherbrooke. The purple star
is the epicentre of the Urban Dark Sky Oasis and the green polygon correspond to the limits of the
protected area. In the map, blue colour is associated with the higher values.
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B

IPI

<= 0.4

0.4 - 0.8

0.8 - 1.2

1.2 - 1.6

> 1.6

C

A

(a) (b)
Figure 10. Map of the IPI for Sherbrooke, Canada. We used Equation (4) and Table 2 with LAN3 data.
The panel (b) shows a zoomed view of IPI for the Mi-Vallon sector of Sherbrooke, Canada (black square
A in panel (a)). Zones B–D are outlining three residential zones of Sherbrooke. In the map, blue colour
is associated with the higher values.

Table 3. Lamps associated to mapped MSI ranges determined with the LSPDD. CFL stands for Compact
Fluorescent, FL for fluorescent, WW for warm white, NW for neutral white and CW for cool white.
In the map, blue colour is associated with the higher values.

MSI Range Lamp Spectra

[0.0, 0.1) LED PCamber, Yellow CFL, Red CFL
[0.1, 0.2) LED 2500 K, Incandescent, HPS
[0.2, 0.3) LED 2700 K, LED 3000 K, Incandescent, WW CFL
[0.3, 0.4) LED 3000 K, Incandescent, Halogene, WW CFL
[0.4, 0.5) LED 4000 K, NW CFL, NW FL
[0.5, 0.6) LED 5000 K, NW CFL, MH
[0.6, 0.7) LED 5000 K, NW CFL, CW CFL, MH
[0.7, 0.8) LED 6000 K, CW CFL
[0.8, 0.9) -
[0.9, 1.0) Blue CFL, Blue LED

Table 4. Lamps associated to mapped SLI ranges determined with the LSPDD. CFL stands for Compact
Fluorescent, FL for fluorescent, WW for warm white, NW for neutral white and CW for cool white.

SLI Range Lamp Spectra

[0.0, 0.1) Red CFL
[0.1, 0.2) PC amber LED
[0.2, 0.3) HPS, Yellow CFL
[0.3, 0.4) WW CFL, LED 2500 K
[0.4, 0.5) LED 2700 K, LED 3000 K, WW CFL Inc
[0.5, 0.6) LED 4000 K, Halogene, Incandescent
[0.6, 0.7) LED 4000 K, LED 5000 K, NW CFL, NW FL, Halogene, MH
[0.7, 0.8) LED 5000 K, LED 6000 K, CW CFL
[0.8, 0.9) CW CFL
[0.9, 1.0) Blue CFL, LED 6500 K
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Table 5. Lamps associated to mapped IPI ranges determined with the LSPDD. CFL stands for Compact
Fluorescent, FL for fluorescent, WW for warm white, NW for neutral white and CW for cool white.

IPI Range Lamp Spectra

[0.0, 0.1) -
[0.1, 0.2) -
[0.2, 0.3) -
[0.3, 0.4) -
[0.4, 0.5) Yellow CFL
[0.5, 0.6) HPS, WW CFL, PC amber LED
[0.6, 0.7) WW CFL, NW CFL, LED 2700 K, LED 3000 K, LED 4000 K
[0.7, 0.8) NW CFL, CW CFL, LED 3000 K, LED 4000 K
[0.8, 0.9) Halogene
[0.9, 1.0) Halogene, Incandescent, Blue CFL, Red CFL

4. Discussion and Conclusions

We estimate that the equations found to convert the r, g and b values of the LAN3 into the three
spectral indices—MSI, SLI and IPI—are suited for the mapping of large territories. The margin of error
(95 percent confidence interval) is ±0.05 for the MSI, ±0.1 for the SLI and ±0.2 for the IPI. The margin
of error for MSI appears to be sufficiently small for many health and ecosystems studies. For the SLI,
the margin of error is larger but it is still useful as a tool for night sky protection. Tables 3 and 4 show
that the margins of errors associated with the MSI and the SLI are small enough to separate the type of
light technologies in regard to their spectral content. Therefore, we should expect the maps produced
to be precise enough for most applications. The margin of error is much larger for the IPI and therefore
we think this index requires further analysis in order to find better suited colour ratios to establish a
better index calculation formula.

The index maps show that the averaged value all over the city for the MSI, SLI and IPI are 0.34,
0.54 and 0.96, respectively. Such numbers can be used to estimate a city performance to protect its
territory against ALAN related issues. As an example, for the MSI, the average value is relatively small
(0.34). As an element of comparison, this value is typical of 3000 K lamps. However, as the sensor
detects all light emissions, this value is the result of a combination of both public and private lights.
The sensitivity to private lights is probably higher given that we are using the lateral sensors and in
Sherbrooke private lights are generally installed at a lower height. We used the lateral sensors because
that it correspond to the orientation of propagation of the light that can enter the houses. In the city of
Sherbrooke, the street lights are mainly composed of High-Pressure Sodium (HPS) (MSI ≈ 0.12; [14])
and PC Amber LEDs (MSI ≈ 0.04; [14]).

The indices maps allow us to identify critical zones in terms of their expected potential impact.
As an example, Figure 8 shows only few values above MSI = 0.6 in the city of Sherbrooke (blue points
in Figure 8a). Such data correspond to critical locations with respect to their potential impact on
the melatonin suppression. In Sherbrooke, many of them are located in the main commercial zones.
The residential Mi-Vallon sector is an exception (square A of Figure 8a,b for a zoomed-in view).
The peculiarity of that residential area is clear when comparing zone B and zone C in Figure 8a.
Zone C presents lower values of MSI but both zones are residential. In the Mi-Vallon sector, we can
even distinguish two regimes between the northern (zone D in Figure 8b) and southern zones (zone
B in Figure 8b). Zone B shows a much higher occurrence of high MSI values, but both zones are
residential. They actually differ mainly by their date of construction, with zone D being the most
recent. Lower MSI values in zone D actually reflect that the city administration is now gradually
installing/converting street lights to PC amber, but another reason for this difference is that more
houses are equipped with front door white bulbs in zone B than in zone D. Such private lamps pose
a potential threat to citizens’ health, but as they are under the control of the citizens themselves,
it highlights the need for public outreach measures. Fortunately, we can find many places with very
low MSI (<0.1) in the city. This situation happens because of the new city policy to replace or install
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street lights by using PC amber LEDs and sometimes 2200K LEDs along with the absence of white
private lamps.

A similar analysis can be made for the SLI and IPI index with Figures 9 and 10 respectively.
One should keep in mind that the margin of error for SLI is twice that of MSI and that IPI margin
of error is a 4-fold of the MSI. In the case of SLI, the blue pixel corresponds to SLI higher than 0.8.
These places are the one to consider first when it is time to restore the starry sky. Such information is
highly strategic in the case of Sherbrooke because of the current project under way to create an Urban
Dark Sky Oasis. This project aims to give access to the Milky Way to the citizens in the Mont Bellevue
city park. The limits of the park are identified by a green polygon in Figure 9a.

The mapping method presented here can rapidly identify the potentially harmful installations
and then prepare targeted interventions to reduce or eliminate the problem. In a future work,
we plan to find empirical relationships between the RGB and illuminance (lux) and the Correlated
Colour Temperature (CCT). One other improvement could be to search for better set of colour ratios,
including the clear channel, that could increase the correlation between the fitted equation and the
MSI, the SLI and the IPI established with spectral data. This later task would be particularly useful for
the IPI index given its large associated margin of error.
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Abbreviations

The following abbreviations are used in this manuscript.

ADU Analog to Digital Unit
ALAN Artificial Light at Night
CFL Compact fluorescent
CIE Commission Internationale de l’Éclairage
DALAN Direct Artificial Light at Night
DSLR Digital single-lens reflex camera
FRQNT Fonds de recherche du Québec–Nature et technologies
GPS Global Positioning System
HPS High-Pressure Sodium
IPI Induced Photosynthesis Index
LED Light-Emitting Diode
LSPDD Lamp Spectral Power Distribution Database
MSAS Melatonin Suppression Action Spectrum
MSI Melatonin Suppression Index
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nm nanometre
PAS Photosynthesis Action Spectrum
PC Phosphor Converted
PRESE Pôle régional en enseignement supérieur de l’Estrie
SLI Star Light Index
UPS Uninterruptible Power Supply
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