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Abstract: This paper aims to scrutinize in what way peri-urbanization triggers climate change
vulnerabilities. By using spatial analysis techniques, the study undertakes the following tasks. First,
the study demarcates Dhaka’s—the capital of Bangladesh—peri-urban growth pattern that took
place over the last 24-year period (1992–2016). Afterwards, it determines the conformity of ongoing
peri-urban practices with Dhaka’s stipulated planning documents. Then, it identifies Dhaka’s specific
vulnerabilities to climate change impacts—i.e., flood, and groundwater table depletion. Lastly, it maps
out the socioeconomic profile of the climate change victim groups from Dhaka. The findings of
the study reveal that: (a) Dhaka lacks adequate development planning, monitoring, and control
mechanisms that lead to an increased and uncontrolled peri-urbanization; (b) Dhaka’s explicitly
undefined peri-urban growth boundary is the primary factor in misguiding the growth pockets—that
are the most vulnerable locations to climate change impacts, and; (c) Dhaka’s most vulnerable
group to the increasing climate change impacts are the climate migrants, who have been repeatedly
exposed to the climate change-triggered natural hazards. These study findings generate insights into
peri-urbanization-triggered climate change vulnerabilities that aid urban policymakers, managers,
and planners in their development policy, planning, monitoring and control practices.

Keywords: peri-urbanization; urban growth boundary demarcation; climate change; climate migrants;
natural hazards; flooding; land use and land cover; night-time light data; Dhaka; Bangladesh

1. Introduction

Due to the global urbanization drives, major metropolitan cities and regions across countries are
gradually expanded by continuously encroaching their physical growth boundaries into adjoining
peri-urban areas [1–4]. Hence, urban growth at present predominantly is occurring in the form
of peri-urbanization globally [5]. Thus, rapid peri-urbanization has already become an issue of
increasing global concern [6]. In addition, peri-urban areas are also vulnerable to climate change
impacts [7,8]. Consequently, these peri-urban growth pockets provoke considerable growth challenges
to policymakers [9–11].

Although the rapidly occurring peri-urbanization is commonly a global phenomenon, peri-urban
growth factors vary across countries. Such variations in growth factors are deeply ingrained in a
country’s unique socio-economic settings, legal systems, institutional arrangements, and environmental
conditions [12,13]. For instance, the in-migration—which is considered as a major determinant of
peri-urbanization—varies across countries. Peri-urban in-migrants for the context of developed nations
are predominantly amenity-led migrants [14,15]. Contrariwise, such in-migration in developing
countries context is largely attributed by forced factors such as poverty, lack of employment, and climate
change impacts—e.g., sea-level-rise, river erosion, flooding, salinity intrusion, and drought [16,17].
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In addition, biased national policies—e.g., excessive capital city-oriented development
tendencies—also accelerate this forced migration [18]. In this way, metropolitan cities in the developing
countries context are overwhelmed with unanticipated population growth. Hence, policymakers and
planners are greatly hindered in maintaining a balance between economic development and social
change [19], resulting in a gross failure in estimating the projected population and corresponding
growth demands. While the cities of developing countries are frequently struggling to cope with
the growing demand, the influx of added migrants makes the development control tasks extremely
challenging [20]. Subsequently, the unprecedented growth of informal economies occurs in their
peripheries [21].

While some cities are gradually expanding in response to this growing need, cities with
geographical limitations are greatly obstructed to provide further avenues for expansion. For example,
the expansion of Dhaka city—the capital of Bangladesh—is severely constrained by the lack of sufficient
flood-free landscapes. The elevation of Dhaka city lies up to a maximum of 13 m above the mean
sea-level [22]. Hence, Dhaka city is even more low-lying than its contemporaries—e.g., Mumbai (India),
Kolkata (India), and Karachi (Pakistan).

Moreover, Dhaka’s annual average rainfall is 2148 mm, out of which the monsoon rainfall that lasts
from May to September accounts for nearly 78% [23]. Thus, Dhaka encounters frequent annual flooding
in the monsoon due to heavy rainfall. While the portion of the city’s annual flooding contributed by
climate change impacts is as yet unknown, such frequently occurring flood events are widely claimed
to be climate change-induced [24,25].

Furthermore, Bangladesh also tops the list of climate change impacts and such impacts are
already evident throughout the country. Due to climate change impacts—e.g., sea-level rise, salinity
intrusion, riverbank erosion, flooding, and drought, many people lose their livelihoods and properties,
and eventually migrate to the major cities of Bangladesh [26]. Such internal migrants are globally
defined as ‘climate migrants’ [27]. So far, Bangladesh has two million climate migrants and the capital
city Dhaka individually hosts 68% of them [28]. These climate migrants predominantly represent
the poorest portion of the city. With an annual poverty growth rate of 4%, about 40% of Dhaka’s
urban population are poor [29], and are predominantly deprived of any sort of urban facilities [30].
These poor people generally live in the peripheral areas of the Dhaka city, which are highly flood-prone.
A boom in the ready-made garments (RMG) industries has further made the population influx to these
flood-prone areas unstoppable [31]. Consequently, Dhaka’s population is increasing at a rate of 0.4
million/year [32].

Thus, a more densified peri-urban growth occurs in their peri-peripheries, resulting in an
intensified vulnerability of climate change’s impact. These climate change impacts appear to be
perpetual. As Bangladesh is one of the most vulnerable countries to climate change’s impacts, incidents
such as sea-level-rise, flooding, salinity intrusion, and their subsequent impacts on livelihoods and
properties seem to persist. Thus, Dhaka will continue to absorb the direct and indirect impacts of
climate change. While climate change has already become an issue of increasing concern for the
government, policymakers are as yet unequipped to deal with the direct and indirect impacts of climate
change at the metropolitan level.

Peri-urban areas—which are neither urban nor rural—are a distinct geographic space and have
clear implications in urban governance [33,34]. While the idea of independently operating peri-urban
areas is globally gaining increasing concern [35,36], no study, to date, is reported in the literature
investigating peri-urbanization-driven climate change vulnerabilities based on an explicitly demarcated
peri-urban growth boundary.

This study provides a remote sensing approach in demarcating peri-urban growth pockets which
are vulnerable to climate change impacts. In order to demarcate these peri-urban growth pockets, this
paper uses Mortoja’s et al. [20] research findings apropos of ‘what the most suitable methodological
approach to demarcate peri-urban areas is’. The modus operandi of this investigation comprises
carrying out change analyses with Landsat data, and identifying peri-urban growth pockets with
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night-time light data. By adapting the Greater Dhaka Area (Bangladesh)—or the Dhaka Megacity—as a
testbed, the study undertakes the following four analyses. First, it maps out the changes in peri-urban
growth boundaries that occurred in the peripheral areas of Dhaka over the last 24-year period
(1992–2016). Second, it points out the consistencies of prevailing peri-urban growth with Dhaka’s
designated plan documents. Third, it spells out Dhaka’s particular vulnerabilities to climate change
impacts—i.e., flooding and groundwater table depletion. Lastly, it identifies the socioeconomic profile
of the climate change victim groups from Dhaka. The insights generated from this study provide
an evidence base in identifying the peri-urban growth pockets, and thereby enable policy makers
to formulate area-specific growth policies and mitigating circumstances in dealing with increasing
climate change vulnerabilities.

2. Materials and Methods

2.1. Study Area

In order to reveal peri-urbanization-related climate change vulnerabilities, this study chose
one of the most vulnerable cities of global climate change impacts—i.e., Dhaka, the capital of
Bangladesh. In terms of physical growth, Dhaka has become overwhelmingly saturated within its city
corporation areas since the 2000s. Hence, further expansions of Dhaka city are protruding towards
the adjoining peri-urban landscapes. The Capital Development Authority (a.k.a. Rajdhani Unnayan
Kotripakhkha—RAJUK)—that is entitled as the prime organization for guiding and monitoring Dhaka
city’s growth—projects the city’s growth to nine adjoining sub-districts (a.k.a. upazilas), including
Savar, Gazipur Sadar, Kaliganj, Rupganj, Sonargaon, Bandar, Narayanganj Sadar, and Keraniganj
(Figure 1). These RAJUK-designated sub-districts are altogether declared as the Dhaka Metropolitan
Development Plan (DMDP) boundary. The study considered this DMDP boundary, comprising
an aggregate area of 1530 km2, as the testbed to demonstrate the peri-urbanization driven climate
change vulnerabilities.

Figure 1. Location of the study area: (a) the Dhaka Metropolitan Development Plan (DMDP) area
within the national context; (b) the Dhaka Metropolitan Development Plan (DMDP) area and its
corresponding sub-districts’ location.
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The compelling reasons for investigating the DMDP’s peri-urban growth under this microscope
entail: (a) the capital-city-centered biased national polices of agglomerating all major economic and
infrastructural facilities around Dhaka city [37]; (b) unprecedented flow of in-migrants to Dhaka
city [38]; (c) rampant unsustainable development practices around Dhaka city [39]; (d) both in terms
of the world least livable city index and global population density, Dhaka ranks third [40–42], and;
(e) Dhaka is already facing climate change-induced frequent flooding [25].

2.2. Datasets

The datasets used for this study primarily comprise two types: (a) level-one terrain-corrected
(L1T) and cloud-free multispectral Landsat data for the years 1989, 1999, 2009, and 2019 collected from
USGS [43] (https://earthexplorer.usgs.gov) (Table 1), and; (b) night-time light (NTL) data for the years
1992 and 2016 collected from NCEI [44] (http://ngdc.noaa.gov/eog/download.html).

Table 1. Characteristics of Landsat data for the DMDP area [43].

Date Path/Row Sensor Satellite Resolution

20 November 1989 137/44 TM Landsat 5 30 m
9 March 1989 137/44 TM Landsat 5 30 m

1 February 1999 137/44 TM Landsat 5 30 m
1 February 1999 137/43 TM Landsat 5 30 m
30 January 2010 137/44 TM Landsat 5 30 m

28 February 2009 137/43 TM Landsat 5 30 m
23 January 2019 137/44 OLI Landsat 8 30 m
23 January 2019 137/43 OLI Landsat 8 30 m

The downloaded NTL Defense Meteorological Satellite Program’s Operational Linescan
System (DMSP-OLS) data of 1992 and NTL Visible Infrared Imaging Radiometer Suite
(VIIRS) data of 2016 were ‘F101992.v4b_web.stable_lights.avg_vis.tif’ and ‘SVDNB_npp_20160101-
20161231_75N060E_v10_c201807311200’, respectively.

While classified images of Landsat data over time were taken to derive the spatio-temporal
dynamics of DMDP’s growth, NTL data were used to detect the shifts in peri-urban growth boundaries
corresponding to those spatial changes in DMDP’s growth. As peri-urban areas take around 20 to
30 years to become completely urbanized, this study selected the NTL DMSP-OLS dataset of 1992
and NTL VIIRS Day-Night Band (DNB) dataset of 2016 in order to investigate the changes in the
peri-urbanization pattern over a period of 24 years. This study selected the NTL dataset of 1992 and
2016, as the NTL data are available from 1992 onwards and the latest year of NTL data which provides
annual composite is 2016.

In order to reveal the socioeconomic aspects of peri-urban growth, the UN-adjusted grid-level
raster data on demography of the year 2001, 2016, and 2020, the average likelihood of poverty (ALP)
(i.e., the average probability of living on less than $2.50/day), and standard deviation of the average
likelihood of poverty (ALP) of the year 2013 for the context of Bangladesh were collected from WorldPop
and CIESIN [45] (https://www.worldpop.org/geodata/country?iso3=BGD). In addition, a continuous
surface elevation map was generated for the DMDP area by using Shuttle Radar Topography Mission
(SRTM) datasets of 2014 collected from USGS [43].

Other relevant documents including administrative boundaries, data on flood plain areas,
proposed land use zone data, major river boundary, and reports of the City Region Development Plan
(CRDP) 2015–2035 were collected from the RAJUK. The data on daily rainfall for the DMDP context
from 2000 to 2018 were collected from the Bangladesh Water Development Board (BWDB).

https://earthexplorer.usgs.gov
http://ngdc.noaa.gov/eog/download.html
https://www.worldpop.org/geodata/country?iso3=BGD
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2.3. Methods

The collected raster datasets and shapefiles were all projected to the universal coordinate system:
‘WGS_1984_UTM_Zone_46N’. Figure 2 illustrates the overall methodology of this study, while the
methodological steps are spelled out in the following sub-sections.

2.3.1. Pre-Processing of Satellite Images

Preprocessing of Landsat Data

The collected Landsat images were carefully cross-checked to ensure that all collected images
were geometrically corrected. Thus, no image-to-image spatial adjustments were performed thereafter.

Nevertheless, two accompanying Landsat scenes altogether cover the entire boundary of the
DMDP area. However, due to the differences in sun angle as well as in the timing and date of image
acquisition, the spectral signatures of each scene were notably different than to its counterpart for
each corresponding year. Thus, this study avoided image mosaicking before image classification.
The radiometric calibration and atmospheric correction of these collected images were performed
thereafter in the ENVI platform.

Preprocessing of NTL Data

The NTL DMSP-OLS data inherently have two main problems [46]: (a) saturation and blooming
effects, and; (b) inter-annual inconsistency, whereas such problems with the NTL VIIRS data are
assumed to be minimal [47]. Hence, in order to perform the spatio-temporal analysis using NTL data,
producing a temporarily consistent DMSP-OLS data became necessary.

Reducing saturation and blooming effects of NTL DMSP-OLS 1992 data: In order to reduce the
saturation and blooming effects of the NTL DMDP-OLS data of 1992, this study adapted Cao et al.’s [48]
self-adjusting model (SEAM).

The SEAM model was first applied in Beijing, China. Considering the compact land use
development pattern and high-density sprawl development that are predominantly prevalent both in
Dhaka and Beijing [49,50], Dhaka’s urban growth pattern and subsequent night-time light illumination
appears to be similar with the corresponding illuminations of Beijing. Thus, the paper utilized this
SEAM model for the DMDP area context by using the SEAM’s script coded in MATLAB. In addition,
this study chose the SEAM model because it can alleviate the saturation and blooming effects of the
NTL DMSP-OLS images without the help of other auxiliary data.

According to the SEAM model, the saturation and blooming effects are estimated by pixel-based
regression using pseudo light pixels (PLPs) and their neighboring light sources. These PLPs are selected
from the urban edges. The PLPs shown in Figure 3 represent weak brightness (i.e., Digital Number
(DN) > 0), but one or more of its eight neighbors are dark (i.e., DN = 0). For each DMSP pixel with DN
larger than 0, PLPs are selected within a radius of 150 km.
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Figure 2. Methodological steps of this study.
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Figure 3. The selection of pseudo light pixels (PLPs) and their adjacent pixels within the frame of a 7 X
7 moving window [48] (p. 404).

Interannual Calibration of NTL 1992 data: The SEAM-corrected NTL DMSP-OLS data of 1992
(Figure 4b) were further intercalibrated by using Wu et al.’s [51] study approach. The following
equation was applied:

DNc = a X (DNm + 1)b
− 1 (1)

where DNc = intercalibrated NTL DMSP-OLS image of 1992; DNm = SEAM-corrected NTL DMSP-OLS
image of 1992; a = model coefficient = 0.8959; and b = model coefficient = 1.0310. The negative
value of the NTL data of 1992 was later set to zero. This way, the NTL DMDP-OLS data of 1992
were made compatible with the NTL VIIRS data of 2016 to carry out spatio-temporal dynamics of
peri-urban growth.

Figure 4. (a) The original DMSP-OLS image of 1992 for the DMDP area; (b) self-adjusting model
(SEAM)-corrected image of 1992 for the DMDP area; (c) resampled night-time light (NTL) VIIRS image
of 2016 for the DMDP area.

Resampling and harmonizing NTL datasets: In the case of selecting the NTL dataset of 2016, this study
chose the VIIRS annual average radiance composite vcm-orm-ntl data of 2016, which are cloud-free,
outlier removed, stray-light corrected, ephemeral-lights eliminated, and geometrically corrected.
Hence, no pre-processing on NTL VIIRS data was performed. These NTL data of 2016 were projected
to the WGS_1984_UTM_Zone_46N reference system. The spatial resolution of the projected NTL
VIIRS data was 451.52m and radiance values (a.k.a. DN values) within the selected DMDP area were
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between 0 and 69.86 nanowatts/cm2/sr. In order to bring harmony with the spatial resolution of the
NTL DMSP-OLS data of 1992, the NTL data of 2016 were then resampled to 903.04 m spatial resolution
by using the ‘bilinear’ resampling technique in the ArcGIS platform (Figure 4c).

2.3.2. Classifying Landsat Data

This study applied the most commonly used maximum likelihood supervised classification (MLSC)
technique in the ENVI Platform to classify each selected Landsat image into five land cover categories:
(a) bare soil; (b) built-up; (c) vegetation; (d) water body, and; (e) low-land. Other classification
techniques—e.g., random forest algorithms, support vector machines, decision tree algorithm—are also
popular for classifying remotely-sensed data. However, for classifying Landsat data, in particular,
taking appropriate training samples produces more accurate classification outcomes than adapting
any specific classification technique itself [52,53]. Given that the MLSC technique is robust and
available with any remote sensing software package [54], this study selected this MLSC technique.
While applying the MLSC technique, the training samples were repeatedly modified in order to
ensure the selection of the most representative fraction for each land cover class for yielding the most
accurate classification outcome. Later on, post-classification mosaic for each selected year’s image
was performed in order to accommodate the entire boundary of DMDP area within a single classified
image frame.

2.3.3. Post-Processing of Classified Images

All classified images were found with ‘salt-and-pepper’ effects and some degree of localized
misclassifications—e.g., ‘bare soil’ was misclassified as ‘built-up areas’, and ‘built-up areas’ was
misclassified as ‘bare soil’. In addition, in some places, low-density scattered settlements were
misclassified as ‘vegetation’ due to the shade of vegetation coverage. Nonetheless, due to the lower
resolution of Landsat images, such perceived misclassifications are common with Landsat image
classification [53].

Hence, post-processing of classified images became necessary, which was subsequently carried
out in the ArcGIS platform. First, in order to remove the ‘salt-and-pepper’ effects—i.e., removing
the presence of isolated pixels from classified images, this study employed ‘Majority Filter’ by
using the three by three window. Second, the ‘Boundary Clean’ tool was used for smoothening the
boundary of land cover classes. Third, for removing the small isolated regions, the study further
generalized classified images by sequentially using the ‘Region Group’, ‘Set Null’, and ‘Nibble’ tools.
Fourth, the classified raster images were further vectorized in order to manually rectify the localized
misclassifications. After manual rectification of localized misclassification, these images were again
rasterized to make those images fit for accuracy assessment.

2.3.4. Accuracy Assessment of Classified Images and Change Analysis

The accuracy assessment of classified images was performed in the Google Earth platform. In the
case of selecting the number of sampling points for accuracy assessment, if the study area’s coverage is
less than 1 million acres and the classified land cover categories are fewer than 12 land cover classes,
a minimum of 50 sampling points for each land cover category is recommended [55]. In this regard,
the size of the study area was 377,842.53 acres, and the number of classified land cover categories
was 5. Thus, the threshold sampling points for this accuracy assessment task were 250. However,
the number of sampling points under the stratified random sampling technique is proportional to
the area coverage of each land cover class. As some land cover classes (e.g., water body) were too
rare, formulation of a minimum of 50 stratified random sampling points for each land cover class
was not possible. Finally, a total of 351 random sampling points was generated through stratified
random sampling technique in the ArcGIS spatial analyst platform. The image classification process
and the corresponding post-processing tasks of classified images as mentioned above were repeatedly
done until all classified images were found with a minimum classification accuracy of 85% [56].
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Overall classification accuracies of the classified images for 1989, 1999, 2009, and 2019 were 90.00%,
84.90%, 84.90%, and 85.47% with Kappa coefficients of 0.849, 0.778, 0.775, and 0.769, respectively.
Finally, post-classification change detection was carried out by using Land Change Modeler (LCM) in
the TerrSet Geospatial Monitoring and Modelling platform.

2.3.5. Peri-Urban Mapping Using NTL Data

Recognizing the Fuzzy Characters of Peri-Urban Areas

Peri-urban areas generally start from location proximity to an urban core and continue until
a predominantly rural landscape is found. Thus, peri-urban areas, in general, comprise both the
characteristics of urban and rural land uses, where some portions of peri-urban areas are more
urban, and the remaining factions are more rural. Hence, peri-urban areas significantly possess the
characteristics of the fuzzy-set theory—which limits peri-urban areas within a fuzzy membership
value of 0 and 1, where ‘0 = predominantly rural’, and ‘1 = predominantly urban’. Consequently,
the values between 0 and 1 imply peri-urban areas, where higher membership values (e.g., 0.75)
indicate more peri-urban—i.e., inclined to more urban—and lower values (e.g., 0.15) indicates less
peri-urban—i.e., inclined to more rural. Henceforth, this study applied the fuzzy membership function
to reveal these perceived fuzzy characteristics of peri-urban areas.

Identifying the Suitable Fuzzy Membership Function

This study primarily centered around selecting a suitable fuzzy membership function to reveal the
fuzzy characterizes of peri-urban areas. Initially, fuzzy ‘Gaussian’ and ‘Linear’ membership functions
on NTL data in the ArcGIS platform were run. By using multiple combinations as input values, it is
observed that the fuzzy Linear membership function is more interpretive than the Gaussian one while
using NTL data. Thus, this paper chose the fuzzy Linear membership function to map the fuzzy
characteristics of peri-urbanization and named this as the ‘fuzzy linear urban membership function’.

Selecting the Membership Value for the Fuzzy Linear Urban Membership Function

In order to determine the minimum and maximum membership values of the fuzzy linear
urban membership function, this study first extracted the persistent and dynamic built-up areas.
The persistent built-up areas are those which remained unchanged between 1989 and 2019, while
the dynamic built-up areas are the landscapes which were converted into built-up surfaces between
1989 and 2019. As peri-urban areas become urbanized over a 20- to 30-year period, the built-up areas
showing persistence between 1989 and 2019 were hypothesized to be predominantly urban. Thus, this
study assumes that the characteristics of peri-urban areas lie within the dynamic built-up surfaces.
Henceforth, this study extracted the areas which were converted into built-up surfaces between 1989
and 2019.

Later on, this study carried out zonal statistics on the NTL datasets of 1992 and 2016 for the
areas comprising persistent and dynamic built-up areas individually (Table 2). It is observed that the
mean value between these two separate built-up zones is significantly different, while the differences
in the maximum values between these two separate zones are not so conspicuous. Thus, the mean
value of dynamic built-up areas appears to have significant potential to interpret the peri-urbanization
pattern of the DMDP area. Consequently, this study took the ‘minimum value’ and ‘mean value’ as
the ‘minimum value’ and ‘maximum value’, respectively, to form the fuzzy linear urban membership
function set images in the ArcGIS platform. Any values more than the mean estimate (which was
subsequently considered as the ‘maximum value’) indicated predominantly urban areas in the fuzzy
linear urban membership function set images.
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Table 2. The radiance values of NTL data between dynamic and persistent built-up areas.

Year
Persistent Built-up Areas Dynamic Built-up Areas

Minimum Maximum Mean Minimum Maximum Mean

1992 0 64.22 29.22 0 64.22 9.0
2016 0 33.37 12.82 0 46.4 6.33

It is important to mention that this study only used the boundary of dynamic built-up areas in
order to derive the membership values for the fuzzy linear urban membership function set images
using NTL data. No pixel-to-pixel comparison was performed between 30 m resolution classified
Landsat data and 903.04 m resolution NTL data. This way, the difficulty of handling the variations in
spatial resolution of these two different image datasets was avoided.

Identification of Peri-Urban Areas within the Fuzzy Linear Urban Membership Function Set Images

The urban core areas were predominantly found within the values of 0.80 to 1.0, while the rural
areas were predominantly found within the value range of 0 to 0.10 in the fuzzy linear urban membership
function set images. Consequently, peri-urban areas are delimited within the value range of 0.11 to
0.79. Hence, by using these perceived value ranges, the fuzzy linear urban membership function set
images of the years 1992 and 2016 are reclassified into three categories (Figure 5): (a) predominantly
urban (PURBAN); (b) predominantly rural (PRURAL), and; (c) peri-urban (PU).

Figure 5. The level of urbanization under the microscope of fuzzy linear urban membership function set.

Derivation of Fuzzy Set Statistics for the Study Area

This study derived the overall level of urbanization and the degree of fuzziness for the DMDP
context. The level of urbanization denotes the mean gross level of membership in the fuzzy linear
urban membership function set. The following equation was used to calculate the level of urbanization.

LoUyear =

∑n
i Fyear∑

n
(2)

where LoU is the the level of urbanization of each corresponding year, and n is the total number of
cells in the corresponding fuzzy linear urban membership function set image.

In order to determine the degree of fuzziness, the following equation was used:

DoFyear =
(

Fyear−FPredominantly Urban
Fyear

)∑
n

(3)
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where DoFyear = the degree of fuzziness for each corresponding year, and FPredominantly Urban = fuzzy
linear membership function set for predominantly urban areas of each corresponding year, where the
minimum and maximum values for the predominantly urban set image were assigned to 0.80 and
1.0 respectively.

2.3.6. Validation of Peri-Urban Mapping

Ground Truthing of Peri-Urban Mapping

In order to determine the accuracy of the peri-urban mapping approach, this study carried
out ground-truthing by using 300 stratified random sampling points. Considering the availability
of data for the purpose of ground-truthing using the Google Earth platform, the study chose NTL
VIIRS data mapping of 2016 for this ground-truthing purpose. Nevertheless, as peri-urbanization is
local context-specific, a set of criteria was primarily formulated to distinguish the areas which are
predominantly urban, peri-urban, or predominantly rural for the context of the DMDP area (Table 3).
Later on, a ground-truthing exercise was performed in the Google Earth platform and a confusion
matrix was formed thereafter to derive the accuracy of the peri-urban mapping exercise of 2016.

Table 3. Criteria to ground-truth the NTL VIIRS data mapping of 2016.

Category Criteria

Predominantly urban

The ground-truthing point falls in places where the areas maintain a high-density
(i.e., apparently, there is no distance between two settlements) continuous
built-up development and surrounding areas are built-up.

If the point does not fall within continuous built-up areas, point falls in places
from where high-density continuous built-up areas are within 300 m.

Predominantly rural

The point falls in places where vegetation is more dominant, and a number of
scattered rural homesteads are located within 200 m radius

The point falls within the proximity of 300 m radius from the nearby road

Settlements are located proximity to paddy lands, wetlands, or low-lying areas

Peri-urban

Located within 400 m of low-density continuous built-up development

Located within 50 m from the nearby roads

The point falls in places where vegetation is less dominant (i.e., built-up areas are
not shaded by the vegetation) than the presence of built-up areas

Point falls in a location where settlements are dispersed but follows a linear
development alongside the road

Checking the Consistency of Peri-Urban Expansions with the Proposed Plan Documents

In order to determine the changes in peri-urban growth corresponding to the proposed changes as
stipulated in the DMDP’s City Region Development Project (CRDP) 2015–2035, this study compared
the NTL VIIRS data mapping of 2016 with the proposed land use zones of CRDP 2015–2035.

2.3.7. Identifying Factors Affecting the Spatial Distribution of Peri-Urbanization

Pre-Processing of Ancillary Datasets

The collected raster datasets on demography, the average likelihood of poverty (ALP) and standard
deviation of the average likelihood of poverty (ALP), and the continuous surface elevation dataset
generated for the DMDP context were all resampled to 903.04 m spatial resolution (by using ‘bilinear’
resampling technique in the ArcGIS platform) in order to obtain consistency with the NTL data-driven
peri-urban mapping for comparative analysis. This study considers the standard deviation of the
average likelihood of poverty (ALP) as a proxy variable of social stratification.
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Identification of Statistically Significant Hot Spots for Interpreting Peri-Urbanization

In order to reveal whether the spatial distribution of population growth, the standard deviation
of the average likelihood of poverty (ALP), elevation, and corresponding changes in the spatial
distribution of peri-urbanization is clustered, random, or dispersed, the spatial autocorrelation was
carried out to derive the Global Moran’s I statistic. The positive Moran’s Index implies a tendency
towards spatial clustering, while the negative value of Moran’s Index insinuates a tendency towards
spatial dispersion. Based on the outcome of the spatial autocorrelation against each parameter as
mentioned above, the null hypothesis ‘spatial distribution of a given parameter is normally distributed’
was tested.

Afterwards, hotspot analysis was carried out to compute the Getis-Ord Gi* in order to measure the
intensity of such perceived clustering. While identifying the Getis-Ord Gi* statistic, a False Discovery
Rate (FDR) correction was applied in order to resolve the issues of spatial dependency and multiple
testing. Regardless of whether the z-score is positive or negative, a higher z-score value implies
more spatial clustering. A positive z-score value indicates clustering of hot spots, while a z-score
with a negative value indicates clustering of cold spots, and a z-score near zero implies clustering is
‘not significant’, meaning that no apparent spatial clustering is evident.

Performing Geographically Weighted Regression

The Geographically Weighted Regression (GWR) was carried out in order to reveal how
peri-urbanization is interpreted as a response variable to the spatial distribution of population
growth, the standard deviation of the average likelihood of poverty (ALP), and elevation pattern for
the DMDP context.

2.3.8. Identifying Peri-Urbanization Triggered Climate Change Vulnerabilities

Identifying Rainfall Pattern of the Study Area

The daily rainfall data from 2000 to 2018 (collected from the Bangladesh Water Development
Board) were used to derive the statistics on total annual rainfall, annual monsoon rainfall, and annual
non-monsoon rainfall. Each year’s rainfall from May to September was considered as the ‘annual
monsoon rainfall’, and the rainfall of the remaining months for each year was considered as the ‘annual
non-monsoon rainfall’.

Identification of Peri-Urban Growth Pockets Vulnerable to Flooding

The data on DMDP’s flood plain area (collected from the RAJUK) were superimposed on NTL
VIIRS data mapping of 2016 in order to find out the peri-urban growth pockets vulnerable to flooding.

Mapping the Socioeconomic Impacts of Peri-Urban Growth

The demographic data for the years 2001, 2016, and 2020, the average likelihood of poverty
(ALP) and the standard deviation of the average likelihood of poverty (ALP) for the year 2013 for the
DMDP context were all analyzed and compared with the NTL VIIRS data mapping of 2016 in order to
illustrate how the changes in the spatial distribution of demography and the standard deviation of
ALP correspond to the changes in peri-urban growth.

3. Results

3.1. Changes in Land Cover

The classified images are presented in Figure 6, while the aerial statistics of those classified images
are presented in Table 4.



Remote Sens. 2020, 12, 3938 13 of 37

Figure 6. (a) Classified DMDP image from 1989; (b) classified DMDP image from 1999; (c) classified
DMDP image from 2009; (d) classified DMDP image from 2019.
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Table 4. Aerial statistics of classified images for the DMDP area.

Land
Cover/Year

1989 1999 2009 2019 R2

(Exponential)Area (Km2) % Area (Km2) % Area (Km2) % Area (Km2) %

Bare soil 274 18 247 16 152 10 125 8 0.94
Built-up 199 13 329 22 632 41 790 52 0.97

Vegetation 659 43 636 42 435 28 320 21 0.92
Water body 38 3 40 3 47 3 42 3 0.00
Low land 359 23 277 18 262 17 252 16 0.83

Total 1529 100 1529 100 1529 100 1529 100

The results find that except for built-up areas, the remaining land cover categories declined over
time. While the highest decline of 22.18% is observed in the vegetation category, the ‘bare soil’ and
‘low-land’ categories also demonstrate a significant decline over this 30-year period. Thus, the losses in
bare soil, vegetation, and lowlands contributed altogether to the development of built-up areas over
time. Consequently, built-up areas quadrupled over time and constituted more than half (i.e., 52%) of
the DMDP area in 2019, whereas bare soil and vegetation were more than halved within this 30-year
period. Earlier studies also found a similar growth trend for bare soil, built-up, vegetation, and lowland
areas (e.g., [57–59]).

In addition, all land cover categories (except water body) demonstrate an exponential
growth/decline trend with strong coefficient of determination values of R2.

In the case of sub-district-wise net changes in bare soil, Gazipur Sadar encountered the highest
decline (i.e., 26%) in bare soil, followed by the Dhaka Metropolitan Area (DMA), and Narayanganj Sadar
by 13% and 8%, respectively, between 1989 and 2019 (Figure 7). While sub-districts predominantly lost
bare soil over time, Kaliganj presented an increase of 7% for bare soil within this 30-year period. On the
contrary, all sub-districts encountered significant losses in vegetation. As for the case of built-up areas,
all sub-districts except for Kaliganj demonstrated significant increases over time, while built-up areas
of Kaliganj declined by 4% between 1989 and 2019.

3.2. Changes in Peri-Urban Boundary

The aerial statistics of peri-urban growth has been presented in Table 5, while the peri-urban
mapping has been depicted in Figure 8. The analysis reveals that for the DMDP context, predominantly
urban areas remained nearly unchanged over time, while the major changes occurred in transitioning
predominantly rural areas into peri-urban areas (Table 5). Thus, major development within the DMDP
context predominantly took place in the form of peri-urbanization.

Table 5. Aerial statistics of peri-urban growth between 1992 and 2016.

Category Year 1992 Year 2016 % of Changes
(1992–2016)

Area (in km2) % LoU DoF Area (in km2) % LoU DoF LoU DoF

Predominantly rural 365 24 0.03 1 167 11 0.04 1 33.33% 0.00%
Peri-urban 715 47 0.3 0.98 874 58 0.4 0.94 33.33% (−)4.08%

Predominantly urban 452 29 0.94 0.07 478 31 0.96 0.12 2.13% 71.43%
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Figure 7. (a) % of net changes in bare soil; (b) % of net changes in built-up areas; (c) % of net changes in
vegetation; (d) % of net changes in low-land areas.
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Figure 8. (a) Peri-urban mapping of 1992; (b) peri-urban mapping of 2016.

The level of urbanization within the predominantly urban areas category was 0.94 and 0.96 in
1992 and 2016, respectively. Thus, predominantly urban areas had undergone the highest level of
urbanization within these 24 years (1992–2016), followed by peri-urban areas and predominantly rural
areas. Nevertheless, in terms of the level of urbanization, predominantly urban areas demonstrated an
increase of 2.13% only, which resulted in an increase of 71.43% in the degree of fuzziness in 2016 from
the base year estimate of 1992. Such a finding reveals that along with the pace of urbanization, a less
articulated pattern of urban land use practices becomes more evident.

In addition, the level of urbanization within the predominantly rural areas category demonstrates
the same thing, while the degree of fuzziness within this zone is 1.00 in 1992 and 2016, meaning the
land use practices embraced an unclear pattern in distinguishing whether the areas are predominantly
rural or urban.

Furthermore, predominantly rural areas and peri-urban areas both demonstrated an increase of
33.33% in the level of urbanization in 2016. However, while unquestionably rural areas demonstrated
persistence in encountering the highest degree of fuzziness in 1992 and 2016, peri-urban areas showed
a slight decline of 4.08% in 2016, implying a nominal improvement in embracing articulated land use
practices within peri-urban areas.

In the case of the sub-district-wise level of urbanization and degree of fuzziness, with the
correlation coefficients of (-)0.97 and (-)0.95, respectively, for the years 1992 and 2016, the result reveals
that the degree of fuzziness is inversely correlated to the level of urbanization, with Bandar being an
exception (Figure 9). The Bandar sub-district encountered the highest increase in the rate of the level of
urbanization (i.e., 277%) and experienced a reduction in the degree of fuzziness, from 0.93 to 0.65 in
2016. Such a finding implies that scattered urban development in Bandar has been further consolidated
through increased urbanization, resulting in a decrease in the degree of fuzziness thereafter. The Dhaka
Metropolitan Area (DMA), and Narayanganj Sadar continued the higher level of urbanization both in
1992 and 2016, and hence scored the lowest in terms of the degree of fuzziness.
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Figure 9. (a) Sub-district-wise level of urbanization (LoU) and degree of fuzziness (DoF) statistics for
1992; (b) sub-district-wise level of urbanization (LoU) and degree of fuzziness (DoF) statistics for 2016.

The remaining sub-districts underwent less urbanization and encountered more fuzziness,
meaning that an intensified unarticulated peri-urbanization predominantly took place within these
(remaining) sub-districts.

3.3. Validation of Peri-Urban Mapping

3.3.1. Ground-Truthing of Peri-Urban Mapping

The spatial distribution of the ground-truthing points generated through the stratified random
sampling technique is presented in Figure 10, while the confusion matrix of this ground-truthing
exercise is given in Table 6. With a Kappa coefficient of 0.75, the ground-truthing exercise yields an
overall accuracy of 86%.
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Figure 10. Spatial distribution of ground-truthing points on NTL VIIRS data mapping of 2016 for:
(a) predominantly rural areas; (b) peri-urban areas; (c) predominantly urban areas.

Table 6. Confusion matrix of NTL VIIRS data mapping of 2016.

Category Predominantly
Rural Peri-Urban Predominantly

Urban Total Producer’s
Accuracy

User’s
Accuracy

Predominantly rural 30 4 0 34 55.56% 88.24%
Peri-Urban 24 147 1 172 89.09% 85.47%

Predominantly urban 0 14 80 94 98.77% 85.11%
Total 54 165 81 300

Overall Accuracy 86%
Kappa Coefficient 0.75

3.3.2. Consistency of Peri-urban Expansions with the Proposed Plan Documents

The City Region Development Plan (CRDP) proposed land use zone of 2015–2035 was
superimposed over the NTL VIIRS data mapping of 2016 in order to cross-check how the adapted
peri-urban mapping approach fits with the proposed land use zoning for the DMDP area.

The CRDP’s 2015–2035 proposed land use zones comprise eight broad land use categories
(Figure 11). The analysis reveals that the mixed-use zone (55%) and agricultural zone (29%) are the
two most dominant proposed land use zones in the DMDP area, which altogether account for 84% of
the DMDP’s area coverage (Table 7).

Table 7. Aerial statistics of the proposed land use zone (derived from the CRDP 2015–2035 [60]).

Proposed Land
Use Zoning

Predominantly Rural Peri-Urban Predominantly Urban
Total Area
(in km2)

Total
%Area

(in Km2) % Area
(in Km2) % Area

(in Km2) %

Agricultural Zone 86.36 5.81 325.23 21.87 19.46 1.31 431.05 29
Forest Area 4.71 0.32 14.42 0.97 0.08 0.01 19.21 1

Heavy Industrial Zone 0.21 0.01 6.60 0.44 23.11 1.55 29.93 2
Institutional Zone 0.41 0.03 19.81 1.33 38.88 2.61 59.10 4
Mixed Use Zone 58.66 3.94 417.93 28.10 335.67 22.57 812.26 55

Open Space 1.46 0.10 4.72 0.32 7.00 0.47 13.18 1
Transport and

Communication 0.94 0.06 7.47 0.50 14.77 0.99 23.18 2

Waterbody 7.40 0.50 56.17 3.78 35.60 2.39 99.16 7
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Figure 11. Spatial distribution of CRDP’s 2015–2035 proposed land use zones [60].
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According to the NTL VIIRS data mapping of 2016, predominantly rural areas comprise 11% of the
DMDP area, out of which the CRDP’s 2015–2035 proposed agricultural zone and mixed use (i.e., a blend
of residential, commercial, and general industrial areas) zone altogether comprise around 10%.

Similarly, in an aggregate, peri-urban areas comprise around 58% of the DMDP’s area, whereas
mixed use zones (28.10%) and agricultural zones (21.87%) altogether comprise around 50% of the
DMDP’s peri-urban area. Thus, peri-urban areas are proposed to accommodate around three fourths
of the DMDP’s proposed agricultural areas and more than half of the proposed mixed-use zone.
Predominantly urban areas are proposed to be dominated by mixed use zones which comprise around
two fifths of the proposed mixed-use zone areas.

Among the other proposed land use zones, institutional zones comprise around 4% of the DMDP’s
area, and comprise 2.61% and 1.33% of the predominantly urban and peri-urban areas, respectively.
In addition, more than three fourths of the DMDP’s proposed heavy industrial zone is located in
predominantly urban areas. Meanwhile, among the total proposed forest areas, nearly three fourths of
the proposed forest zones are located in peri-urban areas and the remaining portion was proposed to
be accommodated by predominantly rural areas.

The analysis reveals that the proposed forest areas are observed as having the lowest values
for LoU and the highest values for DoF (Figure 12). Contrariwise, the proposed heavy industrial
zone appeared to be the most urbanized in terms of LoU, and hence had the lowest values for DoF.
Apparently, heavy industrial zones are proposed based on strict policy control, and hence spontaneous
development of these areas are not possible, resulting in an articulated land use pattern of these areas.
Meanwhile, forested areas are spontaneous natural growth zones, and hence were observed as having
the highest DoF.

Figure 12. The level of urbanization (LoU) and degree of fuzziness (DoF) under the CRDP’s 2015–2035
prosed land use zones.

In addition, in the case of each subdistrict, the higher the LoU, lower the level of DoF in each
proposed land use zone is (Figure 13). The Kaliganj sub-district, with the lowest LoU and an absolute
DoF value of 1.0, provokes an immediate land use intervention by the city authorities (Figure 13d).
Other sub-districts with higher DoF include Gazipur, Keraniganj, Rupganj, Sonargaon, and Savar.
These areas are predominantly located in peri-urban areas, meaning that peri-urban growth appears to
be dominated by unarticulated land use patterns.
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Figure 13. Cont.
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Figure 13. The level of urbanization (LoU) and degree of fuzziness (DoF) for CRDP’s 2015–2035
proposed land use zones: (a) Bandar; (b) Dhaka Metropolitan Area (DMA); (c) Gazipur Sadar;
(d) Kaliganj; (e) Keraniganj; (f) Narayanganj Sadar; (g) Rupganj; (h) Savar; and (i) Sonargaon.

Such general findings are also evident in the sub-district-wise LoU and DoF calculations that were
derived from the NTL VIIRS data mapping of 2016 (Figure 9). Thus, it can be deduced that the proposed
NTL data mapping exercise of 2016 yields substantive outcomes in distinguishing predominantly rural,
peri-urban, and predominantly urban areas.
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3.4. Factors Affecting the Spatial Distribution of Peri-Urbanization

3.4.1. Identification of Statistically Significant Hot Spots for Interpreting Peri-Urbanization

Hotspots of Population Growth

In the DMDP area, a highly statistically significant (Moran’s Index: 0.69, p-value = 0, and hence
the null hypothesis ‘spatial distribution of the population is normally distributed’ was rejected) cluster
pattern of population growth is evident. The hot spots of population increase are found predominantly
in the Gazipur Sadar areas (Figure 14a), which bolsters the earlier findings on Gazipur Sadar’s
supremacy in attainting the highest rate of population growth. However, Savar areas are prevalent
with both hot spots and cold spots. Indeed, the northern part of Savar in proximity to the Gazipur
Sadar areas is observed as having hot spots, whereas the southern part of Savar in proximity to the
Dhaka Metropolitan area is found to have the cold spots for population growth. As Savar is found to
have both cold and hot spots of population growth, the aggregate growth rate of population in Savar
does not appear to be higher than its contemporaries, although the earlier findings claim that Savar is
the most peri-urbanized sub-district for this study.

Hotspots Mapping of the Standard Deviation of the Average Likelihood of Poverty

The hotspots mapping exercise on the standard deviation of the average likelihood of poverty
(ALP) demonstrates a highly statistically significant clustering pattern (Moran’s Index = 0.78 and
p-value = 0, and hence the null hypothesis ‘spatial distribution of poverty deviation is normally
distributed’ was rejected). However, in this regard, hot spots are predominantly confined within the
Dhaka Metropolitan Area while the cold spots are predominantly observed near the eastern periphery
of the Dhaka Metropolitan Area, which enjoins Rupganj, Sonargaon, and Kaliganj sub-districts
(Figure 14b). Thus, the spatial distribution of the standard deviation of ALP hot-spot mapping exercise
does not appear to be commensurate with the hot spot mapping of the population growth pattern.

Hotspots of Elevation Pattern

A statistically significant (Moran’s Index: 0.56, p-value = 0, and hence the null hypothesis ‘spatial
distribution of elevation pattern is normally distributed’ was rejected) clustering pattern is dominant in
the spatial distribution of elevation for the DMDP area. The hot spots (i.e., areas with higher elevation)
are predominantly concentrated in the Gazipur Sadar and Savar sub-districts—i.e., the areas which
underwent the highest peri-urbanization (Figure 14c).

Hotspots of Peri-Urbanization

This study used the NTL VIIRS data mapping of 2016 in determining the spatial distribution of
hotspots for peri-urbanization (Figure 14d). The Moran’s Index was computed as (+)0.90 with a z-score
value of 54.51 and p-value of 0. Thus, the null hypothesis ‘spatial distribution of peri-urbanization
pattern is normally distributed’ was rejected, implying that the spatial distribution of the fuzzy linear
urban membership function set image of 2016 (i.e., NTL VIIRS data mapping of 2016) demonstrates a
highly significant clustering pattern.

The analysis reveals that hot spots are predominantly urban, whereas the cold spots are
predominantly rural (Figure 14d). On the contrary, the areas which are not statistically significant in
the fuzzy linear urban membership function set image of 2016 are predominantly peri-urban. Indeed,
peri-urban areas which are neither urban or rural seem to possess more fuzzy characteristics, which in
turn lead to them to be statistically insignificant.
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Figure 14. (a) Hot spot analysis of the aggregate population growth rate (APGR) mapping; (b) hot spot
analysis of the standard deviation of the average likelihood of poverty (ALP); (c) hot spot analysis of
elevation pattern derived from the SRTM global DEM data [43]; (d) Hot spot analysis of the fuzzy
linear urban membership function set image of 2016.
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3.4.2. Carrying out Geographically Weighted Regression for Interpreting Peri-Urbanization

The findings from hot spot analysis reveal that the spatial distribution of peri-urban hot spots
mapping is more linked to the corresponding distribution pattern of elevation and the growth of
population. Thus, in order to illustrate how such perceived peri-urbanization of the DMDP area varies
across space corresponding to the changes in elevation and population growth pattern, Geographically
Weighted Regression (GWR) was carried out. The adjusted R2 value of the GWR model was 0.87,
indicating that peri-urbanization is predominantly linked to higher elevation and higher population
growth rate. Meanwhile, the R2 value of the GWR model was 0.63 when peri-urbanization was
interpreted as a response variable of elevation, population growth rate, and the standard deviation
of ALP. Thus, when the standard deviation of ALP is omitted, the GWR model interpreting DMDP’s
peri-urbanization produces a better outcome, meaning that peri-urbanization does not necessarily mean
an over concentration of poverty in the city’s outskirts. Instated, such concentration is predominantly
driven by the land scarcity in the city’s core and an unleased influx of population to the capital
city Dhaka.

3.5. Identifying Peri-Urbanization Triggered Climate Change Vulnerabilities

3.5.1. Identifying Rainfall Pattern of the Study Area

The annual rainfall pattern of the DMDP area is presented in Figure 15. The analysis reveals
that from 2000 to 2018, total annual rainfall in the DMDP area ranged from 818.1 (in 2010) to 2873
mm (in 2017), with an annual average rainfall of 1824.91 mm within this 18-year period. In addition,
it was calculated that the annual average rainfall in the monsoon—which lasts from September to
May—comprised exactly 80% of the total annual rainfall within this 18-year period.

Figure 15. Rainfall pattern of the DMDP area.

Surprisingly, in 2012, the DMDP area had the lowest annual monsoon rainfall percentage of
67.72%, whereas in the following year (i.e., in the year 2013), the percentage of annual monsoon rainfall
was the highest, at 91.30%. In addition, this rainfall pattern does not follow any significant growth
trend over time. For example, although the highest annual rainfall occurred in the year 2017, annual
monsoon rain within this year was 73.41%, which is below the annual average percentage of monsoon
rainfall (i.e., 80%), whereas the highest annual rainfall in the non-monsoon period was observed
in 2017.

However, this finding does not simplify with certainty that an occurrence of more rainfall events
in the monsoon is linked with less rainfall in the non-monsoon period and vice versa, as the correlation
coefficient of the rainfall pattern between the monsoon and non-monsoon period is 0.44 (which is
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not very strong), meaning that abrupt rainfall in the DMDP area has gradually become common.
Consequently, events of frequent flooding due to heavy rainfall often occur in the DMDP area.

3.5.2. Identification of Peri-Urban Growth Pockets Vulnerable to Flooding

In general, DMDP is a flood-prone area. However, the northern part of the DMDP is in higher
elevation, and is therefore comparatively less flood-prone (Figure 16). Thus, higher population
concentration and subsequent peri-urbanization is observed in the areas with higher elevation, which
are predominantly concentrated in the Gazipur Sadar and Savar areas. The analysis reveals that around
44% of total peri-urban areas are located within the flood plain area, while such percentage distribution
for predominantly rural and urban areas is 35% and 33%, respectively, meaning that peri-urban areas
are most vulnerable to frequent flooding. Such findings are relevant to Dewan et al.’s [61] study, who
claimed that the DMDP’s peri-urban areas are moderately to highly vulnerable to annual flooding.

Figure 16. DMDP’s flood plain area (FPA) (derived from CRDP [60]) superimposed on the VIIRTS NTL
data mapping of 2016.
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3.5.3. Mapping Socioeconomic Impacts of Peri-Urban Growth

Changes in Demography

The spatial distribution of population predominantly is concentrated within the Dhaka
Metropolitan Area (DMA), Narayanganj Sadar, and along the Dhaka-Mymensingh and
Tangail-Joydevpur Highways of the Gazipur Sadar area (Figure 17). Apparently, the spatial changes in
demography between 2001 and 2016 are quite conspicuous, whereas such changes between 2016 and
2020 appear to be quite similar.

Figure 17. (a) Spatial distribution of 2001 population; (b) spatial distribution of 2016 population; (c)
spatial distribution of 2020 population (derived from WorldPop and CIESIN [45]).

In addition, the percentage distribution of population between predominantly rural areas,
peri-urban areas, and predominantly urban areas remained almost equal over time, whereas the
density of population nearly doubled within this 19-year period (Table 8). Thus, this study finds a
perpetual increase in growth rate of population over time for the DMDP context. Although the density
of population in DMDP’s predominantly urban areas is unparalleled compared to the rest of the world,
the population density of even DMDP’s predominantly rural areas is much higher than some of the
urban areas’ population density of the developed world. For example, a country like Australia, which
comprises more than 50 times larger area coverage than Bangladesh, has an urban area population
density of 903 persons/km2 [41].

Table 8. Distribution of population between predominantly rural areas, peri-urban areas, and
predominantly urban areas based on NTL VIIRS 2016 data mapping.

Category Area
(in km2)

Year 201 Year 2016 Year 2020

Population % Density
(in Km2) Population % Density

(in Km2) Population % Density
(in Km2)

Predominantly
rural 167 148,583 1 890 246,185 1 1474 269,277 1 1612

Peri-urban 874 2,204,142 21 2522 3,512,173 20 4019 3,999,344 21 4576
Predominantly

urban 478 8,073,684 77 16,891 13,436,218 78 28,109 15,136,359 78 31,666

Total 1519 10,426,409 100 6864 17,194,576 100 11,320 19,404,979 100 12,775
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Nevertheless, the population density of the Dhaka City Corporation (DCC) area is 52,000
persons/km2 [40], whereas the estimated 2020 population density for predominantly urban areas is
31,666. Indeed, predominantly urban areas of 2016 cover an area of 478 km2, whereas the area coverage
of DCC is 134 km2. Thus, NTL VIIRS 2016 data estimated that predominantly urban areas are more
than 3.5 times larger than the DCC’s area coverage. Hence, such perceived lower population density in
predominantly urban areas is likely, as DMDP’s predominantly urban areas extend far beyond the
jurisdiction of the DCC boundary.

Population Densification and Peri-Urban Growth

In general, predominantly urban areas have a relatively lower growth of population, while
predominantly rural areas and peri-urban areas have higher growth rates of population.

Figure 18a illustrates the spatial changes in peri-urban mapping between 1992 and 2016, while
the aerial statistics of these changes are presented in Figure 18b. The analysis reveals that the highest
percentage distribution lies in the peri-urban areas category, which covers more than one-third of
the DMDP’s area. Surprisingly, in terms of spatial changes between the areas of predominantly
rural, peri-urban, and predominantly urban, around two thirds (i.e., 63%) of the DMDP area
demonstrated persistence over time. However, the third and fourth highest categories are the
transition of predominantly rural areas to peri-urban areas and the transition of peri-urban areas to
predominantly urban areas, constituting 18.25% and 7.08% of the area, respectively.

In terms of aggregate population growth rate that occurred between 2001 and 2020, the analyses
reveal that persistent predominantly rural areas encountered the highest pressure of population
growth by around 135%—i.e., 7.10% per year. Among the areas which remained persistent over time,
predominantly urban areas exhibited the lowest population growth rate. The second highest growth
rate of population was observed in the ‘peri-urban to predominantly urban’ areas category by 125.91%,
implying a sequential transition of ‘predominantly rural areas to peri-urban areas’ and the subsequent
transition of ‘peri-urban areas to predominantly urban’ areas.

Nevertheless, the areas demonstrating the transition of peri-urban to predominantly rural shows
the third highest concentration of population growth by 113.05%, which predominantly occurred near
the persistent predominantly rural areas of Kaliganj sub-district. Such a finding, in fact, is not unlikely
as these persistent predominantly rural areas conglomerate the highest percentage of population
growth between 2001 and 2020.

Surprisingly, an unusual transition titled ‘predominantly urban to predominantly rural’ is observed
in the Narayanganj Sadar area which accounted for a negative growth rate of population. These areas
of negative population growth are located in the highly flood prone area of the Dhaleshwari River’s
catchment, and hence frequent flooding displaces many people from this specific chunk of landscapes.

In terms of the sub-district-wise population growth rate, the Gazipur Sadar area encountered the
highest rate of population increase with a larger margin than its contemporaries (Figure 18c). The
areas—i.e., Kaliganj, Keraniganj, Rupganj, which are predominantly peri-urban or predominantly rural
in type—have nearly the same rate of population growth in dynamic and persistent areas. Meanwhile,
the two most urbanized areas—i.e., the Dhaka Metropolitan Area (DMA), and Narayanganj Sadar
area—are observed as having the lowest rate of population increase. In addition, the population
growth difference between persistent and dynamic areas is also found to be relatively higher in the
Narayanganj Sadar and Dhaka Metropolitan Areas. However, the population growth rate in dynamic
areas is relatively lower in each sub-district compared to the corresponding population growth rate of
persistent areas, with Savar being an exception. The Savar sub-district possesses the largest chunk of
landscapes which have been converted into peri-urban areas from predominantly rural, implying that
Savar is the most peri-urbanized sub-district of this study. Such findings reveal that peri-urbanization
is more linked to population increase in dynamic areas. Thus, while the Dhaka Metropolitan Area and
Narayanganj Sadar area have extremely limited scope for peri-urbanization, the nearby sub-districts
are potential areas for such peri-urban expansions.
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Figure 18. (a) Map showing the spatial distribution of predominantly rural (PRURAL), peri-urban
(PU), and predominantly urban (PURBAN) areas; (b) table showing percentage distribution in the
changes of PRURAL, PU, and PURBAN areas and corresponding changes in the aggregate population
growth rate (APGR) between 2001 and 2020; (c) sub-district-wise aggregate population growth rate
(APGR) between 2001 and 2020.

Poverty and Peri-Urban Growth

The average likelihood of poverty (ALP) is more dominant in the Kaliganj sub-district and trickles
down to its nearby sub-districts of the Gazipur Sadar and Rupganj (Figure 19a), whereas such poverty
concentration is relatively lower in the Dhaka Metropolitan Area, Narayanganj Sadar, and Bandar
areas. The above-mentioned Dhaka Metropolitan Area, Narayanganj Sadar, and Bandar areas are also
observed as having higher population growth difference between dynamic areas and persistent areas,
meaning that the influx of poor migrants is predominantly confined to the dynamic land parcels of
Kaliganj and its nearby areas.
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Figure 19. (a) Spatial distribution of the average likelihood of poverty (ALP) (i.e., the average probability
of living on less than $2.50/day) of 2013 [62]; (b) slum settlement areas (derived from Gruebner et
al. [63]) superimposed on the standard deviation (Std. Dev.) of the average likelihood of poverty (ALP)
mapping of 2013 [62]; (c) sub-district-wise spatial distribution of the average likelihood of poverty
(ALP); (d) sub-district-wise spatial distribution of the standard deviation (Std. Dev.) of the average
likelihood of poverty (ALP).

However, the standard deviation mapping of the average likelihood of poverty (ALP) depicts
that the DMDP area is inflicted with higher variation in poverty concentration, that ranges from 2.8 to
6.5 (Figure 19b). Although a higher concentration of poverty is found in the Kaliganj, Rupganj and
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Gazipur Sadar areas, the Dhaka Metropolitan Area is observed with the highest deviation in the average
likelihood of poverty (ALP), meaning that inequalities in social stratification within predominantly
urban areas are comparatively higher.

Most parts of the Dhaka Metropolitan Area and Narayanganj Sadar area are already predominantly
urbanized, while, through increasing peri-urbanization, the Savar sub-district is in the queue to be
predominantly urbanized shortly. Consequently, the Dhaka Metropolitan Area, Narayanganj Sadar
area, and Savar are derived as the sub-districts of higher poverty deviation (Figure 19d). Thus,
the deviation in poverty concentration appears to be correlated with urbanization. For example, the
Dhaka Metropolitan Area, as the most urbanized, ended up with the highest poverty deviation. Such a
deviation in poverty intensification can further be illustrated by the abundance of slum settlements
which are scattered throughout the DMDP area (Figure 19b).

4. Discussion

4.1. Factors Affecting Peri-Urbanization

While the horizontal expansion of the DMDP area is remarkably constrained by the unavailability
of flood-free landscapes, the northern part of the DMDP area encountered the highest growth rate of
population and subsequent peri-urbanization pressure. The DMDP’s northern periphery, in general,
lies at a higher elevation and is therefore naturally free from seasonal flooding. Thus, the findings reveal
that peri-urbanization for the DMDP context is interpreted as an interaction space of elevation and
population growth rate. Consequently, in-migration of the population to the capital city Dhaka plays a
significant role for this perceived peri-urbanization. Yet, such an in-migration pattern is profoundly
interlinked to the unique socio-economic settings of this country.

For example, the Dhaka’s share of the national gross domestic product (GDP) is USD 162
billion (i.e., 40%) [64], implying a heavily inclined concentration of economic activities towards
the capital city Dhaka. Consequently, Dhaka is disproportionately equipped with nearly one third
(i.e., 31.8%) of the country’s total employment [21]. In general, Bangladesh’s economic base is
predominantly agricultural (i.e., 49%), and 45% of the country’s labor force primarily relies on
agriculture for employment [65]. In addition, 84% of the rural population directly or indirectly depends
on agriculture [66]. The disproportionate growth of agriculture-based industries coupled with the
adaption of more efficient farming technologies triggers an exodus of surplus agricultural laborers to
the capital city Dhaka [60]. Consequently, 63% of Dhaka’s population growth is due to the rural–urban
migration [67].

The majority of the migrants predominantly rely on the informal sector. Subsequently, the informal
sector accounts for 84.30% of Dhaka’s total employed population [21]. Thus, anticipating the social
changes with response to economic growth becomes more difficult. Consequently, the task of addressing
actual spatial growth pattern and accommodating informal economics become highly challenging.

In addition, Dhaka’s per capita GDP is around 3 times higher than the national average. If Dhaka
were an independent nation, Dhaka’s gross GDP individually would stand as the 50th largest economy
in the world. Consequently, excessive agglomeration of the capital city-centered development paradigm
makes the DMDP’s peri-urban growth highly unpredictable and challenging. Thus, DMDP’s physical
growth predominantly implies a more densified peri-urban growth which agglomerates overestimated
population with inadequate infrastructural supports. The scarcity of resources further hinders the timely
upgrading of supporting infrastructures and provisions—e.g., land use–transport integration [68,69],
utilities, and employment. This way, policymakers and planners are severely obstructed to enhance a
planned development in their peripheries.

4.2. Implications for Growth Management and Natural Hazards

Bangladesh is one of the most vulnerable countries to climate change’s impact. Such impacts
are already evident, as climate change-induced flooding—e.g., river flooding and storm water
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flooding—often strikes in the DMDP area [25]. Most parts of the predominantly urban areas
(i.e., around 67%) are considered to be free from river flooding because of the proposed protective
embankments, which surround them [60]. Nevertheless, the construction of the DMDP Urban Area
Plan (1995–2005) proposed an eastern embankment which as yet remains incomplete. In addition, the
portion of predominantly urban areas—that is considered to be flood-free—severely lack an efficient
drainage system [70]. The analysis reveals that the DMDP’s rainfall pattern from 2000 to 2018 is rather
abrupt. Thus, heavy rainfall often happens, resulting in frequent storm water flooding during each
year irrespective of the monsoon. Such a finding is also evident in other studies [25].

Nevertheless, due to the proximity to the nearby river, the remaining 23% of predominantly
urban areas seem to be highly vulnerable to river flooding. The low-income people predominantly
live in slums, and the spatial distribution of slums is scattered throughout predominantly urban
areas. In addition, 80% of these slums are built on privately owned land and hence pose considerable
institutional challenges in providing the basic urban facilities [30]—e.g., water supply, sanitation,
sewerage, drainage, and electricity—in these slum-inflicted areas. On that very point, Baker [30]
estimated that slum areas within a proximity of 50 m to nearby rivers accommodate around 76,000
households those are at high risk of being frequently river flooded. Such river flooding usually occurs
with a return period of every 10 to 40 years [71].

However, despite the geographical limitations to support further physical growth, Dhaka’s
unleased population growth is not hindered by geographical limitations at all. For example, the analysis
reveals that within these 19 years (2001–2020), the DMDP’s population has increased at a rate of
0.5 million/year. Although the urban population as yet comprises less than 37.41% of the nation’s
population [72], such a portion reaches nearly 80% for the DMDP context. Nevertheless, the reported
estimation of DMDP’s annual population growth rate is 0.10 million/year higher than the earlier
estimation by the World Bank [32]. Nonetheless, from 2001 to 2020, the DMDP’s population has
increased at an annual growth rate of 4.53%. Such perceived growth rate in the population is much
higher than the national average. For example, between 2000 and 2019, the national annual population
growth rate was derived as 1.5% [73].

In terms of population size, Dhaka has secured the 19th position globally among the top 20
megacities, but stands first with a large margin in terms of the urban population density of 33,878
persons/km2 [41]. Among the top 20 megacities, only six have constantly experienced a population
growth rate of more than 3% over the last 20 years [74]. Hence, the reported rate of DMDP’s population
growth is much higher than its contemporaries.

Consequently, due to an unabated growth in the DMDP’s population, higher population
concentration is also observed in the north-eastern periphery of the DMDP area (i.e., Rupganj
and Kaliganj), which are predominantly flood-prone. In addition, these two areas are the hot spots
of poverty with a lower standard deviation in the average likelihood of poverty index, meaning that
these two areas predominantly accommodate the poorest portion of the DMDP’s area. Thus, it can
be inferred that poverty is forcing the poor migrants to live in these flood-prone areas. This way, the
majority of the in-migrants, which also comprise climate migrants [75], are redundantly exposed to this
climate change-induced frequent flooding. Such a finding poses a grave concern and brings forth the
issue of climate justice for further consideration. On that very point, Ahsan [76] urged the adoption of
area-specific growth policies in securing the basic rights for climate migrants of Bangladesh. Similarly,
developing sound climate change mitigation policies is deemed critical to minimize climate migrant
numbers across the globe [77].

Furthermore, this unleashed population influx to the capital city Dhaka worsens the prevailing
water scarcity at large. For example, in 2005, the Dhaka Water Supply and Sanitation Authority
(DWASA) was able to manage 1.6 mm3/day groundwater extraction at maximum against the minimum
demand of 2.1 mm3/day [78]. In addition, since 1986, the DMDP’s groundwater table has been
depleted at a rate of 2 m/year [78]. While the DMDP area is suffering from evident water scarcity, the
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gradual groundwater depletion coupled with the unprecedented population growth further exacerbates
this shortfall.

Nonetheless, due to the prevalence of wetlands, small water bodies, canals, and rivers,
the groundwater level is relatively higher in the peripheral areas than the central part of the DMDP
area. Unfortunately, peri-urbanization is predominantly taking place in the northern and north-eastern
peripheries of the DMDP area, which are the hotspots of industrial clusters and agglomerate more
than 2000 ready-made garments (RMG) industries [79]. This RMG sector individually has contributed
to 11.17% of the total GDP and makes Bangladesh the second-largest global exporter in the RMG
sector [31]. The economic growth of this country is enormously linked to the development of this RMG
sector [80]. Hence, the country’s RMG sector possesses great potential to grow further.

Nevertheless, this RMG sector heavily relies on groundwater extraction, because surface water is
not available throughout the year. Thus, over-dependence on groundwater extraction coupled with
the increased peri-urbanization pose significant environmental threats to these peri-urban growth
pockets including land subsidence, increased earthquake vulnerability, and ecosystem degradation.

5. Conclusions

Although managing urban growth based on a demarcated peri-urban growth boundary as yet
remains rarely practiced, explicitly defined peri-urban growth pockets appear to be a facilitating tool
for promoting more rationalized land use practices in the periphery. Particularly in the context of
developing countries, where rampant peri-urbanization frequently occurs, quantifying the magnitude
and degree of fuzziness of peri-urban land parcels facilitates policymakers in identifying the areas
with more urbanities and higher transition potentials. This way, policymakers and planners will be
well equipped in dealing with the dual characteristics (i.e., urban or rural) of peri-urban areas and
resultant growth directions, and thereby to identify priority areas for immediate intervention.

Heikkila et al. [81] first recognized the fuzzy characteristics of peri-urban areas, and statistically
quantified the level of urbanization and degree of fuzziness in detecting the urban growth pattern of
Ningbo, China by using Landsat data. However, they did not map the spatial distribution of peri-urban
areas at all, whereas this paper demarcated the spatial distribution of peri-urban growth pockets by
unveiling the fuzzy characteristics of peri-urban areas. In doing so, this study developed fuzzy linear
urban membership function set images using NTL data.

According to the findings of Mortoja et al.’s [20] study, few studies used NTL data for peri-urban
demarcation (e.g., [82–85]). While all the studies as mentioned above used the crisp values of NTL data,
none of the studies, to date, investigated the potential of NTL data in unveiling the fuzzy characteristics
of peri-urban areas. In addition, the conventional methodological approaches—which utilized the crisp
values of NTL data for peri-urban demarcation—are claimed to be suitable to demarcate peri-urban
areas at the national/global level only. Meanwhile, the ground-truthing outcome on NTL VIIRS data
mapping of 2016 implies that the methodological approach reported in this study also appears to be
a good fit at the regional level. Thus, quantifying the fuzzy characteristics of peri-urban areas and
translating those findings into demarcating peri-urban growth pockets using NTL data provides a
strong theoretical basis for this study.

Nevertheless, this study did not test other peri-urban demarcation approaches. Hence, how the
methodological approach reported in this study prevails over others in terms of accuracy cannot be
determined. However, the adapted methodological approach provides an easy way of demarcating
peri-urban areas by using the readily available datasets at hand, which in turn facilitates prompt
executions of peri-urban growth decisions.

In addition, this study explores how peri-urbanization is interpreted as an interaction space of
population growth, poverty, and increased vulnerability to natural hazards, particularly flooding.
In this way, the research demonstrates the problem of rampant peri-urbanization and subsequent
fragilities—e.g., social and poverty problems, natural hazards, affecting large cities. Thus, the results
are of interest to a wide audience and are not limited to the remote sensing community.
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