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Abstract: The small satellite market continues to grow year after year. A compound annual growth
rate of 17% is estimated during the period between 2020 and 2025. Low-cost satellites can send a vast
amount of images to be post-processed at the ground to improve the quality and extract detailed
information. In this domain lies the resolution enhancement task, where a low-resolution image
is converted to a higher resolution automatically. Deep learning approaches to Super Resolution
(SR) reached the state-of-the-art in multiple benchmarks; however, most of them were studied in
a single-frame fashion. With satellite imagery, multi-frame images can be obtained at different
conditions giving the possibility to add more information per image and improve the final analysis.
In this context, we developed and applied to the PROBA-V dataset of multi-frame satellite images
a model that recently topped the European Space Agency’s Multi-frame Super Resolution (MFSR)
competition. The model is based on proven methods that worked on 2D images tweaked to work
on 3D: the Wide Activation Super Resolution (WDSR) family. We show that with a simple 3D CNN
residual architecture with WDSR blocks and a frame permutation technique as the data augmentation,
better scores can be achieved than with more complex models. Moreover, the model requires few
hardware resources, both for training and evaluation, so it can be applied directly on a personal laptop.

Keywords: multi-frame super resolution; wide activation super resolution; 3D convolutional
neural network; deep learning

1. Introduction

In the past, the satellite market was reserved for a few companies and governments, which had the
capacity (technical and monetary) to build and deploy large machinery in space, and the data obtained
afterwards were used just by only a few research teams worldwide. Today, there is a growing interest,
both social and commercial, in the deployment of small, low-cost satellites. A compound annual
growth rate of 17% has been estimated for the small satellite market (forecast from 2020 to 2025) [1].
This expansion brings with it new challenges because of the vast amount of new data available.
For example, satellite images are used in many different fields to accomplish a wide spectrum of
tasks. To name a few, Xu et al. [2] investigated vegetation growth trends over time; Martinez et al. [3]
tracked tree growth through soil moisture monitoring; Ricker et al. [4] studied Arctic ice growth decay;
and Liu et al. [5] developed a technique to extract deep features from high-resolution images for
scene classification.

However, as satellites get more affordable and smaller, data quality cannot always be maintained;
a trade-off must be found between price and quality. A case of study is High-Resolution (HR) images.
They are not easy to obtain, or fast enough to transfer, and need costly and massive platforms as
opposed to small, rapidly deployed, low-cost satellites that can provide viable services at the cost of
lowering quality [6]. Image quality restrictions are common due to degradation and compression in the
imaging process [7]. Downlink bandwidth is a primary concern for Earth Observation (EO) satellites,
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and the improvement of data-rate transmission is an open research field. In 2012, the Consultative
Committee for Space Data Systems (CCSDS) proposed a standard (131.2-B-1) [8] for high rate telemetry
applications. Multiple works can be found addressing this problem; to name a few, Wertz et al. [9]
developed a flexible high data rate transmitter operating in the X-band and Ka-band to maximize
data throughput; Betolucci et al. [10] performed a trade-off analysis for 131.2-B-1 and its extension
ModCod(SCCC-X), showing a 35.5% increase in maximum throughput. This notwithstanding,
many tasks can be solved in post-processing steps, improving the quality once the data arrive on Earth,
hence the importance of image resolution enhancement techniques that can take advantage of the huge
and growing amount of information available from small satellites.

The problem of Super Resolution (SR) is not new. It has been widely studied in different contexts
taking multiple approaches. Specifically, to improve the resolution of satellite images, one common
approach is the use of Discrete Wavelet Transforms (DWTs), in which the input image is decomposed
into different sub-bands and then combined to generate a new resolution through the use of inverse
DWTs [11–13]. In recent years, as deep learning applications explode in every computer-vision task,
convolutional neural network methods began to dominate the problem of SR. However, most of
them focus on Single-Image Super Resolution (SISR) [14–16] and do not take advantage of the
temporal information inherent to multi-frame tasks. MFSR has been studied in video; for example,
Sajjadi et al. [17] proposed a framework that uses the previously inferred HR estimate to super resolve
the subsequent frame; Jo et al. [18] created an end-to-end deep neural network that generates dynamic
upsampling filters and a residual image avoiding explicit motion compensation; and Kim et al. [19]
presented 3DSRnet, a framework that maintains the temporal depth of spatio-temporal feature maps
to capture nonlinear characteristics between low- and high-resolution frames. Regarding the deep
learning approaches to MFSR in satellite imagery, recent work has demonstrated its applicability:
Märtens et al. [20] proposed a CNN, capable of coping with changes in illumination and cloud artifacts,
that was applied to multi-frame images taken over successive satellite passages over the same region.
Molini et al. [21] implemented a method that exploits both spatial and temporal correlations to combine
multiple images, and Deudon et al. [22] created an end-to-end deep neural network that encodes,
fuses multiple frames, and finally, decodes an SR image.

In this technical note, we present a technique that takes as a strong baseline the 3DSRnet
framework of Kim et al. [19], but adapted for satellite imagery MFSR and replacing 3DCNN blocks
with wide activation blocks [23]. This method’s core is a 3D wide activation residual network that was
fully trained and tested on the PROBA-V dataset [20] on a low-specification home laptop computer
with only 4GB of GPU memory. Despite being low on resources and based on a simple architecture,
this method topped Kelvin’s ESA challenge in February 2020 [24].

2. Materials and Methods

2.1. Image Dataset

In this work, we used the set of images from the vegetation observation satellite PROBA-V of the
European Space Agency (ESA) [20] provided in the context of the ESA’s super resolution competition
PROBA-V, which took place between 1 November 2018 and 31 May 2019 [25].

The PROBA-V sensors can cover 90% of the globe every day with a resolution of 300 m
(low resolution). Every 5 days, they can provide images of 100 m resolution (high resolution). With this
in mind, the objective of the challenge is to build the 100 m resolution images from multiple images of
a higher frequency of 300 m resolution. It should be noted that the images provided for this challenge
were not artificially degraded. As a common practice in super resolution developments, usually, a high
resolution image is artificially degraded, and this is used as the low-resolution starting point. In this
case, all the images are original, both the low- and high-resolution ones [25].
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2.1.1. Dataset Characteristics

As described in Märtens et al. [20], the dataset used for both training and testing is composed
as follows:

• One-thousand one-hundred sixty images from 74 hand-selected regions were collected at different
points in time.

• This was divided into two spectral bands: RED with 594 images and NIR with 566;
a radiometrically and geometrically corrected top-of-atmosphere reflectance in plate carrée
projection was used for both bands.

• The LR size is 128× 128 and the HR size 384× 384, and both have a bit-depth of 14 bits, but saved
as 16-bit png format.

• Each scene has a range of LR images (from a minimum of 9 to a maximum of 30) and one
HR image.

• The mean geolocation accuracy of PROBA-V is about 61 m, and (sub-)pixel shifts can occur as
the images are delivered as recorded by PROBA-V (not aligned with each other). This induces a
possible 1 pixel shift between the LR frames of an image.

• For each LR and HR image, there is a mask that indicates which pixels can be reliably used
for reconstruction. The masks were provided by Märtens et al. [20] and are based on a status
map containing information on the presence of artifacts (clouds, cloud shadows, and ice/snow)
generated from ESA’s Land Cover Climate Change Initiative and ESA’s GlobAlbedo surface
reflectance data. The exact procedure on how this map is generated can be found in Section 2.2.3
of the PROBA-V product manual [26].

2.2. Network Architecture

The proposed 3DWDSRnet method for super resolution is based on a patch based 3D-CNN
architecture that allows multiple image inputs to be scaled into a single higher resolution image.

The problem being investigated is very similar to video SR, where the resolution of a single
video frame is enhanced using the information from the surrounding frames. In a given sliding time
window, video frames usually refer to a single scene, but with subtle changes between each other.
Thus, this temporal information can benefit resolution scaling more than single-image approaches [19].
The PROBA-V dataset has multiple frames per location, which can have shifts of up to one pixel.
This evokes a similarity with the frames of a video and their possible variations, and that is why we
decided to investigate this path.

Our work takes as a strong baseline the framework proposed by Kim et al. [19] for video super
resolution: 3DSRnet. They used a 3D-CNN that takes five low-resolution input frames and seeks to
increase the resolution of the middle frame. The network is a two way residual network. The main
path acts as a feature extractor from the chaining of multiple 3D convolutional layers that preserves the
temporal depth. For the last layers, a depth reduction is performed to obtain the final 2D HR residual.
Meanwhile, the second path takes the middle frame and applies a bicubic scaling. A pixel shuffle [27]
reshapes the residual output of the main path, which is then added to the output of the secondary path
obtained by this means, the final HR frame (Figure 1).

Our approach differs from the original 3DSRnet in two main aspects (compare Figures 1 and 2):

• Convolutional layers are replaced by 3D WDSR blocks
• Bicubic upsampling is replaced by 2D WDSR blocks.
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Figure 1. Original 3DSRnet: All low-resolution input frames are fed into the main 3D Conv path to
predict the residuals for the middle frame. The results of the paths are added up to obtain the final
HR frame.

Figure 2. 3DWDSRnet: All low-resolution input frames are fed into the main WDSR Conv 3D path to
predict the scene’s residuals.The average of the frames is used as the input to the WDSR 2D Convs
path. The results of both paths are added together to obtain the final HR frame. Soft yellow highlights
the differences with the original 3DSRnet blocks.

2.2.1. WDSR Blocks

Yu et al. [23] described WDSR blocks as residual blocks with the capability to increase the final
accuracy of an SISR task. They demonstrated that a feature expansion using a 1 × 1 Conv before
the ReLU activation, followed by a feature factorization given by a 1 × 1 Conv and a 3 × 3 Conv,
keeps more information and even lowers the number of total parameters used (Figure 3). This residual
block was named WDSR-b. In our study, we expand the notion of the WDSR-b block from 2D to
3D and replace every single 3D Conv from 3DSRnet with it. To do so, we simply change the kernel
sizes from 1 × 1 to 1 × 1 × 1 and from 3 × 3 to 3 × 3 × 3. Everything else remains exactly the same.
The implementation of the WDSR block was based on Krasser’s GitHub code [28].

Figure 3. 2D-WDSR-bblock. The residual block is composed of a 1 × 1 Conv to expand features before
ReLU activation. After activation, a 1 × 1 Conv followed by a 3 × 3 Conv are applied. 3D-WDSR-b
used by our method follows the same approach, but taking into account the time dimension.
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2.3. Preprocessing and Data Augmentation

The preprocessing steps were performed as follows:

1. Register all frames from each image to the corresponding first frame by phase cross-correlation
to align the possible pixel-shifts (see the dataset characteristics in Section 2.2.1). We used the
implementation from scikit-image: phase_cross_correlation [29].

2. Remove images where all of their frames had more than 15% dirty pixels. A dirty pixel is a pixel
that has a mask showing the presence of an artifact, as explained in Section 2.2.1.

3. Select k best frames (k = 7). To do this, we sort all the frames from the cleanest to the dirtiest
(as a percentage of the total number of pixels) based on the masks provided and select the first
k frames.

4. Extract 16 patches per image.
5. Remove instances where the HR target patch had more than 15% dirty pixels.

To make the training more robust to the pixel shifts and differences between frames, a frame
based data augmentation was performed. For each patch, six new patches were added to the training
set, each of them with a random frame permutations. A similar augmentation technique can be found
in Deudon et al. [22]. The impact of patches and data augmentation by frame permutation can be seen
in Section 3.

2.4. Training

The training was performed on a low-end laptop GPU GTX1050 with 4GB of memory.
First, the model was trained on the NIR band until no more improvements were found (156 epochs).
Then, the RED band was trained over the NIR band pretrained model (61 epochs). This two-step
model training was based on Molini et al. [21], where they found it increased the final accuracy.

We used the NAdam optimizer with a learning rate of 5× 10−4 a patch size of 34 with a stride of
32, and a batch size of 32 patches. The main path was composed of 8 3DWDSR-b blocks before the
time dimension reduction. As regularization, it is important to note that common techniques such
as batch normalization do not work well in SR problems ([30,31]). We used weight normalization as
recommended by Yu et al. [23].

Quality Metric and Loss Function

Märtes et al. [20] proposed the quality metric clean Peak Signal-to-Noise Ratio (cPSNR) that
takes into account the pixel shifts between frames and is applicable for images that only have partial
information (dirty pixels). Basically, cPSNR ignores masked pixels (due to the wrong pixels, clouds, etc.)
and takes into account all possible pixel shifts between predicted SR and HR to calculate the final
metric. Inspired by cPSNR, Molini et al. [21] proposed cMSE, a modified Mean Squared Error to use as
loss functions. Since SR prediction and the HR target could be shifted, the loss embeds a shift correction.
Taking into account what was stated in Section 2.1.1 about PROBA-V mean geolocation accuracy (61 m),
the maximum pixel shift d between SR and HR is 3. Then, SR is cropped at the center by d pixels,
and all possible patch shifts HRu,v are extracted from the target HR image. Thereafter, all possible
MSE scores are calculated for each HRu,v patch, and the minimum score is taken.

We found that this loss works quite well for the problem, but based on Zhao et al. [32], we follow
their recommendation to use the Mean Absolute Error loss (MAE) as a substitute. Mathematically,
cMAE is defined as follows:

L = min
u,v∈[0,2d]

Nu,v

∑
i=1
|HRu,v − (SRcrop + b)|

Nu,v

where Nu,v is the total number of clean pixels in the u, v crop and b is the brightness bias corrections.
Figure 4 shows how the loss is calculated taking into account all possible pixel shifts.
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Figure 4. cMAE. For each possible pixel shift u,v, the cMAE is calculated between the cropped SR
and the HRu,v patch. In this example figure, the maximum possible shift is 1 (both horizontally and
vertically), so 9 patches are extracted for each possible combination. The PROBA-V dataset has a
maximum of 3 pixel shifts, so 49 combinations are needed to calculate the final loss..

3. Results

3.1. Comparisons

We compare 3DWDSRnet to the top methods at the moment the investigation was performed
(February 2020): DeepSUM [21] and HighResnet [22] (Table 1). It is worth noting that the Kelvin
ESA Competition is still open to teams that want to try their solution in a post-mortem leaderboard.
As the code of 3DWDSRnet is open to use, modify, and share, a GitHub repository [33] was provided.
There are teams that at the time of writing this technical note have built upon it and are still improving
the metrics [34].

A description of the compared methods in Table 1 follows:

• DeepSUM: It performs a bicubic upsampling of images before feeding the network. It uses
convolutional layers with 64 filters, a 96 × 96 patch size, and 9 frames. When using this approach,
higher specifications are needed because of increasing memory cost, making it impossible to train
on low specification equipment. It was trained on a Nvidia 1080Ti GPU.

• Highres-net: This method upscales after fusion, so memory usage is reduced. However, it still
needs 64 convolutional filters, 16 frames, and 64 × 64 patches to reach the best score. Scores are
improved by averaging the outputs of two pretrained networks.

• 3DWDSRnet: Our method follows the Highres-net approach of upscaling after fusion, but achieves
similar scores using less than half of the image frames (7), half the patch size (34 × 34),
and 32 convolutional filters. Moreover, there is no need to average two models to obtain these
results. Figure 5 shows a real prediction done by our best model.

Table 1. Scores obtained in the Kelvin ESA Competition public leaderboard (February 2020). Scores are
normalized by baseline; less is better. Symbol (+) refers to the memory requirements based on the
number of frames, the image patch size, and the filters used.

Method Patch Frames Loss Normalization Score Memory Requirement

DeepSUM 96 × 96 (bicubic) 9 cMSE Instance 0.94745 +++
HighResnet 64 × 64 16 cMSE Batch 0.94774 ++

3DWDSRnet (ours) 34 × 34 5 cMAE Weight 0.97933 +
3DWDSRnet (ours) 34 × 34 (aug) 5 cMAE Weight 0.96422 +
3DWDSRnet (ours) 34 × 34 (aug) 7 cMAE Weight 0.94625 +
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Figure 5. RED and NIR band SR example. The SR predicted images were obtained from our best
3DWDSRnet model (Table 1). The robustness of the method to artifacts can be seen in the example of
the RED band, where the second frame (from left to right) shows clouds in the upper left that do not
affect the SR prediction.

4. Conclusions

In this technical note, we present 3DWDSRnet, a deep learning approach to MFSR that can be used
on a low-budget computer and achieves scores that are among the best in ESA’s Kelvin Competition.
It up-scales multiple low resolution image frames (pre-registered by phase correlation) from the
PROBA-V dataset, through a two path network. One path fuses the frames using concatenated 3D
WDSR blocks, and the other applies 2D WDSR Conv blocks to the pixel mean of the input frames.
This method shows that by applying a simple combination of pre-processing steps (frame registration,
random frame permutation, clearest frame selection) and a common CNN architecture, a remarkable
improvement in the quality of the abundant low-cost satellite images available can be obtained.

5. Discussion

The results address some interesting insights about the common methods used in MFSR. It is
shown that not always the more complex and memory consumption architectures are indeed the best
ones. Sometimes, a simple model, but with the correct parameters, performs better. For example,
in our method, increasing the frames from five to seven shows an increased performance (Table 1).
Moreover, tweaking the data outside the neural network can improve the metrics even more. A simple
method such as frame permutation for data augmentation shows a consistent growth in the score.

This makes us wonder if the money and work hours invested in designing the architecture of
new neural networks as a general problem-solving approach is always a good choice. We point out,
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instead, the need to develop, in addition, algorithms optimized for every need. The latter could be
used by teams or individuals with less hardware resources. The access of developing countries to
the latest advances in hardware is not always possible, so in order to democratize the access to AI
worldwide, more research should be done on accessible, but equally efficient models.

This technical note serves as a base to continue improving the 3DWDSRnet method. Some possible
directions to explore are to:

• Further investigate data augmentation methods to benefit from multiple frames such as more
interesting permutations, inserting of pixel variations simulating clouds, and changes in image
color, brightness, contrast, etc.

• Ensemble results from multiple models as done in Highres-net [22].
• Try different patch sizes and see how this affects the performance.
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Abbreviations

The following abbreviations are used in this manuscript:

SR Super Resolution
MISR Multi-Image Super Resolution
MFSR Multi-Frame Super Resolution
CNN Convolutional Neural Network
Conv Convolutional
AI Artificial Intelligence
MAE Mean Absolute Error
MSE Mean Squared Error
cPSNR clean Peak Signal-to-Noise Ratio
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