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Abstract: The development of artificial intelligence technology has prompted an immense amount
of researches on improving the performance of change detection approaches. Existing deep
learning-driven methods generally regard changes as a specific type of land cover, and try to identify
them relying on the powerful expression capabilities of neural networks. However, in practice,
different types of land cover changes are generally influenced by environmental factors at different
degrees. Furthermore, seasonal variation-induced spectral differences seriously interfere with those of
real changes in different land cover types. All these problems pose great challenges for season-varying
change detection because the real and seasonal variation-induced changes are technically difficult
to separate by a single end-to-end model. In this paper, by embedding a convolutional long
short-term memory (ConvLSTM) network into a conditional generative adversarial network (cGAN),
we develop a novel method, named progressive domain adaptation (PDA), for change detection using
season-varying remote sensing images. In our idea, two cascaded modules, progressive translation
and group discrimination, are introduced to progressively translate pre-event images from their own
domain to the post-event one, where their seasonal features are consistent and their intrinsic land
cover distribution features are retained. By training this hybrid multi-model framework with certain
reference change maps, the seasonal variation-induced changes between paired images are effectively
suppressed, and meanwhile the natural and human activity-caused changes are greatly emphasized.
Extensive experiments on two types of season-varying change detection datasets and a comparison
with other state-of-the-art methods verify the effectiveness and competitiveness of our proposed PDA.

Keywords: domain adaptation; change detection; remote sensing images; convolutional long
short-term memory; generative adversarial network; image-to-image translation

1. Introduction

Change detection is one of the critical research branches in the field of remote sensing. It is
concerned with the detection and quantitative analyses of the changes in land cover types from
bi-temporal or multi-temporal remote sensing images [1-3]. Inrecent years, change detection techniques
have been extensively utilized in various applications, such as disaster assessment [4], land cover
change mapping [5,6], resource and environmental monitoring [7-9], and urban planning [10,11].
The emergence of high spatial and high spectral resolution remote sensing imagery provides richer
information of the Earth surface and offers the opportunities to promote the performance of change
detection methods. On the other hand, particular challenges arise in better utilizing the abundance of
spatial and spectral information in the current change detection tasks [12].
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Recently, the development of artificial intelligence has provided new ideas for remote sensing
image processing applications. With the powerful capability in terms of implicit feature expression,
numerous neural networks have been applied for change detection tasks and witnessed the impressive
performance. Following a two-step workflow, the current change detection methods can be generally
seen as composed of two steps: feature extraction and decision making. Feature extraction intends to
learn the discriminative features of changes from co-registered images, and decision making aims to
identify the changed regions by analyzing these features. According to different feature extraction
models, current deep learning-driven methods can be broadly classified into three classes: original
image-based, image arithmetical-based, and image transformation-based, respectively.

Original image-based methods generally regard change detection as a specific type of semantic
classification task and attempt to separate the changed and unchanged regions directly from paired
images or their simple concatenation, merely with an end-to-end semantic labeling network. Lyu et al.
(2016) [13] proposed a transferable change detection method by applying a recurrent neural network
(RNN) with long short-term memory (LSTM) [14] to detect both binary and multi-class land cover
changes. Hou et al. (2020) [15] integrated a W-Net model and a generative adversarial network (GAN)
to build a CDGAN for change detection tasks, where the W-Net model was specifically designed
to adapt to the characteristics of bi-temporal images. Gao et al. (2019) [16] designed a channel
weighting-based deep cascade network to detect changes in synthetic aperture radar (SAR) images.
Wang et al. (2019) [17] exploited a convolutional neural network (CNN) [18] to build a deep neural
network to achieve sub-pixel level change detection results from hyperspectral imagery. These methods
are advantageous at their direct and straightforward feature extraction model structures. However,
changes in different land cover categories may have completely diverse characteristics, thus detecting
them with an end-to-end semantic labeling network is theoretically inappropriate.

Image arithmetical-based methods generally first calculate the image differencing [19], image
rationing [20], image regression [21], or analyze the change vector (CVA) [22], then apply a network to
produce pixel-level change maps with the above image features. Gao et al. (2016) [23] introduced a
PCANet and combined it with conventional methods to recognize the changed pixels in multi-temporal
SAR images. Taking difference images as prior knowledge for sampling the training samples, Gong et al.
(2017) [24] applied a GAN [25] to generate the change maps. Gong et al. (2017) [26] integrated a stacked
autoencoder (SAE) [27], a CNN model, and the fuzzy c-means algorithms to learn the robust features
of land cover changes from multi-temporal SAR images. Taking the difference images as auxiliary
data, Yang et al. (2019) [28] designed a transferred deep learning-based framework to detect changes
without references. Remarkably, these methods are specifically intended for SAR images, which are
insensitive to negative influences of atmospheric and illumination conditions. However, for optical
remote sensing images, the pixel-level difference images practically involve considerable noise and
redundancy. Meanwhile, they may have lost the intrinsic land cover information. Therefore, directly
applying these methods in optical images may lead to unsatisfactory performance.

Image transformation-based methods generally first translate the spectral combinations of the
pre-event images to those of the post-event images, or translate them to a third feature space with a
network, then identify the changed regions by comparing the paired translated images. Zhang et al.
(2016) [29] proposed a hierarchical change detection framework in which a deep neural network was
exploited to differentiate the unchanged regions from the changed regions. Zhan et al. (2017) [30]
introduced a deep Siamese convolutional network (DSCN) to detect changes with a contrastive loss.
Inspired by the Siamese network, Liu et al. (2018) [31] developed a symmetric deep convolutional
network to eliminate the discrepancies between the optical image domain and SAR image domain, and
successfully detected the changes based on heterogeneous bi-temporal imagery. Integrating the ideas
of dual learning and Siamese network, Fang et al. (2019) [32] introduced a dual learning-based Siamese
framework (DLSF) to simultaneously achieve the cross-domain translation between paired images
and the detection of changed regions in two domains. Zhan et al. (2018) [33] introduced an iterative
feature mapping network to transform the high-level features of multi-source images into a common
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high-dimensional feature space, aiming to shrink the difference of unchanged regions and enlarge
that of changed ones. Niu et al. (2019) [34] first proposed a GAN-based network to translate optical
images with the paired SAR images as targets, then introduced an approximation network to highlight
changes in heterogeneous images. Ma et al. (2019) [35] first adopted a pixel-level mapping method to
transform paired images into each other’s feature space, then designed a capsule network to recognize
the changed pixels. These methods are able to guarantee the distribution consistencies of land cover
categories in the paired unchanged regions, by eliminating the domain differences of bi-temporal
remote sensing images. Transformation models are the most optimal for change detection in optical or
multi-source remote sensing images, because they can effectively process various high-dimensional
data even with diverse patterns.

In general, current change detection methods are designed based on the assumption that the
appearances of the paired unchanged regions should be similar, and distinctive discrepancies should
exist only in real changed regions. Nevertheless, for season-varying remote sensing images, due to
different imaging sensors, capture times, and atmospheric and illumination conditions, it is tough
to differentiate the seasonal spectral variation from the real changes, leading to entirely different
appearances, no matter in the changed or unchanged regions. On the other hand, the changes that
occur on diverse land cover categories may appear different to some extent, making it difficult to
distinguish real changes from other season-induced changes using an end-to-end model. Therefore,
it is quite essential to perform modeling for the seasonal variation of the pre- and post-event images,
and facilitate eliminating the season-induced changes and highlighting the real changes. Along with
this way, land cover features are first distilled from the pre-event images, and then they are composed
with similar seasonal style features as the post-event images. During this process, the appearances of
the unchanged regions in the post-event images are able to act as reliable references for those in the
registered pre-event ones. At this point, it is easy to separate real changed regions from not only the
unchanged ones, but also other season-induced changed ones, by directly comparing the translated
and post-event images, or using a simple change decision making strategy.

According to the above analyses, in this research, we embed a convolutional LSTM (ConvLSTM)
network in a cGAN, and introduce a novel image transformation-based method, named progressive
domain adaptation (PDA), for change detection using season-varying remote sensing images. And the
framework of our idea is composed of two cascaded modules, which are progressive translation and
group discrimination, respectively. The former aims to progressively translate pre-event images from
their own domain to the post-event one and maintaining the essential characteristics of land cover types.
Meanwhile, the latter aims to evaluate the seasonal domain consistency of two groups of translated
and post-event images. The proposed hybrid multi-model framework is trained to implement the
cross-season translation in a one-sided fashion. The spectral variation caused by seasonal changes
can be effectively suppressed, and the distinct real changes between paired images are highlighted.
The major contributions of our research are summarized as follows:

e  We develop a novel image transformation-based method that accommodated the specific demand
for change detection tasks using season-varying remote sensing images. In this method, we
emphasize the distribution consistencies of land cover categories in the paired unchanged regions.

e  We propose a hybrid multi-model framework integrating strategies of ConvLSTM network and
cGAN model. To the best of our knowledge, there has been no research into combing these two
networks for change detection and especially for season-varying change detection

e  We adopt a semantic stabilization strategy specifically for the original and translated images, to
guarantee the distribution consistencies of land cover categories between them.

e  Observing multiple constraints, we design a new full objective comprise of domain adversarial,
cross-consistency, self-consistency, and identity losses to enforce satisfactory change detection results.

The structure of this paper is arranged as follows. In the next section, a brief description of the
research background is presented. In Section 3, the methodology and implementation details of the
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proposed PDA are introduced. In Section 4, the experimental results, including domain adaptation
and change detection, are discussed. Relative analyses to verify the effectiveness and superiority of
our models are provided in Section 5. We end this paper with a summary and concluding remarks.

2. Background

2.1. Convolutional Long Short-Term Memory Network

As a specific RNN structure, LSTM is mainly innovative at the memory cell, which essentially
acts as an accumulator of the state information, and is accessed, written, and cleared by several
self-parameterized controlling gates. Based on this, LSTM has proven powerful and robust for
modeling the long-range dependencies in one-dimensional general-purpose sequence data. Along
this way, to explore the relationship in two-dimensional paired image data, convolutional blocks are
embedded in LSTM units, to form the ConvLSTM model. With a new image input, the memory cell
status will accumulate its information if the input gate is activated, and the past cell status will be
forgotten in this process if the forget gate is activated. Meanwhile, the output gate will control whether
the latest cell output is propagated to the final state. The primary advantage of utilizing this memory
cell and gates is that the gradient is able to be trapped in the cell and be prevented from vanishing,
which is a critical problem for conventional vanilla RNN models. The interaction of all states and gates
along the time dimension is formulated as Equation (1).

ii=0(Wy®X;+ Wy ®H; 1 + W;Ci_1 + b;)
fi = G(fo(@Xt + th®Ht_1 + ch®Ct_1 + bf)
Ci=fi®C+ir® tanh(ch X+ Wy, ®H;1 + bc) 1)
0t = 0(Wyo ® Xy + Wyy ® Hy_1 + Weo ® Ct + bg)
H; = o; ®tanh(Ct)

where ® indicates the convolution operation and ® indicates the Hadamard product. X, C;, and Hy are
the feature inputs, cell outputs, and hidden states, while i, f;, and o; are the input, forget, and output
gates, respectively.

ConvLSTM network was proposed for precipitation nowcasting [36] for the first time.
Recently, with the powerful capability of feature expression on multi-temporal image sequences
or video, ConvLSTM network attracts lots of research interests in many applications, including
rain removal [37,38], image classification [39,40], moving target indication [41], and Earth surface
monitoring [42]. It is suggested that this model is theoretically appropriate for domain adaptation.

2.2. Conditional Generative Adversarial Network

Extended from the preliminary GAN architecture, cGAN adopts conditional settings to provide
controls on the generating modes. Here the conditionings are generally based on class labels or data
modality, and they directly guide the data generation process. This specific adversarial mechanism
helps to reduce the randomness of the generator, and improve the stability of the discriminator.
For image translation tasks, given a pair of data with similar information capacities, cGAN tries to
learn a global mapping model G : (x,z) — y, from input image x and auxiliary condition information z
to output image y. During this process, a discriminator D tries to learn a strict decision rule, which can
always identify the given output image y as a “real” image, but identify the generated image G(x) as a
“fake” image. In this two-player antagonistic game, the continuous updates of these two opponent
models are incentivized by an objective function, as expressed in Equation (2).

LCGAN(G’ D) = Ey~Pdm(y) [log D(y|z)] + Ex~Pdm(x) [10g(1 - D(G(xlz>))] ()
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where the parameters of G are updated to minimize this function, while those of D are updated to
maximize it. The main solution to this objective is expressed as Equation (3).

G = argménmgx[cc an(G,D) 3)

The adversarial learning method based on cGAN was first proposed for image labeling using
multi-modal framework [43], and displayed stronger performance than conventional GAN. Due to
its specific mechanism, cGAN has become an effective and popular tool for image generation-based
tasks recently. With or without references, this type of framework has been widely applied in
many applications, such as image-to-image translation [44], single image super-resolution [45],
and cross-domain semantic segmentation [46]. Relevant researches have verified that cGAN is the
mainstream backbone for domain adaptation.

2.3. Image-To-Image Translation

The idea of image-to-image translation goes back at least to image analogies tasks described by
Hertzmann et al. (2001) [47], who employ a non-parametric texture model on input-output training
image pairs. With this strategy, more recent approaches utilize datasets of input-output examples to
learn parametric translation functions using a fully convolutional network (FCN) [48]. For example,
given two groups of images as the inputs, the primary goal is to learn a pixel-level mapping model
that is able to translate one of them to be near the other one, making them appear similar in color
distribution, texture characteristics, or contextual information.

Current image-to-image translation approaches can be divided into two main categories, which
are paired and unpaired, respectively. The former one pursues pixel-level alignment between paired
images in two different but relevant datasets, and generally builds on the framework of pix2pix [44]
or pix2pixHD [49]. With the supervision of references, these well-trained mapping models are able
to produce detailed and precise translated images, but maybe out of generalization to some extent.
The latter one pursues global feature-level similarity between unpaired images in two different and
irrelevant datasets. Without the supervision of references, training these mapping models generally
requires more implicit constraints. Kim et al. (2017) [50], Yi et al. (2017) [51], and Zhu et al. (2017) [52]
consider the cycle-consistency of original and reconstructed images, to prevent image information loss
in the translation process. References [53-55] apply disentangled representation theory to explore the
latent content and style attributes of unpaired images, aiming to guarantee the invariance of content
attributes in the translation process. In practice, these well-trained mapping models are advantageous
in knowledge distillation, feature decomposition, and style transfer, since they are more robust and
stable than those in paired image-to-image translation approaches.

For change detection, in registered bi-temporal images, the unchanged regions can be regarded
as paired image parts meanwhile the changed regions can be regarded as unpaired ones. Therefore,
in this particular case, unpaired image-to-image translation strategies can be considered to facilitate
the elimination of domain discrepancies in remote sensing images.

3. Methodology

In this section, we begin with the discussion of the modeling problem of change detection task
with season-varying co-registered images. After that, the overview of our framework architecture
is given, and the corresponding new loss functions are interpreted in detail. In the end, specific
implementation details, including the network architectures, training details, and predicting details,
are introduced.

3.1. Problem Statement

Change detection task is mainly concerned with the identification and quantitative analyses
of the changes of land cover types from co-registered bi-temporal remote sensing images I; and I.
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Although I; and I, are acquired in the same area, various positions, imaging conditions, atmospheric
conditions, and even phenological shifts may lead to the spectral variation of the same land cover
type between bi-temporal images. The land cover samples in these two images distribute dissimilarly
and irregularly in the chromatic space, no matter changed or unchanged ones they are, as illustrated
in Figure 1la,c. Remarkably, both the changed and unchanged samples have completely diverse
distributions on the multi-channel histograms, making it difficult to detect changes using a simple
decision-making strategy, or an end-to-end deep learning model. In order to highlight the features of
the real changes between co-registered images and suppress interference of the spectral discrepancies of
the same land cover types, a ConvLSTM network and a cGAN model are integrated to form a domain
translation framework, to distill the land cover knowledge from the pre-event images, thereafter,
progressively adjust the distributions of seasonal style features from the original domain to post-event
one in the chromatic space, as illustrated in Figure 1b,c. At this stage, all the land cover samples follow
an analogous distribution on the multi-channel histograms, where the changed ones appear diverse
while the unchanged ones remain consistent. In this way, the changed and unchanged regions can be
significantly differentiated by directly comparing the paired translated and post-event images, or by
using a simple decision-making strategy.

03
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0 128 256 C 56 2
03 03 03
02 02 02
01 01 01
0 128 256 1 8
03
02 0
01
0 128 256

0 128 256 0 128 256

Images All samples Changed samples Unchanged samples

Figure 1. [Illustration of our image transformation-based method for change detection using
season-varying remote sensing images: (a) pre-event image, (b) translated image, (c) post-event image.

Based on the above discussion, we develop a hybrid multi-model framework to simulate the
process of our PDA, which includes an initial processor Pr, an image translator 17, a semantic categorizer
Ca, and a domain discriminator D, respectively. The processor is a traditional encoder-decoder network,
which aims to extract features from the pre-event images, and provide an initially processed image for
later image translation. The translator is a convolutional LSTM network, which aims to first extract
features from the pre-event images, then translate them from their own domain to the post-event
one. The categorizer is a pre-trained semantic segmentation network that guarantees the consistent
distribution of land cover categories between the original and translated images. The discriminator is
a simple down-sampling network that judges whether those two groups of translated and post-event
images belong to the same seasonal domain.

3.2. Framework Architecture

A multi-model framework is specifically designed to drive our proposed PDA, as illustrated
in Figure 2. It is composed of two cascaded modules, namely, progressive translation and group
discrimination, respectively. As the inputs of this framework, pre-event images are first forwarded to
the former module, being progressively processed as the translated images. Thereafter, two groups of
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unpaired translated and post-event images are forwarded to the latter module, being discriminated
whether they belong to the same seasonal domain. Detailed mechanisms of these two modules are
introduced and interpreted in the following subsections.
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Figure 2. Framework of our proposed progressive domain adaptation method for change detection
using season-varying remote sensing images.

3.2.1. Progressive Translation

As previously discussed, prevent the intrinsic characteristics of each land cover from
season-varying changes is essential for better identification of the real land cover changes. Therefore,
we utilize the translation module to alleviate the domain discrepancy between bi-temporal images
progressively. It is achieved by an initial processor and an image translator, as illustrated in Figure 3,
where pre-event images serve as the inputs of the module, and image sequences serve as the outputs.

For self-assistant recurrent iterations
Pre-event

i

\
|
|
|
|
|
|
|

—— —

R ——

———————————

[
|
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|
|
|
|
|
|
|
|
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\

—
e

Stage 0 Stage 1 Stage 2 Stage N

Figure 3. Overview of the progressive translation module. The dotted boxes indicate the ConvLSTM
blocks that have shared the same weights and biases.

Given a pre-event image [; as the input of this module, the initial processor produces a feature
map as the primal guidance image for later image translation. For the entire translation process,
this feature map can be regarded as the translated image at stage 0, defined as Iio_i
identical to those of the input image. Thereafter, taking the pre-event image as the self-assistant criteria,

the image translator recurrently processes the concatenation of the pre-event and translated images

, = Pr(ly), its size is
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as an image sequence, where multiple images can be regarded as the stage 1 to N of the progressive
translation process, as defined in Equation (4).

-1
Iin—)ﬂ = TT(I], IYI—Q)) n=12,...,N (4)

)

where IYI_)
denotes element-wise concatenation. Along this way, as the output of this module, the ultimate
translated image is defined as Igi)z. At this point, the unchanged regions in the translated domain
resemble those in the corresponding post-event domain, as formulated in Equation (5).

, is the translated image produced by the image translator at recurrent time stage 7, and (-, -)

(1-cmyelN) ~ (1-cMm) sl ®)
where CM is the reference map for the change detection task. Its width and height are identical to
those of the input images I; and I», yet it only has one channel to record the status of each pixel. In the
binary reference map CM, value 1 indicates that the pixel belongs to the changed regions, while value
0 indicates that this pixel region is not changed. The symbol ® in Equation (5) denotes the operation of
element-wise multiplication. Moreover, the distributions of land cover categories in the pre-event and
translated images have to be completely consistent, as formulated in Equation (6).

Ca(ly) ~ Ca(lfi)z) ©6)

In this module, when training, the semantic categorizer and the aforementioned two constraints
will simultaneously facilitate updating the initial processor and image translator until they are able
to correctly translate the pre-event images to be near the post-event ones in the unchanged regions.
When testing, nevertheless, only the initial processor and image translator are utilized to achieve the
progressive domain adaptation.

3.2.2. Group Discrimination

In order to ensure the specific season associated image domain of the translated image data set is
in keeping with those of the original post-event data set, a group discrimination module is utilized to
evaluate if any two unpaired images have a similar appearance in the above two data set, respectively.
It is achieved by a domain discriminator, as illustrated in Figure 4, where two groups of translated and
post-event images serve as the inputs of the module, and discrimination matrices serve as the outputs.

Post-event image group

/ 21 T
| |
Post-event 2 -l Post-event s
Image | | Image
\ | Domain discriminator
) \ // /
A A REAL
Paired Unpaired
v . N v FAKE
] [ // \ =
\ \
Translated 2 -.l’ Translated —
Image ‘ ‘ Image
[ / / |
\ /

Translated image group
Figure 4. Overview of the group discrimination module. The curved arrows indicate the operations of

random selection.

Given two paired translated image [;_,, and post-event image I, as the inputs of this module,
two image collectors separately store them for later domain discrimination. As the pre-event images
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are continuously translated, these two collectors will continuously store them in a stochastic order.
Thereafter, taking two unpaired translated and post-event images that are randomly selected from
the above two image groups as the inputs, the domain discriminator evaluates whether they belong
to the same seasonal domain. As the adversary of the initial processor and image translator that is
mentioned in the previous subsection, the discriminator attempts to identify the post-event images as
real images, while to identify the translated images as fake ones, as expressed in Equation (7).

{ D({I2}) = TRUEs )

D({Il_,z}) = FALSEs

where TRUE and FALSE refer to the situation if the pixel is in the translated image or in the post-event
image, and correspond to 1 and 0 in binary code, respectively, and {-} denotes the image group.

In combination with its constraint, the group discrimination module is trained dynamically to
feedback to the initial processor and the domain translator. As long as the group discrimination
module converging to the optimal solution, the initial processor and image translator are able to
correctly translate the pre-event images from domain T; to T>. When testing, nevertheless, the domain
discriminator does not participate in the change detection process.

3.3. Loss Function

With the multi-model framework, a novel objective function composed of four specific terms is
proposed in this research: (1) domain adversarial loss to match the global domain distributions of
translated and post-event image groups; (2) cross-consistency loss to represent the pixel discrepancy of
paired translated and post-event images in the unchanged regions; (3) self-consistency loss to represent
the land cover category discrepancy of pre-event images and the corresponding translated ones;
(4) identity loss to regularize the image translator to perform an identity mapping for post-event images.

3.3.1. Domain Adversarial Loss

As the principal loss of our framework, domain adversarial loss is derived from the basic
adversarial loss in cGANs [43]. It is set to facilitate training the initial processor and image translator
to hamper the domain discriminator from distinguishing the images of the translated domain from
those of the post-event domain, when these images are in the same domain. In this research, we apply
a domain adversarial loss in the post-event domain for the translated and post-event image groups,
as formulated in Equation (8).

Lijom(Pr,Tr,D, T1, Tz) = Ep,o, [log D({I2})] + Epy~1y [log(1 = D({G(11)}))] )

where G(-) is the simplified expression of the progressive translation module with the involvement of
Prand Tr, and it satisfies G(I;) = 1. In this loss function, Pr and Tr try to translate the pre-event
images from domain T; to Tp, making them display similar seasonal appearances to the post-event
images, while D tries to separate them in the post-event domain, as depicted in Equation (7). Therefore,
the domain adversarial loss is regarded as the mathematical formulation of a min-max problem, and can

be defined as lr’niTntade()m (Pr,Tr,D, Ty, T,). In the min-max problem, the initial processor and image
I,lr

translator aim to minimize this domain adversarial loss function, while the domain discriminator aims
to maximize it on the contrary.

3.3.2. Cross-Consistency Loss

With the progressive translation module, the appearances of paired translated and post-event
images in the unchanged regions should be visually consistent, and distinctive discrepancies should
exist only in the changed regions. Therefore, inspired by the cross-consistency loss in DLSF [32],
we introduce a perceptual cross-consistency loss to ensure the accurate cross-season mapping only in
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the paired unchanged regions. Based on Equation (5), the cross-consistency loss can be formulated as

Equation (9).
N

-[:CVOSS (Pr/ Tr/ TZ) == }E’Il%z,IzNTz Z GN—I’Z * ||(1 - CM) ® (Iin_))z - Iz)llzl (9)
n
where || - ||, is the 1.2 distance loss, and ON~" is a progressive weight specifically for the translated
image at stage 1 to N. Minimizing this loss encourages the initial processor and image translator to
achieve better mapping, especially in the paired unchanged regions.

3.3.3. Self-Consistency Loss

After the progressive translation process, the overall distribution of land cover categories in the
translated images should remain invariant with that of the paired pre-event ones, even though they
are in different seasonal domains. Therefore, we introduce a rigorous self-consistency loss derived
from the LogSoftmax function in FCN [48], to avoid the displacement and distortion of land cover
information in the cross-season mapping. Based on Equation (6), the self-consistency loss can be
formulated as Equation (10).

Loy (Pr,Tr,Ca, Ty, T2) = Biyory ooy ICa(1) = Cal 1Y) )1 | (10)

where || - [|; represents the loss function using L1 norm. Minimizing this loss encourages the initial
processor and image translator to achieve content-invariant mapping, no matter in changed or
unchanged regions.

3.3.4. Identity Loss

Problems arise when the well-trained models for image-to-image translation tasks are generally
stochastic and not unique, owing to the powerful expression capabilities of neural networks. Addressing
this issue, Taigman et al. (2017) [56] propose an identity loss to regularize the generator to be near
an identity mapping when real samples of the target domain are provided. Moreover, various
unsupervised domain adaptation methods have used this kind of loss function, such as CycleGAN [52]
and DistanceGAN [57]. In this research, to stabilize training the initial processor and image translator,
we adopt an identity loss to ensure that the progressive translation module would keep the post-event
images as invariant, and this can be formulated as Equation (11).

Ligy(Pr,Tr, T2) = Ep, -1, [IG(I2) — Il1] (11)

where || - ||; represents the loss function in L1 norm. The minimization of this loss function promotes
the convergence of our initial processor and image translator. Along with the convergence procedure,
the randomness of the initial processor and image translator is also restrained.

Finally, the objective function of our PDA is constituted by the four losses mentioned above
functions, as formulated in Equation (12).

L(Pr,Tr,Ca,D) = Aoy, - Lo (Pr, Tr, D, T1, T2)
+Across * Leross (P r, T, TZ)

+Asetf - Lserf(Pr, Tr,Ca, Ty, T)

+Aiar - Liar (Pr, Tr, T2)

(12)

where A represents the parameters used to adjust the importance of the four losses, therefore,
the season-varying change detection problem can be modeled as in Equations (13) and (14).

Pr*, Tr* = argminL(Pr, Tr,Ca, D) (13)
Pr,Tr
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D" = argmgx.E(Pr, Tr,Ca, D) (14)

Guided by certain reference change maps, we keep the semantic categorizer constant, and train
the initial processor, image translator, and domain discriminator simultaneously. When predicting,
however, only the initial processor and image translator are used for change detection.

3.4. Implementation

3.4.1. Network Architecture

The proposed PDA is driven by four neural networks, namely an initial processor, an image
translator, a semantic categorizer, and a domain discriminator, respectively. However, only three of
them participate in the training process, and their architectures are described in Figure 5. Derived
from Encoder-Decoder [58], the initial processor comprises six convolutional, one convolutional layer,
and one TanH activation. This model conducts down-sampling operation, and up-sampling operation
once respectively to the input image patches and generate the feature maps with the size of 256 x 256.
Applying ResNet [59] as the backbone, the image translator comprises two convolutional blocks and
five residual blocks, followed by an LSTM cell, a convolutional block, a convolutional layer, and a
Tanh activation. This model also conducts one down-sampling and one up-sampling on the input
concatenation patches, but for multiple recurrent times. Furthermore, it produces an image sequence,
where the size of all the translated images is identical to those of the original images. Because the input
translated and post-event images are unpaired, a Markovian discrimination strategy [60] is adopted to
model only the high-frequency features for the domain discriminator. Moreover, our discriminator is a
PatchGAN that conducts four-fold down-sampling on the input image patches by reference to the
discriminator in pix2pix [44]. All the weights and biases of their layers are initialized using the strategy
of Xavier [61] in the aforementioned models. In addition, for the semantic categorizer, we suggest
utilizing a pre-trained VGG-16 [62] model, which is trained on ImageNet [63] dataset.

64@5x%5 64@3x3 3@5x5
r M 128@3)(3 256@3x3 256@3x3 128@3x3
=9
S n
gg 3@256x256 3@256x256
&
64@5x5 64@3x3  3@5%5
] M 128@3X3
.-
o © LST™M
L N R N e b 3@256%256
’: U
64@4x4
! 28@4x4 ) -
é M 256@4x4 512@4x4 1@4x4 I Convolution layer D Instance normalization
s <
£ E | 3@256%x256 I ReLU activation I:l Leaky RelLU activation
8%
a - 1@64x64 I TanH activation . Residual block

Figure 5. Network architectures of the initial processor, image translator, and domain discriminator.

3.4.2. Training Details

For all the experiments, our proposed PDA is trained by simultaneously minimizing its four
component networks to optimal solutions iteratively by updating the associated full objective
L(Pr,Tr,Ca,D). In this research, according to the implementations in Attentive GAN [37] and
Progressive Recurrent Network [38], we set N, 11, and 6 to 6, 4, and 0.8, respectively, in Equation (9).
In addition, we set A4, to 0.01, and set Acoss to 1, meanwhile set both Ay s and Ay to 0.1 in
Equation (12), based on the implementations in DLSF [32] and CycleGAN [52]. The least-squares
loss [64] specifically for Ly,,,, instead of the negative log likelihood loss in basic GANs is chosen in our
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experiments to enforce a stabilized training. In addition, the volumes of two image collectors in the
group discrimination module are both set to 50.

A hierarchical learning strategy in the optimization procedure is utilized in our research considering
the complexity of this hybrid multi-model framework. In each epoch, paired image patches are first
forwarded into all the networks in sequence. Thereafter, for the backward propagation, the initial
processor, image translator, and domain discriminator are updated alternately, but the semantic
categorizer remains constant. The overview of the training process concerning the forward and
backward propagations in one epoch is presented in Table 1.

Table 1. Overview of the training process for the proposed hybrid multi-model framework.

Paired Pre-Event Images: I1~T;
Inputs: Paired Post-Event Images: I,~T;
Corresponding Reference Change Maps: CM

for epoch « 1 to epochyqx do

forward I; into Pr to produce IYEZ
(0)

forward [; and I 1 into Tr times to produce I >
forward I; and I;_,, into Ca
forward {I1_,,} and {I»}
update with Ly,,,,(Pr, Tr,D, T1,T7)
update Pr and Tr with £L(Pr, Tr,Ca, D)
end for

Well — trained initial processor : Pr*

Outputs: Well — trained image translator : Tr*

3.4.3. Predicting Details

The proposed PDA produces three well-trained networks, among which the initial processor
and image translator are utilized for predicting. Like the training process, the two models will
simultaneously achieve the progressive image translation from the pre-event domain to the post-event
one. At this stage, the paired translated and post-event images are difficult to separate by the domain
discriminator, indicating that our models are able to realize the cross-season translation. In the end, to
decide the changed regions, we perform pixel-level similarity measurement on paired translated and
post-event images, and then produce a predicted change map, as expressed in Equation (15).

P(i ) = I, ) = (i )l (15)
where P is the predicted change map, which reflects the change probabilities of all pixels. The value of
a pixel located at (i, j) is large means that this pixel may be part of a changed region; otherwise, it may
be part of an unchanged region. In this research, the final change detection result is calculated by the
pixel-level binarization of the predicted change map, with the adaptive threshold.

4. Experiments

In this section, the datasets description, baseline methods, and evaluation metrics about all the
experiments are first introduced. Thereafter, the relevant experimental setup is interpreted in detail.
Finally, the experimental results of our PDA and other comparative methods are presented.

4.1. Datasets Description

All the season-varying remote sensing images are high-resolution optical real images, obtained by
Google Earth (DigitalGlobe), and they involve massive season-induced changes [65]. According to the
extent of seasonal differences, we divide them into two different types, which are image pairs with
minor seasonal variation and ones with major seasonal variation, respectively.
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The first type of dataset includes 4 multi-temporal remote sensing images with minor seasonal
variation. As shown in Figure 6, in this dataset, these registered images have the same dimension
of 4275 x 2700, with the same spatial resolution of approximately 0.05 m per pixel. Remarkably,
the corresponding references are in binary format, where the changes mainly include plenty of new
buildings, several mobile vehicles, and a few vegetation covers. In the training process, each image
can be regarded as the pre-event or post-event image, regardless of its chronological order.

|-a

I-b

|-c

I-d

References

Figure 6. Overview of dataset I with minor seasonal variation and corresponding reference change maps.

The second type of dataset includes 3 couples of bi-temporal remote sensing images with major
seasonal variation. As shown in Figure 7, in this dataset, the former two image pairs have the same
dimension as ones in dataset I, with different spatial resolutions of approximate 0.22 and 0.52 m
per pixel, and the latter image pair has the dimension of 1900 x 1000, with the spatial resolution of
approximate 0.5 m per pixel. Compared with those in dataset I, the changes in dataset II include
more roads and vehicles, but fewer vegetation covers. In the training process, different from dataset I,
we suggest regarding the images without snow cover as the pre-event images and regarding the images
with snow cover as the post-event images.
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Figure 7. Overview of dataset II with major seasonal variation and corresponding reference change
maps: (a) pre-event images, (b) post-event images, (c) references.

4.2. Baseline Methods

In order to testify the effectiveness of our PDA in season-varying change detection, several
state-of-the-art methods are selected to carry out comparative analysis and discussions. As the
most popular classic model for unsupervised change detection in remote sensing, CVA [22] is the
representative of conventional methods. In the comparison, we exploit the pixel-level change vector
analysis method together with the threshold provided by K-means clustering algorithm. Derived from
CNN, GETNET [17] is the representative of deep learning-driven methods based on original image.
The features extracted by our proposed model are able to facilitate the supervised change detection by
carefully designed network architecture and loss function. In addition, PCANet [23] and GAN [24]
are the representatives of ones based on image arithmetical, while DSCN [30] and DSFL [32] are
the representatives of ones based on image transformation. Remarkably, for the above competitors,
only the models in GETNET and PCANet are end-to-end frameworks, and the ones in other methods
are all hybrid multi-model frameworks.

4.3. Evaluation Metrics

Three commonly used metrics are selected as the evaluator to quantify the performance of our
proposed PDA as well as to prove its effectiveness and robustness by comparison of its results with all
the comparative deep learning-driven change detection methods.

Let TP denotes the number of changed pixels correctly labeled, TN denotes the number of
unchanged ones correctly labeled, FP denotes the number of unchanged ones incorrectly labeled,
and FN denotes the number of changed ones incorrectly labeled. Then, overall accuracy (OA),
Kappa coefficient (KC), and F1 Score (F1) are defined as follows.

Overall accuracy: The overall accuracy is defined as the ratio of correctly recognized samples
divided by the total number of all samples, and is often used to quantify the total capabilities of the
change detection models, as expressed in Equation (16).

TP+ TN

A =
© TP+TN+FP+FN

(16)
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Kappa coefficient: This index is a statistical measurement that represents the consistency between
the experimental result and corresponding ground truth, as formulated in Equation (17).

Po — Pe
KC=—— 17
1_pe ( )

where pg indicates the true consistency, which is equal to OA here, and p, indicates the theoretical
consistency, as expressed in Equation (18).

pe = (TP+FP)(TP +EN) + (TN + FP)(TN + FN) a8)
¢ (TP + TN + EP + FN)?

F1 score: This index is a statistical magnitude that represents the harmonic average of the precision
and recall rates. It is commonly used to assess the performance of neural network models, as expressed

in Equation (19).
2TP

" 2TP+FP+FN
It can be concluded that, the change detection performance gets better when the values of the
above three evaluation metrics become larger.

F1 (19)

4.4. Experimental Setup

We perform six groups of experiments on two types of datasets described in Section 4.1, which are
between paired images I-a and I-b, I-b and I-c, I-c and I-d, II-1a and II-1b, II-2a and II-2b, and II-3a
and II-3b, respectively. For each pair of images, we utilize three-quarters of the areas as the training
areas, while leaving one-quarter of them as the testing areas. Before the experiments, to verify the
effectiveness and competitiveness of this method, several pre-process operations are required to
conduct on the season-varying remote sensing images as follows:

e To boost the convergence of the weight and bias parameters in the initial processor, image
translator, and domain discriminator, we perform instance normalization on all the channels of
remote sensing images, from 0 to 255 to —1 to 1.

e  Since the original remote sensing images are of large scale, which is inconvenient for computation,
the original training and testing images are processed into small image patches with the same size
of 256 x 256 through randomly cutting them with certain overlaps and rotations.

e  Specifically, for the paired pre-event and translated image patches, which are forwarded to the
semantic categorizer, we perform mean-subtraction normalization on each band of them in two
different seasonal domains.

In our experiment, we set 200 epochs with the batch size of 1 to make the proposed models
converge, using Adaptive Moment Estimation (Adam) [66] as the optimizer with the initial learning
rate of 2 x 107%. In addition, the learning rate is set to a constant value for the first half of the total
epochs, then linearly decayed to 0 for the other half. The decay rates for the moment estimates are set
to 0.9 and 0.999, and the epsilon is set to 1078.

The experiments based on our proposed PDA are completely performed on a computer, which is
equipped with Intel i7 CPU, 32GB RAM, and NVIDIA GTX 1080 GPU. With the Python platform,
we utilize a PyTorch 0.4+ environment and other dependencies, including torchvision, visdom,
and dominate etc., to compile the programs. When training, the time for an iteration on two paired
image patches is approximately 0.70 s. Nevertheless, when testing, the time for one pair is just 0.21 s.
More detailed information about our experiments, including the training times and testing rates,
is presented in Table 2.
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Table 2. Experimental information of our PDA.

Image Pair Sample Number Training Time Testing Rate
I-a & I-b
I-b & I-c 1683 64.78 h
I-c & I-d 0.21 s/pair
II-1a & II-1b
11-2a & TI-2b 1308 50.50 h
1I-3a & II-3b 936 36.55h

4.5. Results Presentation

With the six couples of bi-temporal remote sensing images in two types of datasets, the binary
format change detection results of the proposed PDA and several competitors are presented in Figure 8
and 9, respectively, where the pixels in white and black indicate the changed and unchanged regions.
As can be seen, with different degrees of seasonal variation, the testing results on dataset I are generally
better than those on dataset II.

For image pairs with minor seasonal variation, the appearances of changes are still structurally
simple and distinct in the chromatic space, even CVA is able to give rough positions and outlines of the
changed regions, though numerous errors and noises are contained, as shown in Figure 8c. Due to the
limited capabilities on feature expression, the end-to-end frameworks, GETNET and PCANet, are able
to give approximate shapes of changes but ambiguous outlines, as shown in Figure 8d,e. Although
they are insensitive to image noises, abundant image details are overlooked. Different from end-to-end
frameworks, GAN gives better results than PCANet, though they are both based on image arithmetical,
as shown in Figure 8f. Nevertheless, its resistance ability to noises is weaker. As the pioneer image
transformation-based method, DSCN is able to learn certain implicit information, to benefit detecting
subtle changes, but with massive holes, as shown in Figure 8g. Integrating ideas of dual learning
and Siamese network, DLSF achieves better results than DSCN, as shown in Figure 8h. Compared
with DLSEF, our proposed PDA displays competitive results, as shown in Figure 8i. It is notable that,
the testing results of our PDA are slightly better than those of DLSF for the first and third image pairs.
However, the testing result of our PDA is slightly worse than that of DLSF for the second image pair.

For image pairs with major seasonal variation, the appearances of changes are more uncertain
and complex in the chromatic space, leading to unstable and poor change detection results by CVA,
as shown in Figure 9c. On the other hand, the end-to-end frameworks, GETNET and PCANet,
give entirely unsatisfactory results. Furthermore, their resistance abilities to noises are far weaker than
those on dataset I, as shown in Figure 9d,e. In comparison, GAN is able to give better results, but with
more incorrect detections, as shown in Figure 9f. Remarkably, the three methods based on image
transformation still perform well for this dataset. Although containing more holes, DSCN can give
correct positions and outlines of changed regions, as shown in Figure 9g. Different from DSCN, DLSF
and our proposed PDA can give more accurate and robust results, as shown in Figure 9h,i. It is notable
that, the boundaries of the changed regions generated by our PDA model are clearer and smoother
than those by DLSF, and there are fewer negative influences from noises, specifically for the first and
third image pairs.
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l-a & I-b

I-b & I-c

l-c & |-d

Figure 8. Change detection results of the comparative methods on dataset I: (a) pre-event image,
(b) post-event image, (c) CVA, (d) GETNET, (e) PCANet, (f) GAN, (g) DSCN, (h) DLSF, (i) our PDA,

(j) ground truth.
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lI-1a & II-1b

II-2a & II-2b

II-3a & II-3b

Figure 9. Change detection results of the comparative methods on dataset II: (a) pre-event image,
(b) post-event image, (c) CVA, (d) GETNET, (e) PCANet, (f) GAN, (g) DSCN, (h) DLSF, (i) our PDA,
(j) ground truth.

The evaluation metrics OA, KC, and F1 values are calculated and summarized based on the
change detection results generated by our proposed PDA and other comparative methods with the
two types of datasets in Table 3. Compared with CVA, GETNET, PCANet, GAN, DSCN, and DLSF,
our PDA achieves the competitive OA, KC, and F1 values on dataset I, and achieves the highest values
on dataset II.
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Table 3. Quantitative results of the comparative methods. The best values are in bold, and (—) denotes
that the value is negative.

Image Pair Metric CVA GETNET PCANet GAN DSCN DLSF PDA
OA 0.8540 0.8981 0.9212 0.9069 0.8863 0.9225 0.9311

l-a&Ib KC 0.2058 0.6479 0.6516 0.6874 0.6649 0.7820 0.7383
F1 0.2855 0.7092 0.6959 0.7421 0.7340 0.8313 0.7784

OA 0.7684 0.8786 0.8918 0.8706 0.7818 0.8946 0.8761

Ib & I-c KC 0.3505 0.7483 0.7536 0.6284 0.4627 0.7711 0.7329
F1 0.4675 0.8501 0.8332 0.7074 0.5955 0.8525 0.8297

OA 0.8514 0.8911 0.9063 0.9134 0.4034 0.9146 0.9347

I-c & I-d KC 0.3084 0.6077 0.6658 0.7405 - 0.7513 0.7815
F1 0.3921 0.6710 0.7212 0.7939 0.2616 0.8045 0.8210

OA 0.4748 0.5337 0.5819 0.9041 0.8094 0.9158 0.9272

[I-1a & II-1b KC - 0.0605 0.0821 0.7006 0.5368 0.6703 0.7535
F1 0.1492 0.2275 0.2583 0.7581 0.6602 0.7167 0.7974

OA 0.4738 0.6806 0.7218 0.8642 0.7925 0.8892 0.9150

[I-2a & II-2b KC - 0.2195 0.2876 0.6057 0.3469 0.5940 0.7102
F1 0.0792 0.3763 0.4310 0.6894 0.4475 0.6565 0.7610

OA 0.3701 0.4123 0.4328 0.7815 0.8176 0.8575 0.8994

[I-3a & II-3b KC - - - 0.4587 0.5043 0.5341 0.6577
F1 0.2148 0.2851 0.2936 0.5937 0.6114 0.6136 0.7185

5. Discussion

For deep learning-driven change detection methods based on hybrid multi-model frameworks,
the experimental performances are primarily controlled by two decisive factors: network architecture
and loss function. Meanwhile, for a one-sided translation model, the translation direction can also
influence the experimental results. Therefore, in this section, we discuss the details of designing the
aforementioned two factors and the selection of translation direction. The robustness and uniqueness
of our method are verified through extensive experiments.

5.1. Design of Network Architectures

For different image processing tasks, deep neural networks are generally designed with diverse
structures. Networks equipped with extensive and complex blocks have stronger abilities on feature
expression and representation, but they may easily result in data over-fitting to some extent. On the
contrary, networks equipped with few and simple blocks improve the efficiency and generalization,
but their limited expression and representation abilities are likely to reduce the utilization of image
information. In RNN-typed neural networks, the recurrent block is a plug-and-play component,
and plays a significant role in image analysis related tasks. The structural volume and recurrent
number of this block determine the performance of the model. Taking our image translator as the
backbone, we conduct several comparative experiments, utilizing multiple different image translator
but the same initial processor, semantic categorizer, and domain discriminator. The image translators
are mainly different at the residual block number and the recurrent time. The translation results on
two typical types of dataset are illustrated in Figures 10 and 11.
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Figure 10. Representative example of translation results (on dataset I) by diverse image translators:
(a) three residual blocks, (b) five residual blocks, (c) seven residual blocks.
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Figure 11. Representative example of translation results (on dataset II) by diverse image translators:
(a) three residual blocks, (b) five residual blocks, (c) seven residual blocks.

As can be seen, with the increase of the residual block number and recurrent time in the image
translators, the qualities of the translated images become distinctly better, leading to more accurate and
precise change detection results. Remarkably, for image pairs with minor seasonal variation, the image
translator only with five residual blocks and four recurrent iterations are strong enough to achieve
satisfactory domain adaptation results, as depicted in the first patch in Figure 10b. Nevertheless,
for image pairs with major seasonal variation, the image translator with at least five residual blocks
and six recurrent iterations are able to perform complete and correct domain adaptation results, as
depicted in the third patch in Figure 11b. Therefore, in this research, we designed the image translator
with five residual blocks and six recurrent iterations to ensure the effectiveness and robustness of our
proposed PDA, for change detection using all types of season-varying remote sensing images.

5.2. Design of Loss Functions

Loss functions generally act as the driven force to lead the proposed PDA model towards an
optimal solution. Hence the loss functions are required to be designed carefully. In order to verify the
effectiveness and uniqueness of our loss functions, several ablation studies are conducted separately
for all the experiments with our proposed PDA. The testing OAs driven by five diverse loss function
combinations are calculated and summarized in Table 4. The specific effects of each loss function are
discussed at the end.
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Table 4. Ablation studies of the full objective for our six experiments.

Loss Combination I-a & I-b I-b & I-c I-c & I-d II-1a & II-1b  II-2a & II-2b  II-3a & II-3b
dom 0.3870 0.3429 0.3764 0.2691 0.2566 0.2302
dom-+self 0.5171 0.4744 0.4993 0.4212 0.3930 0.3687
dom-+corss 0.8146 0.7372 0.8205 0.7643 0.7469 0.7013
dom-cross+self 0.9057 0.8553 0.9120 0.8478 0.8117 0.8025
dom+cross+self+idt 0.9311 0.8761 0.9347 0.9272 0.9150 0.8994

It is worth noticing that the testing OAs on all the image pairs increase gradually when the
full objective becomes more complex. It is confirmed that complex constraints can lead to stronger
generalization ability of our models.

As shown in the three rows in the middle of Table 4, it is clear that the addition of the
self-consistency loss can modestly promote the performance, while the addition of the cross-consistency
loss can prominently improve the performance. Remarkably, the second combination represents an
unsupervised change detection method, and the third combination represents a simplified mode of
our PDA. The different increases in OAs indicate that the reference change maps and cross-domain
constraints are essential for our models, and the self-supervision constraint can effectively facilitate our
models better realizing the translation between bi-temporal remote sensing images.

As shown in the last two rows of Table 4, it is clear that the addition of the identity loss can
slightly promote the performance. Furthermore, the increase on dataset II are more prominent than
that on dataset I. The different increases in OAs indicate that this constraint is more significant for the
translation between the paired images with major seasonal variation. Practically, the identity loss is
widely adopted in unsupervised domain adaptation or unpaired image-to-image translation, to make
the training process rid of model oscillations.

5.3. Selection of Translation Direction

With one-sided image-to-image translation networks, the dataflow between the paired images
generally has two opposite directions to be selected. Taking our domain adaptation for example, in the
training process, we can directly translate the pre-event images from their own seasonal domain to the
post-event one, or regard the post-event images as the pre-event images and translate them in reverse
order. In our experiments, we observe that the change detection results on dataset II are far more
sensitive to the dataflow directions than those on dataset I. More precisely, utilizing the same change
detection framework, the testing results obtained by the translation from the images without snow
cover to the ones with snow cover are distinctly better than those obtained by the translation from the
images with snow cover to the ones without snow cover. With this phenomenon, we make in-depth
analyses on the training processes of our three experiments on dataset II. The convergence curves of all
the comparative experiments are illustrated in Figure 12.

It is noteworthy that the convergence procedure of the full objectives and discrimination losses in
Figure 12b are generally more stable than that in Figure 12a. It is confirmed that those translations
with the direction, from the images without snow cover to the ones with snow cover, are positive to
facilitate the change detection.

Based on the first image translation direction, adopting the training visualization technique,
we have observed more details in the training process. For image pair II-1a & II-1b, the discriminator
is always unstable, as depicted in the first column in Figure 12a, making the generator sometimes
fails to perform complete and correct translations, even in the late period of the training process.
On the contrary, for image pair II-3a & II-3b, the generator is always unstable, as depicted at epochs 48
and 102 in the third column in Figure 12a, leading to a difficult convergence procedure. Remarkably,
for image pair II-2a & II-2b, the discriminator suddenly stops working after an update, and the loss of
it eventually still fluctuates around 0.01, as depicted in the second column in Figure 12a. Without the
supervision of the discriminator, the framework has led to data over-fitting, and is finally unable to
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achieve the cross-season translation. Theoretically, the images without snow cover generally involve
more detailed features of land cover categories than the ones with snow cover. Regarding the former
ones as the pre-event images, the translation is a type of dimension-reducing operation, conversely,
the translation is a type of dimension-increasing operation. In the case of insufficient input features,
forcing neural networks to generate image information that does not exist is logically and practically
not appropriate. Therefore, for change detection using image pairs with major seasonal variation, it is
suggested to regard the images without snow cover as the pre-event ones, and regard the images with
snow cover as the post-event ones.

lI-1a & II-1b II-2a & II-2b [I-3a & II-3b
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Figure 12. Convergence curves for our three experiments in two different translation directions: (a) from
the images with snow cover to the ones without snow cover, (b) from the images without snow cover
to the ones with snow cover.

6. Conclusions

In this research, we integrated strategies of ConvLSTM network and cGAN, and then developed
a novel image transformation-based approach named PDA, for supervised change detection using
season-varying remote sensing images. With the proposed initial processor and image translator,
we successfully distilled features of land cover categories from the pre-event images, then achieved the
translation progressively from the pre-event domain to the post-event one. During this cross-season
translation, the seasonal differences of paired unchanged regions are effectively suppressed, and the
changed regions are distinctly highlighted. Extensive experiments were conducted on two types of
season-varying change detection datasets. The presented discussions and comparative analysis verify
the effectiveness and competitiveness of the PDA model proposed in this paper.

Nevertheless, our method still involves certain limitations. In the training process, the irregular
distribution of seasonal characteristics will drive the strict loss functions to mislead the models.
For example, in the images of winter, some of the buildings and roads are covered by snow, while some
of them are not. These uncertain appearances confuse the models, leading to continuous oscillations
on the convergence curves. In addition, the negative effect of land cover shadows on our method is
much greater than that on other deep learning-driven methods, because the original image will be
concatenated to the input ones for every recurrent iteration in the progressive translation. Therefore,
in future studies, we plan to explore certain self-adaptive constraints, to facilitate our model’s better
resistance against the negative influences of the aforementioned two problems.
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