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Abstract: Numerous Surface Soil Moisture (SSM) products are available from remote sensing,
encompassing different spatial, temporal, and radiometric resolutions and retrieval techniques.
Notwithstanding this variety, all products should be coherent with water inputs. In this work,
we have cross-compared precipitation and irrigation with different SSM products: Soil Moisture
Ocean Salinity (SMOS), Soil Moisture Active Passive (SMAP), European Space Agency (ESA) Climate
Change Initiative (ESA-CCI) products, Copernicus SSM1km, and Advanced Microwave Scanning
Radiometer 2 (AMSR2). The products have been analyzed over two agricultural sites in Italy (Chiese
and Capitanata Irrigation Consortia). A Hydrological Consistency Index (HCI) is proposed as a
means to measure the coherency between SSM and precipitation/irrigation. Any time SSM is available,
a positive or negative consistency is recorded, according to the rainfall registered since the previous
measurement and the increase/decrease of SSM. During the irrigation season, some agreements are
labeled as “irrigation-driven”. No SSM dataset stands out for a systematic hydrological coherence
with the rainfall. Negative consistencies cluster just below 50% in the non-irrigation period and lose
20–30% in the irrigation period. Hybrid datasets perform better (+15–20%) than single-technology
measurements, among which active data provide slightly better results (+5–10%) than passive data.
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1. Introduction

The technological advancement has in recent years boosted the role of remote sensing in the
applicative aspect across all geosciences fields. In the area of hydrology alone, numerous applications
have been developed: snow cover estimation [1], detection of the components of the energy budget [2],
hydrological model calibration [3], crop yield [4], and river discharge estimation [5].

Focusing on Surface Soil Moisture (SSM), the advent of remote sensing offers spatial information
in contrast to traditionally locally sampled in situ data. These consist of point-wise data, which are
gathered using fixed probes or sampling during field campaigns [6,7]. Geostatistics have been widely
used to spatially distribute SSM from point-wise data using spatial interpolation methods [8]. However
precise, this data collection technique has two major inconveniences: (1) the “spatialization” of the data,
which is required for some kind of hydrological modeling applications, is susceptible of uncertainties
depending on the chosen interpolation method [9]; (2) the effort required, both in time and money,
to retrieve the data. As a result of this second reason, for example, the time density of the data is
usually low.
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However, SSM can also be retrieved through remote sensing. In this way, data are already
spatialized and easy to retrieve, even though the quality of the data may vary due to the complexity
of the retrieval geometry both in active and passive mode, hence the uncertainty in the retrieval
algorithms [10,11]. Furthermore, the high revisit frequency of satellite acquisitions guarantees a high
data density [12]. A considerable number of different remotely sensed SSM datasets is available.
This diversity stems from four main distinctions. The first distinction is the band of the electromagnetic
spectrum used for the observations: the microwaves have seen a widespread application [13,14],
mainly because the SSM impacts the dielectric properties of the observed soil surface. Secondly,
the remote sensing technique can be either active or passive. Active sensors emit an impulse and
then compare it with the received one [15], while passive sensors measure the natural electromagnetic
radiation emitted and reflected by the Earth [16]. Thirdly, the diversity of retrieval algorithms and
configurations applied to the radiometric data. One example is the application of bottom–up [17] and
top–down [18] approaches to the same data sources. Another distinction can be that between physical
and empirical approaches, which has been studied with an application to Advanced Microwave
Scanning Radiometer (AMSR)-E data. The pre-processing of raw data, the choice of auxiliary data,
and the choice of parameter sets all have a large impact on the retrieved soil moisture. Finally, while
some SSM products are provided with a minimal pre-processing on the satellite retrieval, others
(that can be defined as “hybrid”) are the result of more complex algorithms or data fusion approaches.
In fact, none of the existing remote sensing techniques can provide SSM at the needed spatial (plot scale
for agricultural applications) and temporal (daily) resolution with the associated required accuracy,
which all depend on the objective application. Disaggregation has been widely applied to take
advantage of complementary information: optical and microwave, radar and microwave [19], optical
and Synthetic Aperture Radar (SAR). As in the example work from Malbéteau et al. [20], data from
completely different products could also be elaborated to obtain a refined disaggregated SSM product.

This extensive variety of data has prompted a plentiful abundance of studies directed at
validating satellite data against on-ground measurements or comparing performances between
different products [21]. The main practice prescribes a comparison with on-site SSM data [22,23]:
Brocca et al. [24] have performed a comparison with in situ data in various areas all over Europe with
ASCAT (Advanced SCATterometer) and AMSR-E data, identifying a better performance from the active
product but generally registering low correlations (0.52 and 0.36 on average, respectively, with values
as low as 0.11 and never higher than 0.61); Al Bitar et al. [25] have tested the accuracy of Soil Moisture
Ocean Salinity (SMOS) data over ground measurements, obtaining inconclusively varying correlations
(in the range 0.28–0.82) and errors (Root-Mean Square Error, RMSE, range of 0.032–0.110 m3 m−3)
and registering an underestimation of dry pixels and overestimation of wet ones; Kerr et al. [26]
also worked with SMOS data, obtaining medium values (in the range 0.35–0.65) for their correlation
with on-ground measurement networks in the United States of America. Moreover, other studies
provide a comparison between different remotely sensed SSM datasets: Cui et al. [27] tested SSM
data from Soil Moisture Active Passive (SMAP), SMOS, Advanced Microwave Scanning Radiometer 2
(AMSR2), and European Space Agency Climate Change Initiative (ESA-CCI), among others, obtaining
medium-to-high correlations with ground data (ranging from the 0.48 of AMSR2 to 0.89 of SMAP);
El Hadjj et al. [28] compared SMOS, SMAP, ASCAT, and Sentinel-1 SSM products, also employing
on-ground measurements and obtaining slightly better correlation results for SMAP (higher than 0.6)
than ASCAT (around 0.5) and SMOS (lower than 0.5). Finally, a further improved approach to data
validation is the use of triple collocation, i.e., employing a triangulation between remotely sensed data,
physical modeling of the process, and on-site measurements to judge the quality of the former [29–31].
The main drawback of triple collocation is the need to have independent datasets, which is hardly
applicable considering the use of common ancillary datasets in the available retrieval algorithms.

Furthermore, some studies have attempted to explain some inconsistencies in remotely sensed
SSM data with the presence of artificial irrigation, using this hypothesis to infer irrigation information
back from the SSM outputs of different satellites. The satellite involved and the techniques used in
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these studies are quite different: Brocca et al. [32] obtained irrigation information from the inversion of
the soil water balance equations, working with SMAP, SMOS, ASCAT, and AMSR2; Lawston et al. [33]
resorted to an anomaly comparison between SSM and precipitation employing SMAP; Zhang et al. [34]
performed a comparison of observed data from AMSR-E, AMSR2, ASCAT, and the blended multi-sensor
ESA-CCI product with a reference, global-scale land surface model (from ERA-Interim), which did not
feature any information about the presence of irrigation. All of these studies offered positive, however
inconclusive results on the matter at hand; finally, Zaussinger et al. [35] employed SMAP, AMSR2,
and ASCAT data to reconstruct irrigation information over the continental United States from the
Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) soil moisture
reanalysis product.

Notwithstanding the different characteristics of the various products, all should be consistent with
the actual on-ground water cycle dynamics. Irrigation seasons, precipitation events, or a lack of them
all affect the SSM dynamics throughout the year, and their effect needs to be assessed in any given
soil moisture product, regardless of its distinctive qualities. This work cross-references soil moisture
datasets with information about rainfall and irrigation with a twofold objective:

(i) Establish a methodology to measure the “physical” reliability/consistency of a given dataset
(ii) Discern the differences between the various datasets and identify the possible background reasons

SSM–precipitation correlations, even employing only ground measurements, tend to be
middle-to-low. Dai, Trenberth, and Karl [36] obtained values in the range 0.11–0.26 in Kansas
(U.S.A.), while, Sehler, Li, Reager, and Ye [37] measured values in the region of 0.4 in Mediterranean
Europe. Thus, an improved correlation is developed, with an index that compares remotely sensed SSM
evolution with cumulated rainfall in the time interval between the two successive satellite overpasses.

A similar approach to our methodology has been taken by McCabe et al. [38]. They analyzed
the hydrological consistency of AMSR-E data against different components of the water mass and
energy balance in the hydrological cycle over semi-arid Arizona. In particular, they compared SSM
anomaly against precipitation in the hours preceding the satellite overpass. Widely ranging values
(from 0.03 up to 0.77) were registered for correlation between increases higher than or equal to 4% in
the SSM anomaly and precipitation. A similar work has been performed on the Tibetan Plateau by
Meng et al. [39], employing an ESA-CCI soil moisture product. Among other results, they showed
that only 57% of their study area with non-null 24-h cumulative precipitation showed a positive soil
moisture anomaly greater than 4%.

Finally, this work follows in the tracks of a general effort by the scientific community to revise and
improve the usage of satellite SSM products. Gruber et al. [40] have pointed out a series of possible
“research gaps” to be addressed. Two of those are particularly interesting from the perspective of the
end user:

(i) Data uncertainties are assumed to be stationary, although varying vegetation conditions can
influence SSM retrieval over the course of different months;

(ii) Merging algorithms, used to obtain long-spanning SSM records from different instruments, “give
rise to unique error characteristics such as highly non-stationary errors due to the intermittent
and weighted use of retrievals from different sensors or inhomogeneities between sensor
transition periods”.

Both points can be addressed with the algorithm developed in this work. A comparison of the
results in the following sections according to stage of the vegetation growth could help determine the
actual incidence of issue (i), while a contrast of algorithm-derived SSM products (e.g., ESA-CCI) with
“direct” measurement ones can shed light on point (ii).
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2. Materials and Methods

2.1. Hydrological Consistency Index (HCI) Methodology

To detect the effect of irrigation or precipitation events on Surface Soil Moisture (SSM), we propose
an improved correlation index more focused on the physical consistency of the two phenomena that
rule the water cycle in the superficial soil layer: water accretion (snow-/ice-melt, rainfall, or irrigation)
and water depletion (evapotranspiration, surface runoff, or deep percolation).

This physically based consistency between SSM and precipitation data has been developed in
the form of a Hydrological Consistency Index (HCI) (Figure 1), which evaluates the sign of the soil
moisture variation “positively” or “negatively” according to the presence or absence of precipitation.
In particular, for each soil moisture record in the dataset, the precedent soil moisture retrieval and
the cumulated rainfall in the elapsed period are compared. A “positive agreement” (A+) is assigned
for any day in which either (a1) an increase in soil moisture corresponds to a non-null rainfall or (a2)
a decrease in soil moisture is registered in the absence of rainfall. On the other hand, a “negative
agreement” (A−) is assigned if the opposite situations unfold, that is: either (b1) an increase in soil
moisture is observed in absence of precipitation or (b2) a decrease in soil moisture is found even
though a consistent amount of precipitation has been registered. As a second step, the case (b1) has
been further investigated: if it is found during an irrigation event that the increase of soil moisture
can be explained by this artificial water input. In this case, the agreement is considered as “positive”
and labeled as “irrigation-driven positive agreement” (IA+) as opposed to the cases (a1) and (a2),
which can be seen as “rainfall-driven positive agreements”. An example application of the HCI
is detailed in the right-hand panel of Figure 1. Each dot represents an SSM measurement, which
is expressed in its SSM variation from the previous retrieval and the cumulated precipitation in
between the two. The black lines represent the conceptual divides between the different scenarios.
The vertical one (∆SSM = 0 m3 m−3) is corrected to the dashed gray lines (∆SSM = ±ξ) to comply
with the declared measurement error of the datasets. In our application, we have mainly resorted to
(ξ = 0.04 m3 m−3), which is assumed as the most common measurement error of the satellite datasets;
for active instruments, the corresponding saturation value (4.5%) is chosen. When comparing datasets
with a widely varying spatio-temporal resolution, this parameter can be tailored to each dataset’s
characteristics. The horizonal one (PCUM = ζ) is set slightly higher than zero to prevent “false positives”
generated by the spatial interpolation process. We have mainly set the parameter to 0.5 mm but
different climates may require a different parameterization.
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An ideal soil moisture dataset would display only positive agreements (either rainfall- or
irrigation-driven ones). The amount of negative agreements recorded for a given soil moisture dataset
can be seen as an indirect, application-oriented estimate of its error. Then, the results of the developed
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methodology are compared with standard simple statistical correlation indexes, Pearson and Spearman
correlations, to verify the improvements in discerning the relationship between SSM and precipitation
and irrigation.

2.2. Case Studies

The Capitanata Irrigation Consortium case study, specifically the Sud Fortore district, is located
in Southern Italy, in the Puglia region and delimited by the Apennines on the west and the Gargano
Promontory on the east side. It covers an area of about 65,000 ha, 45% of which is irrigated through
the Consortium water distribution network (56,700 ha), while the remaining areas are irrigated with
private wells. The role of irrigation is crucial: the mean irrigation volume in the irrigation season
(from April to October) is about 600 mm, while the seasonal rainfall amount is about 150 mm. Daily
irrigation volumes measured in the main aqueduct are available from 2013 to 2018. During the different
years, the seasonal volumes range between 46 and 60 hm3 with a mean value of 53 hm3. The Sud
Fortore district is an intensive cultivation area that is mainly devoted to durum wheat (T. durum)
and tomatoes (S. lycopersicum) during the spring–summer season and fresh vegetables (sown in late
summer and harvested October–February).

The Chiese river basin closed at the confluence with the Oglio river has a total area of 1267 km2,
including Lake Idro. Partially included in the river basin is the Chiese Irrigation Consortium, covering
an area of 20,000 ha, which takes the irrigation water from the Chiese river downstream Lake Idro,
just downstream the Gavardo station. In the Lombardia region, which is one of the most urbanized
and industrialized regions of Italy, water management is critical during the summer months when
multiple and conflicting usages (i.e., civil, industrial, agriculture, and hydroelectric) can reduce water
availability for irrigation. The area is intensively cultivated with summer crops (i.e., corn, forage),
which are highly irrigated, and winter wheat, which cover about 68% and 8% of the agricultural land,
respectively. The irrigation practice is based on fixed irrigation turn every between 7 1/2 and 8 1/2

days, which are defined a priori before the beginning of the irrigation season for each sub district.
The irrigation is provided to each field with a channel network of 1400 km covering an area of 18,000 ha
and with wells (more than 10,000) covering about 2000 ha. Irrigation water is mainly provided by
surface irrigation, and groundwater does not support irrigation in between the beginning of April
to the end of September. Mean rainfall in the crop season is 250 mm, while the irrigation is about
1200 mm [41].

In short, the two case studies offer a complete diversity of boundary condition to the work here
presented: (i) while the Capitanata area is close to the sea and in a mainly plain region, the Chiese
consortium is located close to the Lombard Prealps mountain range in the southernmost part of the
Central Alps; (ii) the Capitanata consortium hosts a wide variety of crops, with numerous bare areas
in the intermediate periods, while maize is the main cultivation of the more homogeneous Chiese
consortium; (iii) both crops and local climate create different seasonal cycles. All these reasons set the
two cases apart as quite diverse and contribute to the robustness of the analysis. The two case studies
are detailed in Figure 2.

2.3. Remote Sensing Surface Soil Moisture Datasets

The Soil Moisture Ocean Salinity (SMOS) Earth Explorer is the European Space Agency (ESA)
mission aimed at providing global SSM over land and ocean salinity [42]. Launched in November 2009,
it is the first mission to provide global multi-angular and full-polarization L-band (1.4 GHz) microwave
observations using 2D interferometry. The main advantage of the use of L-Band frequency is that
the part of the surface emissions associated to surface soil moisture are higher than those for higher
frequencies, and also that both cloud and canopy cover do not affect the measurement. In addition,
passive microwave is less impacted by clouds and vegetation [43]. The volumetric soil moisture is
retrieved at coarse resolution (ca. 15 or 25 km), with an accuracy mission goal better than 0.04 m3 m−3.
Two overpasses are available, one in the ascending orbit (06:00 local time) (SMOS Asc.) and the other
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in the descending one (18:00 local time) (SMOS Desc.) [44]. The MIR_CLF31 Level3 product v4 used
for this study [45] was downloaded from the Centre Aval de Traitement des Données SMOS (CATDS)
processing center. The data were filtered for Radio Frequency Interference (RFI) probability (<0.9) and
χ2 index probability (<0.9) [25].
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The Soil Moisture Active Passive (SMAP) mission is the National Aeronautics and Space
Administration (NASA) project aimed at studying the surface soil water. Launched in 2014, it featured
both radar (an active instrument) and a radiometer (a passive one), operating in the L-band (1.41 GHz)
of the microwave spectrum with a mesh antenna. SMAP featured also an onboard RFI processor.
The SMAP acquisitions are at a fixed angle (40◦) in dual polarization with a 40 km resolution. While
the radiometer provides “passive” estimates with its coarse spatial resolution, the radar analyzes
the “active” backscatter obtained from a Synthetic Aperture Radar (SAR) technology at 3 km spatial
resolution. The SAR stopped operations 3 months after launch due to failure. The combination of the
two datasets creates the final product, joining the penetrating capacity of the “passive” technology
with the high spatial resolution of the “active” one [46]. SMAP level3 release 16 soil moisture from
passive sensor at 36km (SMAP_L3_SM_P) was downloaded from the NASA Earthdata portal.

The dataset from the ESA Climate Change Initiative (CCI) [47] is not the result of a direct
observation but provides three different datasets. The main goal was standardizing different SSM
observations throughout the years to obtain a unique database for reference. First, data from active
SSM sensors (AMI-WS, ASCAT-A and ASCAT-B) and passive ones (SMMR, SSM/I, TMI, AMSR-E,
Windsat, SMOS, AMSR2) are joined in two separate datasets, ESA-CCI Active and ESA-CCI Passive,
respectively. Thus, we both preserve the homogeneity of the retrieval technology. Employing this
wide range of instruments allows reducing the no-data days with respect to the single products; in this
way, the dataset effective revisit time is decreased. Active products are obtained through the Water
Retrieval Package (WARP) algorithm [48], which is a change detection approach that retrieves soil
moisture in the form of saturation degree, referring to the historically lowest and highest observed
values. On the other hand, passive products are obtained through the Land Parameter Retrieval Model
(LPRM) algorithm and are provided in volumetric ratio units (m3 m−3). In order to join data from
different missions in one unique dataset, all the products are harmonized to a common reference, which
was chosen by the authors because of the expected higher accuracy and the most recent operative
period: ASCAT for the active group and AMSR-E for the passive one [49]. Then, in order to join
the two global datasets, both the active and the passive products are re-scaled against Global Land
Data Assimilation System (GLDAS) Noah soil moisture simulations. The combined dataset (ESA-CCI
Combined) is an aggregate dataset, containing information from a wide variety of active and passive
sensors. The combined hybrid dataset is obtained through an algorithm that merges the two datasets
according to the estimated reliability of each [50,51].
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The Copernicus Surface Soil Moisture 1km Version 1 product (SSM1km) is obtained from Sentinel-1
C-band SAR backscatter after geo-correction and radiometric calibration. The output product is an
index in percent of saturation, with 1◦/112 nominal resolution (around 1 km at European latitudes).
Overpasses from the Sentinel-1 are programmed every day, but the revisit time over a single spot
on the Earth surface is longer: in the Capitanata case study, for example, the actual revisit time is
slightly higher than 4 days [52]. For the purposes of this study, the Copernicus data have been upscaled
(Copernicus Upscaled dataset), obtained by a simple average of all the pixels falling within each
dataset. The resulting fictitious pixel covers a large area (ca. 1100 km2 for the Capitanata irrigation
consortium, ca. 1000 km2 for the Chiese one) that can be assimilated to a 30 km pixel, which is in line
with the other coarse-resolution datasets.

The Advanced Microwave Scanning Radiometer 2 (AMSR2) is the successor of AMSR-E, operating
since 2012. It is part of the Global Change Observation Mission (GCOM) by the Japan Aerospace
Exploration Agency (JAXA). In its orbit around the Earth, it guarantees two overpasses, one in the
Ascending path (13:30 local time) (AMSR2 Asc.) and the other in the Descending one (01:30 local
time) (AMSR2 Desc.) [53]. Data from AMSR2 are featured in the ESA-CCI passive product, but we
have chosen to analyze them separately for the Capitanata test case because no ESA-CCI passive data
were available for the pixel of interest, mainly due to a geographical reprojection problem. Since the
ESA-CCI passive product is available for the pixel of interest in the Chiese test case and features only
AMSR2 data, this dataset is not analyzed for that case study. Among the many sources of the AMSR2
dataset, the one chosen for this study is the LPRM_AMSR2_DS_D_SOILM3 surface soil moisture [53],
which is also the one employed for the ESA-CCI product.

An overview of the employed datasets is available in Table 1.

Table 1. Specifics of the different Surface Soil Moisture (SSM) dataset employed in the study.

Dataset Product Ref.
Time

Retrieval
Technology

E.M.
Spectrum

Revisit
Time

Sensor
Grid

Product
Grid Source

SMOS Ascending
Descending

06:00
18:00 Passive L band 1-2 days 40 km 25 km [44]

SMAP Descending 18:00 Passive L band 2.2 days 40 km 36 km [46]

ESA-CCI
Active
Passive

Combined
00:00

Active
Passive
Hybrid

Various
bands 1.2 days Variable 0.25◦ [47]

Copernicus
(Sentinel1)

Original
Upscaled 00:00 Active C band 4.1 days 10 m 1◦/112

30 km [52]

AMSR-2 Ascending
Descending

13:00
01:00 Passive C band 1.5 days 50 × 70 m 10 km [53]

2.4. Precipitation Dataset

The rainfall data are obtained through spatial interpolation with the quadratic inverse distance of
different rain gauges in the area of interest. Half-hourly or hourly data from the Meteonetwork rain
gauges cover both the Chiese (17 measurement stations) and the Capitanata (24) irrigation consortia.
Supplementary data from four stations managed by the Puglia regional environmental protection
agency (ARPA) have also been aggregated in the computations for the Capitanata case study [41].
As each satellite pixel has its own unique footprint and reference, a different precipitation time series is
computed for each dataset, with each final precipitation pixel sharing the same spatial resolution of
its SSM pixel. The resulting precipitation data is characterized, on average, by a moderate variation
coefficient (32%).

Furthermore, as each satellite has its own distinctive overpass time, the corresponding precipitation
dataset is computed by aggregating in one “daily” value all the rainfall occurred in the 24 h prior to
the satellite passage. For example, the overpass time of the descending trajectory of SMOS is 18:00:
the SMOS-Desc.-adjusted precipitation dataset will feature, for each day, the rainfall that occurred after
18:00 of the previous day and up until 18:00 of the target day. For satellites with a high revisit time
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(>1 day), data from all the days in between two consecutive overpasses are aggregated in the total
precipitation required by the algorithm. For datasets not referred to a single satellite (ESA-CCI and
Copernicus), a standard “overpass” time of 00:00 is set, as suggested in [54,55].

3. Results

3.1. Correlation between SSM and Precipitation

For the purpose of demonstrating the utility of our new index, an experiment has been performed,
investigating the relation between SSM estimates and the rainfall that occurred in the 24 h before the
satellite overpass through classical correlation indexes: Pearson and Spearman correlations. The former
requires an assumption of normality for the distribution of the involved variables, which is not always
the case for precipitation. This being the case, and considering that the Pearson correlation has
nonetheless been used in numerous studies on SSM precipitation comparison [36,37], we have chosen
to compute both correlation indexes. Indeed, Spearman correlation does not require an assumption
of normality for the involved variables and helps to provide some information about their possible
relationship. As shown in Table 2, low-to-negligible Pearson and Spearman correlations were found
for all datasets. The lowest correlation values around 0.03 and 0.05 are obtained for SMOS Desc.
data for Capitanata and Chiese, respectively; while higher values are found for SMOS Asc. (0.24).
The highest values are obtained for the Copernicus dataset (0.45 in Capitanata area), as would be
expected from the comparison between a precipitation field obtained by the spatial interpolation of
rain gauge measurements and (relatively) high resolution SSM data. Data from ESA-CCI Passive are
not featured for the Capitanata area because of a lack of data over the main Consortium area. Data
from AMSR2 are not featured for Chiese, as they are already contained within the ESA-CCI passive
dataset. The low correlations seem to be in line with similar values obtained by [36,37].

Table 2. Pearson and Spearman correlations among different SSM dataset estimates and the rainfall
occurred in the preceding 24 h.

Dataset
Capitanata Chiese

Pearson Spearman Pearson Spearman

ESA-CCI Active 0.1644 0.2775 0.2120 0.3039
ESA-CCI Passive — — 0.0846 0.1076

ESA-CCI Combined 0.1312 0.3080 0.1056 0.2053
Copernicus 0.3806 0.4174 0.2977 0.3035

Copernicus Upscaled 0.4173 0.4499 0.3406 0.3629
SMOS Asc. 0.2396 0.2928 0.1192 0.1451
SMOS Desc. 0.0381 0.0667 0.0552 0.0918

SMAP 0.3929 0.4270 0.1770 0.2494
AMSR-2 Asc. 0.1189 0.1203 — —
AMSR-2 Desc. 0.1016 0.1224 — —

3.2. Consistency for Capitanata Irrigation Consortium

The newly defined consistency procedure is applied to all the datasets over the Capitanata
irrigation consortium. Figure 3 shows an example application on the SMOS descending dataset. First,
an algorithm run is performed without taking irrigation into account. Then, the same data are analyzed
considering irrigation, in order to highlight its contribution to the analysis process. In the first panel
(Figure 3a), the SSM time-series along year 2015 has been displayed. The yellow background identifies
irrigation days, while the blue one is associated with the non-irrigation ones. Each SSM estimation is
colored green if a positive agreement (A+) is recorded for that instance, red if a negative one (A−) is
found, or white if the variation from the previous SSM estimation is below the measurement error
threshold (in this case, the algorithm is not applied at all). In the middle panel (Figure 3b), the algorithm
is applied, taking into account the presence of irrigation: some SSM retrievals, which were red (A−)
in the first panel, have now been colored blue to represent the irrigation-driven positive agreements
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(IA+), as detailed in Section 2.1. Finally (Figure 3c), the interpolated precipitation over the SSM pixel is
shown in the third and lower panel.Remote Sens. 2020, 12, x 9 of 26 
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Figure 3. Distribution of positive (A+), negative (A−) and irrigation-driven positive (IA+) agreements
for a Soil Moisture Ocean Salinity (SMOS) descending pixel in the Capitanata test case. Results before
(a) and after (b) taking irrigation volumes into consideration. The corresponding precipitation time
series is shown in the lower panel (c).

The first take-away from the no-irrigation algorithm run (Figure 3a) is that the dataset does not
show a clear positive trend: of over 145 records in year 2015, 62 (43%) show some incongruence when
compared with the registered rainfall. However, when looking at these results split by irrigation
regime, a higher proportion of positive agreements is recorded in the irrigation period (61–29% against
51–49% for the non-irrigation period).

The results from the complete algorithm are detailed in Figure 3b and the right-hand half of
Table 3. Of the 37 negative agreements (A−) recorded during the irrigation season, 24 are found to be
explainable with the knowledge about the irrigation regime (IA+). This leaves out 13 “unexplainable”
negative agreements between the SSM dataset and precipitation. Thus, the performance of the SMOS
dataset, for the year 2015 and over the Capitanata Irrigation Consortium, can be considered “mild”
in the non-irrigation period (49% of negative agreements) but quite positive in the irrigation one
(only 14%).

Table 3. Number of SSM retrievals classified for each consistency category (relative weight in
parentheses), as displayed in Figure 3.

Irrigation Regime Simple HCI (No Irrigation) Complete HCI (With Irrigation)

Non-Irrigation period A+ 26 (51%) A+ 26 (51%)
A− 25 (49%) A− 25 (49%)

Irrigation period
A+ 57 (61%) A+ 57 (61%)

A− 37 (29%) A− 13 (14%)
IA+ 24 (26%)

This same analysis has been carried out for all datasets and all years. An example image
corresponding to year 2016 is shown in Figure 4. SMAP data (Figure 4c) show smoother variability than
SMOS data (a lower standard deviation throughout the year) and in general show a higher positive
agreement irrespective of the irrigation information. Data from the ESA-CCI are quite heterogeneous,
starting from the units: the active dataset (Figure 4d) is a saturation ratio dataset, while the passive
one is a volumetric ratio. The combined dataset (Figure 4e), although showing a much higher data
density (approximately 1 SSM estimate every day against the 2 days of the single active and passive
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datasets), displays little variation from one estimate to the next. Most (73% in 2016) of the combined
SSM values vary from their respective previous ones by less than 0.04 m3 m−3, which results in a
much smaller number of recorded SSM–precipitation couples used in the evaluation of the agreement.
Upscaled Copernicus data are visible in Figure 4f, showing the lower data density of this dataset with
respect to the others, with one SSM estimate on average every 4 days. AMSR-2 data (Figure 4g,h)
show an important oscillation around the average and a low degree of seasonality, almost retaining the
same average value all year long, which can be explained by the impact of the vegetation cover on the
retrievals when using C and X-Band microwave [56].
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Figure 4. HCI data for eight datasets for the Capitanata test case in 2016: SMOS ascending (a) and
descending (b), Soil Moisture Active Passive (SMAP) (c), European Space Agency Climate Change
Initiative (ESA-CCI) active (d) and combined (e) products, Upscaled Copernicus (h), Advanced
Microwave Scanning Radiometer 2 (AMSR2) ascending (g) and descending (h). Rainfall data also
provided (i). The marker color identifies the agreement sign: green for positive agreements (A+), red
for negative ones (A−), and blue for irrigation-driven positive ones (IA+). White markers refer to data
not processed by the algorithm because of a below-threshold SSM variation.
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The original data from Copernicus at 1km resolution can be presented differently, since the
algorithm application as detailed above has been performed not on one single pixel per year, but on
1353 pixels covering the consortium. Therefore, the global result is presented in terms of maps, allowing
a more detailed description of the SSM dataset (Figure 5).
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Figure 5. HCI data of the Copernicus dataset for the Capitanata case study, year 2016. The first row
details the HCI for the irrigation period: positive (A+), negative (A−) and irrigation-driven positive
(IA+) agreements. The second row refers the HCI for the non-irrigation period: positive (A+) and
negative (A−) agreements.

The summarized results over the different datasets for the four test years (2015–2018) are detailed
in Table 4 for the non-irrigation period and Table 5 for the irrigation season. For each year and
product, the number of the soil-moisture-and-accumulated-precipitation couples, or “occurrences” (n),
the proportions of positive (A+), negative (A−), and irrigation-driven positive (IA+) agreements are
provided. For every SSM dataset except Copernicus SSM1km, the table data refer to the single pixel
chosen for the evaluation; for the Copernicus SSM1km, the average values from all the pixels covering
the irrigation consortium are provided. Overall, negative agreements occur on average 40% of the times
in the non-irrigation period. The ESA-CCI datasets tend to score lower results than the passive datasets
(SMOS and AMSR2, for example). When shifting to the irrigation period, the negative agreements fall,
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on average, to 14%. Some datasets feature very sharp decreases (e.g., SMOS descending from 57%
down to 17% in 2017), while some register a moderate increase (e.g., SMOS descending from 25% up to
31% in 2018). The decrease in registered negative agreements is only partly justified by a connected
increase in positive agreements. Irrigation-driven positive agreements are usually recorded between
15% and 30%, with an average value of 23%.

Table 4. HCI results for the non-irrigation period over Capitanata: number of SSM–precipitation
couples (n), proportion of positive (A+) and negative (A−) agreements.

Dataset
2015 2016 2017 2018

n A+ A− n A+ A− n A+ A− n A+ A−

Active 49 71% 29% 45 64% 36% 65 75% 25% 36 83% 17%
Combined 26 69% 31% 19 58% 42% 32 72% 28% 21 90% 10%
Copernicus 18.5 59% 41% 18.1 50% 50% 37.3 62% 38% 36.0 58% 42%

Up. Copernicus 17 59% 41% 16 44% 56% 34 65% 35% 35 60% 40%
SMOS Asc. 46 50% 50% 36 50% 50% 19 63% 37% 22 68% 32%
SMOS Desc. 50 50% 50% 34 56% 44% 41 44% 56% 16 75% 25%

SMAP - - - 24 79% 21% - - - - - -
AMSR2 Asc. 48 60% 40% 57 53% 47% 92 50% 50% 97 48% 52%
AMSR2 Desc. 71 48% 52% 60 53% 47% 103 52% 48% 105 59% 41%

Table 5. HCI results for the irrigation period over Capitanata: number of SSM–precipitation couples
(n), proportion of positive (A+), negative (A−), and irrigation-driven positive (IA+) agreements.

Dataset
2015 2016 2017 2018

n A+ A− IA+ n A+ A− IA+ n A+ A− IA+ n A+ A− IA+

Active 61 75% 7% 18% 94 70% 14% 16% 43 70% 9% 21% 33 67% 12% 21%
Combined 40 65% 8% 28% 63 71% 10% 19% 29 76% -% 24% 30 63% 13% 23%
Copernicus 31.4 65% 23% 12% 25 51% 31% 18% 26 62% 17% 21% 22 63% 23% 14%

Up. Copernicus 32 69% 22% 9% 29 59% 24% 17% 25 60% 16% 24% 23 74% 17% 9%
SMOS Asc. 102 56% 16% 28% 76 61% 22% 17% 58 71% 10% 19% 26 62% 15% 23%
SMOS Desc. 95 59% 16% 25% 72 49% 25% 26% 53 53% 19% 28% 35 31% 31% 37%

SMAP - - - - 44 64% 30% 7% - - - - - - - -
AMSR2 Asc. 105 55% 13% 31% 112 46% 22% 31% 94 54% 13% 33% 90 49% 17% 34%
AMSR2 Desc. 116 55% 16% 29% 107 56% 19% 25% 95 59% 12% 29% 108 57% 12% 31%

Globally, not much difference can be found between the datasets. For any given year,
the agreements tend to cluster around a common value, with relatively low variation coefficients
(10–20%), notwithstanding the depicted differences between the datasets.

The averaged Copernicus data are presented in Tables 4 and 5, with results in line with those of
the other datasets. However, the dataset shows a much more heterogeneous behavior, as can be seen in
Figure 5: very low positive agreements (less than 30%) can be registered in the northwestern area of the
consortium. The irrigation-driven positive agreement shows a highly heterogeneous pattern, probably
reflecting the distribution of the most irrigated fields within the consortium. This may be explained by
the combined impact of surface roughness and vegetation biomass on the retrieved soil moisture [57].

3.3. Consistency for Chiese Irrigation Consortium

The same analysis has been carried out over the Chiese test case. Results are displayed, dataset by
dataset, in Figure 6 (example run for 2016 with all datasets except Copernicus) and 7 (2016 run for
Copernicus). Numerical results are detailed in Tables 6 and 7. In many aspects, the results about the
Chiese irrigation consortium resemble the ones about the more southern case study. For any given
year, the performances of the different datasets do not differ much, in particular in the non-irrigation
period. However, overall, positive agreements (A+) are higher than the Capitanata test case: values as
high as 84% are attained, with frequent instances of overpassing the 70% mark. On the other hand,
the irrigation-driven positive agreements (IA+) register low values; they are higher than 20% only a
few times.
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Figure 6. HCI data of seven datasets for the Chiese test case in 2016: SMOS ascending (a) and descending
(b), SMAP (c), ESA-CCI Active (d), passive (e) and combined (f) products, upscaled Copernicus (g).
Rainfall data also provided (h). The marker color identifies the agreement sign: green for positive
agreements (A+), red for negative ones (A−), and blue for irrigation-driven positive ones (IA+). White
markers refer to data not processed by the algorithm because of a below-threshold SSM variation.
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Table 6. HCI results for the non-irrigation period over Chiese: number of SSM–precipitation couples
(n), proportion of positive (A+) and negative (A−) agreements.

Dataset
2015 2016 2017 2018

n A+ A− n A+ A− n A+ A− n A+ A−

Active 77 71% 29% 77 75% 25% 49 74% 27% 42 43% 57%
Passive 52 62% 39% 51 65% 35% 56 68% 32% 35 60% 40%

Combined 18 61% 39% 24 75% 25% 21 62% 38% 6 33% 67%
Copernicus 14.2 56% 44% 45.8 57% 43% 34.7 60% 40% 28.3 47% 53%

Up. Copernicus 14 57% 43% 51 57% 43% 37 62% 38% 25 44% 56%
SMOS Asc. 53 62% 38% 49 43% 57% 80 61% 39% 40 43% 57%
SMOS Desc. 41 46% 54% 32 53% 47% 64 52% 48% 39 36% 64%

SMAP - - - 13 69% 31% - - - - - -

Table 7. HCI results for the irrigation period over Chiese: number of SSM–precipitation couples (n),
proportion of positive (A+), negative (A−), and irrigation-driven positive (IA+) agreements.

Dataset.
2015 2016 2017 2018

n A+ A− IA+ n A+ A− IA+ n A+ A− IA+ n A+ A− IA+

Active 36 67% 22% 11% 70 60% 30% 10% 65 59% 26% 15% 47 51% 43% 6%
Passive 91 74% 12% 14% 94 70% 18% 12% 77 75% 10% 14% 39 72% 15% 13%

Combined 42 84% 2% 14% 61 84% 5% 11% 58 79% 12% 9% 34 77% 18% 5%
Copernicus 33.9 57% 38% 5% 26.0 64% 29% 7% 60.3 70% 23% 7% 53.9 57% 39% 4%

Up. Copernicus 33 58% 42% -% 30 67% 33% -% 63 78% 17% 5% 53 55% 43% 2%
SMOS Asc. 100 65% 14% 21% 104 66% 18% 16% 82 56% 23% 21% 60 50% 37% 13%
SMOS Desc. 100 62% 22% 16% 101 55% 24% 21% 69 61% 23% 16% 62 58% 36% 6%

SMAP - - - - 34 77% 23% -% - - - - - - - -

3.4. Capitanata–Chiese Comparison

When comparing the results of the methodology over the two cases studies, it is important to keep
in mind the differences between them. The Capitanata consortium is located in a considerably dry
area (540 mm/year on average), with a vital need for artificial irrigation. On the other hand, the area
around Lake Garda, where the Chiese irrigation consortium is located, is much wetter (760 mm/year).
This means that for this second test case, the increases in soil moisture should be mainly linked to the
presence of precipitation, and so the “irrigation-driven positive agreements” should be less important.
In fact, the higher amount of rainy days (206 days/year in the 2015–2018 period, against 158 days/year
for the Capitanata in the same period) reduces the possibility of recording SSM variations without
the presence of precipitation. Thus, from a purely methodological point of view, the possibility of
registering IA+ cases decreases with the amount of rainy days in a year. The results comparison is
detailed in Table 8.

Table 8. Averaged HCI results (SMAP results refer only to 2016).

Dataset

Capitanata Chiese

Non-Irrigation Irrigation Non-Irrigation Irrigation

A+ A− A+ A− IA+ A+ A− A+ A− IA+

Active 73% 27% 71% 11% 18% 68% 32% 59% 30% 11%
Passive - - - - - 64% 36% 73% 14% 13%

Combined 75% 25% 75% 4% 21% 64% 36% 81% 9% 10%
Copernicus 58% 42% 60% 24% 16% 55% 45% 63% 32% 5%

Up. Copernicus 59% 41% 65% 20% 15% 56% 44% 65% 32% 2%
SMOS Asc. 55% 45% 62% 15% 23% 54% 46% 61% 21% 18%
SMOS Desc. 52% 48% 54% 19% 28% 47% 53% 59% 25% 16%

SMAP 79% 21% 70% 23% 7% 69% 31% 77% 24% -%
AMSR2 Asc. 54% 46% 61% 11% 29% - - - - -
AMSR2 Desc. 52% 48% 55% 12% 33% - - - - -

Neither of the test cases features a very high incidence of positive agreements in the non-irrigation
period. The highest recorded values are both from the ESA-CCI datasets: the combined (75%) for
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Capitanata and the active (64%) for Chiese, apart from SMAP, whose data refer to one year alone.
All the other datasets cluster not much further than the 50% threshold, with SMOS Desc. (over Chiese)
not even attaining that value.

When shifting to the irrigation period, all datasets present a reduction of the negative agreements:
for the Capitanata case study, the irrigation negative agreements are at least halved, being on average
reduced by a factor higher than 3; for the Chiese case study, this reduction is less important, around a
factor of 2. This improvement in the dataset performance is found also in the increase of the A+ cases,
which grow by a much smaller factor of 1.05 for Capitanata and 1.13 for Chiese, with little variation
among datasets. Thus, the main factor determining the better performances of the SSM products in
the irrigation period is the identification of irrigation-driven positive agreements. These are mainly
restricted at less than 20% of the total records in the irrigation period but contribute to reduce the
unexplainable negative agreements.

The IA+ cases are quite homogeneous for the Capitanata case study, averaging at about 23% for all
datasets and with a low variation coefficient (28%). On the other hand, in the Chiese area, the average
value falls to 11% with a much wider dispersion between the different datasets (the coefficient of
variation is 51%).

3.5. Retrieval Technology and Algorithm Comparison

Averaging the data according to the retrieval technology, as detailed in Table 9, eventual differences
due to the active/passive dualism can be detected. A slightly better non-irrigation performance from
active instruments is registered with respect to passive ones, scoring better results in the Capitanata test
case (+10%) as opposed to the Chiese one (+5%). When shifting to the irrigation period, the increase
in registered A+ orbits around 5–10%. On the other hand, hybrid products (mainly the ESA-CCI
combined) outperform the others scoring on average much more A+ cases (+15%) with respect to the
other instruments both in irrigation and non-irrigation periods.

Table 9. HCI results averaged by retrieval technology.

Dataset

Capitanata Chiese

Non-Irrigation Irrigation Non-Irrigation Irrigation

A+ A− A+ A− IA+ A+ A− A+ A− IA+

Active 63% 37% 65% 18% 16% 60% 40% 62% 31% 6%
Passive 53% 47% 58% 14% 28% 55% 45% 64% 20% 16%
Hybrid 75% 25% 74% 4% 21% 64% 37% 81% 9% 10%

It is worth noting also the comparison between SMOS, SMAP, and AMSR2 results, non-hybrid
products of passive retrieval technology, and similar spatial resolutions. The different choice of
auxiliary data and parameters involved in the pre-processing of the estimation contributes to the
heavily different HCI results.

3.6. Spatial Resolution Differences with Copernicus

The Copernicus product, being the only high-resolution dataset in this analysis, can be evaluated
both in its original and its upscaled version. This allows assimilating the product to the macro-scale of
the other datasets, allowing a more coherent comparison. Furthermore, by contrasting two datasets
that share every characteristic apart from their spatial resolution, some conclusions could be drawn
about the influence of spatial scales in the dataset performance.

Comparing the year-by-year results over both Capitanata and Chiese, no clear difference emerges
between the two datasets’ performances. This means that in a global, averaged analysis, the consistency
of the Copernicus SSM with precipitation does not improve the results obtained by coarser-resolution
datasets. However, as the maps in Figures 5 and 7 point out, higher (and lower) consistencies can be
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attained locally. This may be due to the high heterogeneity characteristic of an Irrigation Consortium
made up of a wide variety of farms with different crops and irrigation practices.Remote Sens. 2020, 12, x 17 of 26 
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Figure 7. HCI data over the Chiese Irrigation Consortium for the Copernicus dataset, year 2016. The first
row details the HCI for the irrigation period: positive (A+), negative (A−), and irrigation-driven
positive (IA+) agreements. The second row refers the HCI for the non-irrigation period: positive (A+)
and negative (A−) agreements.

This means that the high-resolution Copernicus SSM product possesses, on average, a mild
consistency with precipitation, with results that can vary greatly on a local basis. It is important to add
that these results do not account for the percentage of irrigated areas in the coarse scale pixel.

3.7. Incidence of Yearly Rainfall and Data Density

As part of the analysis, two “heterogeneity factors” have been investigated: data density and basin
wetness. As each dataset has a different sampling frequency, when comparing the relative number
of agreements expressed as percentages, the data pool from which these percentages are computed
could affect the final results. Smaller data pools could favor more erratic results. On the other hand,
the wetness of any given year could have an impact on the results, as wetter years may reduce the
chances of recording negative agreements.
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When looking at the positive agreements sorted by the number of SSM–precipitation couplings or
“occurrences” (Figure 8), a slightly higher data dispersion emerges for datasets with a low number
of occurrences. Around 100 yearly occurrences, data tend to cluster around a common value,
independently of the year or the dataset. This behavior is more evident in the Capitanata example
(Figure 8a,b) than the Chiese one (Figure 8c,d), and it seems to be amplified when shifting from the
non-irrigation period (Figure 8a,c) to the irrigation one (Figure 8b,d).Remote Sens. 2020, 12, x 18 of 26 
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Figure 8. Positive agreements, either “A+” cases for the non-irrigation period (a,c), or “A+” plus “IA+”
cases for the irrigation period (b,d), sorted by the number of occurrences (SSM–rainfall couplings) for
the Capitanata (a,b) and Chiese (c,d) case studies.

The same positive agreements can be classified by the year wetness (Figure 9). However, no clear
decreasing or increasing trend with the cumulated rainfall emerges. The Capitanata results (Figure 9a,b),
which referred to dry conditions (annual rainfall between 350 and 500 mm/year), are more densely
grouped than the Chiese results (Figure 9c,d), which are recorded in wetter meteorological conditions
(annual rainfall between 700 and 1100 mm/year). This may descend from the relative importance that
artificial irrigation invests in the Capitanata Irrigation Consortium. Relying on rainfall and irrigation,
which is a steadier water resource than simple precipitation, it is reasonable that the performances,
across all years and datasets, do not differ much.

3.8. Hit Rate and False Positives Check

The procedure detailed in this work could be inaccurate in situations in which irrigation data are
unknown or imprecise, as the introduction of irrigation may increase the probability of registering
consistency. Hydrologically speaking, increases in SSM in the absence of precipitation should occur
only when another water input, such as irrigation, is present. If there is an absence of information
about irrigation, any SSM increase without precipitation is classified as irrigation-driven (IA+), and the
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final consistency result can be polluted by a number of “false positives”, i.e., SSM increases without
precipitation and happening outside of the irrigation period.Remote Sens. 2020, 12, x 19 of 26 
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Figure 9. Positive agreements, either “A+” cases for the non-irrigation period (a,c) or “A+” plus “IA+”
cases for the irrigation period (b,d), sorted by cumulated yearly rainfall for the Capitanata (a,b) and
Chiese (c,d) case studies.

In order to ascertain the incidence of these false positives in the total IA+ count, a reference run of
the algorithm has been performed. In this scenario, any increase in SSM with no recorded rainfall has
been assumed to happen in an irrigation regime, irrespectively of whether any actual irrigation took
place. Thus, these results show what would happen if the procedure was performed without any a
priori knowledge of the actual irrigation.

The resulting fraction of IA+ cases recorded during actual irrigation periods can be seen as a
Hit Rate (HR) of the HCI. For example, a HR of 60% would mean that out of 100 SSM increases
recorded by the given dataset in an absence of precipitation, only 60 happen during the irrigation
period and contribute to a good hydrological consistency of the dataset. An ideal result would be
HR = 100%, meaning that the only cases in which SSM increases without precipitation are the ones in
which artificial irrigation is involved. On the other hand, a lower HR could be an application-oriented
estimate of the quality of the dataset with respect to water accretion phenomena in the water cycle.

The results of this analysis are provided in Figure 10 for the Capitanata (Figure 10a) and Chiese
(Figure 10b) test cases. For each SSM dataset, the total number of IA+ cases is shown. The yellow
bar represents the fraction of these cases that are recorded when irrigation is being performed.
The complementary blue bar identifies the similar cases (increase in SSM without any recorded rainfall)
that are recorded when the area is not being irrigated. Thus, if we had applied this algorithm without
having any information about irrigation, the blue bars would represent the amount of “false positives”
among all the IA+ recorded cases, and the yellow bars would represent the algorithm Hit Rate.



Remote Sens. 2020, 12, 3737 19 of 25

Remote Sens. 2020, 12, x 20 of 26 

 

complementary blue bar identifies the similar cases (increase in SSM without any recorded rainfall) 
that are recorded when the area is not being irrigated. Thus, if we had applied this algorithm without 
having any information about irrigation, the blue bars would represent the amount of “false 
positives” among all the IA+ recorded cases, and the yellow bars would represent the algorithm Hit 
Rate. 

 
(a) (b) 

Figure 10. Distribution of potential irrigation-driven (“IA+”) cases among irrigation (yellow bars) and 
non-irrigation (blue bars) periods for the Capitanata (a) and Chiese (b) test cases. The red dotted line 
identifies the average hit rate (65% for Capitanata and 38% for Chiese). 

Apart from SMAP (having just one year of data, it is less representative than the other datasets), 
all the datasets cluster around the average hit rate of 65% for Capitanata and 38% for Chiese. In the 
Capitanata case, the high-resolution Copernicus records a value below the 60% mark, while in the 
Chiese, the ESA-CCI combined is the only dataset attaining a HR higher than 60%, with ESA-CCI 
passive barely reaching the 50% threshold. 

One possible explanation for these different results between the two test cases can lie in the 
different climate between the two datasets. On average, rainy days in the Apr–Sep period for the 
Chiese dataset are similar to those in the Oct–Mar period (41 and 40, respectively). On the other hand, 
in the Capitanata test case, the irrigation period is much drier (26 rainy days against 40 in the non-
irrigation period). This climatic distinction provides an important difference in the relevance of 
irrigation for the agricultural practice. Finally, the amount of private, unregistered wells in the Chiese 
test case is quite important, affecting the correct use of irrigation data in the HCI. 

4. Discussion 

An analysis has been performed to determine the hydrological consistency of different remotely 
sensed SSM datasets when measured against on-ground precipitation data. Two test cases have been 
involved in the analysis: the Capitanata Irrigation Consortium (Puglia, Italy), which is characterized 
by a semi-arid climate and a strong dependency on artificial irrigation; and the Chiese Irrigation 
Consortium (Lombardia, Italy), which is located in a much wetter area and with a higher vegetation 
fraction. 

Available satellite SSM datasets are heterogeneous in characteristics and performances, and a 
number of different studies have attempted to measure their reliability by comparing them with on-
site measurements, other remotely sensed datasets, and physical modeling. When correlating satellite 
SSM with on-ground data, results vary according to the dataset: middle-to-high correlations (0.64–
0.81) for ASCAT and middle-to-low (0.21–0.64) for AMSR-E have been registered by Brocca et al. [24]; 
among a multi-product analysis, Cui et al. [27] found the best correlations with on-site data when 
employing L-band products (SMOS and SMAP), which is consistent with the deeper depth gauged 
by these frequencies and their low susceptibility to vegetation and atmosphere influences; middle-

Figure 10. Distribution of potential irrigation-driven (“IA+”) cases among irrigation (yellow bars) and
non-irrigation (blue bars) periods for the Capitanata (a) and Chiese (b) test cases. The red dotted line
identifies the average hit rate (65% for Capitanata and 38% for Chiese).

Apart from SMAP (having just one year of data, it is less representative than the other datasets),
all the datasets cluster around the average hit rate of 65% for Capitanata and 38% for Chiese. In the
Capitanata case, the high-resolution Copernicus records a value below the 60% mark, while in the
Chiese, the ESA-CCI combined is the only dataset attaining a HR higher than 60%, with ESA-CCI
passive barely reaching the 50% threshold.

One possible explanation for these different results between the two test cases can lie in the
different climate between the two datasets. On average, rainy days in the Apr–Sep period for the
Chiese dataset are similar to those in the Oct–Mar period (41 and 40, respectively). On the other
hand, in the Capitanata test case, the irrigation period is much drier (26 rainy days against 40 in the
non-irrigation period). This climatic distinction provides an important difference in the relevance of
irrigation for the agricultural practice. Finally, the amount of private, unregistered wells in the Chiese
test case is quite important, affecting the correct use of irrigation data in the HCI.

4. Discussion

An analysis has been performed to determine the hydrological consistency of different remotely
sensed SSM datasets when measured against on-ground precipitation data. Two test cases have been
involved in the analysis: the Capitanata Irrigation Consortium (Puglia, Italy), which is characterized by a
semi-arid climate and a strong dependency on artificial irrigation; and the Chiese Irrigation Consortium
(Lombardia, Italy), which is located in a much wetter area and with a higher vegetation fraction.

Available satellite SSM datasets are heterogeneous in characteristics and performances, and a
number of different studies have attempted to measure their reliability by comparing them with on-site
measurements, other remotely sensed datasets, and physical modeling. When correlating satellite SSM
with on-ground data, results vary according to the dataset: middle-to-high correlations (0.64–0.81) for
ASCAT and middle-to-low (0.21–0.64) for AMSR-E have been registered by Brocca et al. [24]; among a
multi-product analysis, Cui et al. [27] found the best correlations with on-site data when employing
L-band products (SMOS and SMAP), which is consistent with the deeper depth gauged by these
frequencies and their low susceptibility to vegetation and atmosphere influences; middle-to-high
correlation values for SMOS were confirmed by Kerr et al. [26] on Australian, African, and, mainly, U.S.
test sites; correlation values in the range 0.4–0.6 were also confirmed for SMAP, ASCAT, and SMOS in
Southern France [28]. Results from a triple (and even quadruple, using both active and passive sensors
independently) collocation analysis on a global scale indicate that SMAP is the best-performing dataset
globally (achieving a cross-correlation of 0.76, against 0.66 for SMOS and 0.63 for ASCAT), as it is the
dataset that best interprets 52% of the pixels included in the analysis [29].
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For the scope of this analysis, a first approach to analyze the SSM–precipitation dependency
has been performed with common statistical indexes (Pearson and Spearman correlations), yielding
poor results. Low correlation values (averaging 0.3) have been found, which are in line with some
of the literature results: 0.11–0.26 measured in Kansas, USA [36] and 0.4 found in Mediterranean
Europe [37]. These numbers pointed out the scarce feasibility of this mathematical tool to analyze the
SSM–precipitation relationship. The HCI (Hydrological Consistency Index) has been developed to
try and analyze each SSM record in terms of its physical and hydrological consistency with recorded
precipitation. Applying this algorithm for a given SSM satellite pixel allows determining the share of
data values that are consistent either with natural rainfall (A+) or artificial irrigation (IA+). The rest of
the dataset is classified as hydrologically inconsistent (A−), providing an application-oriented estimate
of the SSM dataset error.

Overall, the main result is that no soil moisture product among the tested ones shows a systematic
and definitive hydrological coherence with the rainfall data. This is particularly evident in the
non-irrigation season, with some datasets that show consistency with precipitation only about
half of the time. On the other hand, during irrigation seasons, this consistency increases, partly
because of an increase in rainfall-driven positive agreements (A+, increasing around 5%) and partly
because of artificial irrigation and irrigation-driven positive agreements (IA+, averaging 15–20%).
Not many studies approached this paper’s object from the same approach, but some indications can be
gathered from [38,39]. These studies focused on SSM anomalies and comparison with the presence
of precipitation in the 24 h preceding the satellite overpass. In some cases, 47% of the studied area
showed an SSM anomaly being registered in the absence of precipitation; in others, only 57% of the
area with precipitation registered in the preceding 24 h subsequently shows a positive anomaly in SSM.
The results of this study agree with these previous findings in testifying the moderate consistence of
the SSM and rainfall datasets.

The results have also been clustered according to the characteristics of the datasets:

• By retrieval technology. Active and passive measurements have not shown major performance
differences, while hybrid estimates (combination of both active and passive direct measurements)
have displayed better performances, relying less on irrigation to achieve hydrological consistency
(IA+ averaging 10% for hybrid, against 17% and 22% for active and passive, respectively).

• By spatial resolution. The Copernicus dataset is the only high-resolution dataset of the group
(1 km), and it has been upscaled to a scale similar to the other datasets (30 km) in order to
understand the influence of scale on its results. While no noticeable difference was found between
the two versions of Copernicus SSM, the high-resolution dataset guaranteed a wide heterogeneity
at local (crop field) level that could be interesting to analyze with high-resolution irrigation data.

• By test case wetness. Separating the results by yearly rainfall allowed us to understand if higher
amounts of precipitation could hamper the accuracy of HCI by providing better results. No clear
trends were found in this matter.

• By data density. Different datasets have different time frequencies, ranging from one estimate
a day (ESA-CCI) up to one estimate every 4 days (Copernicus). These different densities could
provide different relevance to some datasets over others. Actually, a higher result dispersion was
found for datasets (and years) with less yearly SSM retrievals, with more compact values for
higher data densities. However, no clear trend (e.g., better/worse results with less available data)
was detected.

Finally, a control run of the algorithm was performed to determine its susceptibility to irrigation
information. This has been done to understand what would happen if irrigation information was to
be unavailable and irrigation-driven positive agreements (IA+) were to be assigned any time SSM
increased without precipitation. A test run over Capitanata showed that around one-third of the times
in which a similar inconsistency happened, no actual irrigation took place.
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These results can have a number of explanations other than the natural error within the SSM
product itself:

(i) Information about irrigation may not be complete: unregistered irrigation volumes (e.g., those
related to unrecorded private wells) can provide explanation for increasing SSM values in absence
of precipitation even outside of the “official” irrigation season. The integration of this kind of
data would have immediate effect in improving the HR seen in Section 3.8;

(ii) The algorithm does not take into account daily evapotranspiration: especially in the warmer
months of the year, sometimes, the actual evapotranspiration can be high enough that even
though some rainfall has been registered, the overall water balance in the soil results negative,
implying an SSM decrease;

(iii) The presence of vegetation can alter the SSM retrieval process for non-L-band satellites:
although no clear difference has emerged between L-band (i.e., SMOS and SMAP) and C-band
(i.e., Copernicus and AMSR2) datasets, it is reasonable to assume that vegetation contributes
to the hydrological inconsistencies found in our analysis. For example, the fact that the Chiese
case is more vegetated than the Capitanata one may be part of the reason for a higher average
inconsistency in Chiese (22%) than in Capitanata (15%).

5. Conclusions

An inquiry into the hydrological consistency of different remotely sensed Surface Soil Moisture
(SSM) datasets is presented in this work. This particular approach has not been commonly explored
in the literature, as many studies focus on the validation of satellite SSM products with on-ground
measurement networks. The innovative element of the approach detailed in this study is that the
possible error within an SSM dataset is not provided as a simple tolerance, or a margin, but in a
more application-oriented perspective. To the end user, knowing how many times an SSM dataset
is inconsistent with precipitation could be of upmost importance: an accurate choice of the analysis,
a thorough interpretation of the results, and a successful application of a methodology all depend on a
deep and accurate knowledge of the input data, such as is provided by the results of this study.

The hydrological consistency has been explored in the SSM physical dependency on the measured
rainfall, devising a more complex analytical tool than simple statistical correlations (such as Pearson’s
and Spearman’s). The HCI (Hydrological Consistency Index) has been developed to this aim, classifying
every single SSM retrieval as either hydrologically consistent or inconsistent with water inputs in the
soil system (mainly natural rainfall or artificial irrigation). By “consistent”, it is meant that the SSM
respects the physical processes of soil moisture accretion and depletion in the presence and absence,
respectively, of water inputs (rain or irrigation). This classification has the aim of characterizing in an
application-oriented way the hydrological compatibility of each SSM dataset.

The analytic tool has been tested over two profoundly different Italian case studies: two irrigation
consortia set apart by their surrounding morphology (closeness either to mountain ranges or sea), crop
regimes (either heterogeneous or homogeneous), and seasonal cyclicity. For the analysis, the following
satellite SSM datasets have been selected, with the aim of analyzing a wide range of different products:
SMOS, SMAP, ESA-CCI, Copernicus SSM1km, and AMSR-2.

The main take-away message is that surprisingly, no soil moisture product among the tested
ones showed a systematic and definitive hydrological coherence with the water inputs into the soil
system. Indeed, positive agreements between SSM and precipitation are recorded in the 50–70% range
for all datasets. This means that on average, 30–50% of the satellite SSM estimates are not physically
and hydrologically consistent with precipitation. A general trend is found when separating results
by irrigation/non-irrigation season, with results in the former improving: rainfall-driven positive
agreements show a slight increase (on average around +5%), while an important contribution is
provided from the irrigation-driven agreements (totaling around 15–20%).

The global results have been filtered by a series of criteria to try to discern some reasons for the
detected values. Hybrid sensors have scored better results than normal active and passive ones, while
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neither spatial resolution, case study wetness (the amount of yearly rain), nor data density show strong
influences on the results.

This study has proved that for a large set of commonly used satellite SSM datasets, a non-negligible
fraction of the SSM estimation is not hydrologically consistent with the measured rainfall. Thus, care
should be taken when employing such products in conjunction with precipitation data, as for example
in physically based hydrological models.
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