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Abstract: The leaf area index (LAI) is an essential indicator used in crop growth monitoring. In the
study, a hybrid inversion method, which combined a physical model with a statistical method,
was proposed to estimate the crop LAI. The simulated compact high-resolution imaging spectrometer
(CHRIS) canopy spectral crop reflectance datasets were generated using the PROSAIL model (the
coupling of PROSPECT leaf optical properties model and Scattering by Arbitrarily Inclined Leaves
model) and the CHRIS band response function. Partial least squares (PLS) was then used to reduce
the dimension of the simulated spectral data. Using the principal components (PCs) of PLS as the
model inputs, the hybrid inversion models were built using various modeling algorithms, including
the backpropagation artificial neural network (BP-ANN), least squares support vector regression
(LS-SVR), and random forest regression (RFR). Finally, remote sensing mapping of the CHRIS data
was achieved with the hybrid model to test the inversion accuracy of LAI estimates. The validation
result yielded an accuracy of R2 = 0.939 and normalized root-mean-square error (NRMSE) = 6.474%
for the PLS_RFR model, which indicated that the crops LAI could be estimated accurately by using
spectral feature extraction and a hybrid inversion strategy. The results showed that the model based
on principal components extracted by PLS had a good estimation accuracy and noise immunity
and was the preferred method for LAI estimation. Furthermore, the comparative analysis results
of various datasets showed that prior knowledge could improve the precision of the retrieved LAI,
and using this information to constrain parameters (e.g., chlorophyll content or LAI), which make
important contributions to the spectra, is the key to this improvement. In addition, among the
PLS, BP-ANN, LS-SVR, and RFR methods, RFR was the optimal modeling algorithm in the paper,
as indicated by the high R2 and low NRMSE in various datasets.

Keywords: hyperspectral remote sensing; leaf area index (LAI); inversion; PROSAIL; partial least
squares (PLS); random forest regression (RFR) scattering by arbitrarily inclined leaves

1. Introduction

The leaf area index (LAI) is an essential indicator for assessing the nutrient level, photosynthetic
capacity, and health status of vegetation [1–6]. The LAI derived from satellite and airborne data
has been widely used in crop information acquisition, global change monitoring, and ecological
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environment assessment, and understanding how to more accurately estimate this index has become a
popular topic in the field of quantitative remote sensing [3,4,7–13].

The methods used to estimate vegetation parameters, such as the LAI, mainly include empirical
statistical models and physical models. Statistical methods estimate crop parameters, such as the
LAI, by building an empirical model between the target parameter and a sensitive band or spectral
index [14–18]. For a particular dataset, empirical models typically yield good results [14,15,19].
However, this empirical relationship often changes with time, place, and sample set; thus, it is difficult
to apply to various environmental and planting conditions [20–22]. To overcome this shortcoming,
some researchers have begun to use universal physical models (e.g., the radiative transfer model) to
estimate vegetation of physicochemical parameters [4,13,20–25]. Radiative transfer models describe the
radiative transfer process of vegetation canopies according to physical laws and are thus more generic
than empirical models, which greatly improves the robustness of vegetation parameter inversion.
Such models have been widely used [22].

In various radiative transfer models, the PROSAIL model, which combines the PROSPECT
leaf optical properties model and Scattering by Arbitrarily Inclined Leaves (SAIL) model, is the
most popular due to its simplicity, accuracy, and ease of operation. The reliability of this model
has been verified with various types of satellite and airborne data [22,26,27]. The PROSAIL model
has become one of the most important tools to estimate the chemical or physical parameters of
various vegetation, such as grass, crop, and forest vegetation [3,12,25,27–29]. Nonetheless, much like
iterative optimization techniques, the traditional inversion strategy in the PROSAIL model tends to
be too complex, computationally expensive, and susceptible to the initial assignment value of model
parameters [21,30]. A hybrid inversion method has been proposed to overcome this limitation. In this
strategy, the biophysical and biochemical parameter array is first derived and then used in the PROSAIL
model to generate a simulated spectrum database. A regression model for the relationship between
the spectral variables and vegetation parameters is then constructed using regression algorithms, e.g.,
curve fitting, artificial neural network (ANN), support vector regression (SVR), and random forest
regression (RFR) [26,31–34]. The hybrid method combines the generic nature of physical models
with the simplicity of empirical models to achieve faster and more accurate vegetation parameter
estimation [3,27,30,35].

Currently, the hybrid inversion method of crop parameters, based on the PROSAIL model,
commonly uses entity bands (or selected sensitive bands) and vegetation indexes (VIs) as the model
input [3,21,27,30,35–39]. Inversion using full-band information takes full advantage of spectral
information at the cost of decreased prediction accuracy due to the redundant information caused
by autocorrelation among the variables in the model. This method also has the problem of involving
many calculations and is more susceptible to interference factors, such as soil background information,
atmospheric water vapor absorption, and light intensity changes when applied to aerospace or aviation
data [3,21]. Inversion algorithms using a VI or selected bands are computationally simple and relatively
strong in anti-interference [3,27]. However, these algorithms use only the information from sensitive
bands, and the VI can suffer from decreased inversion accuracy due to inadequate use of spectral
information [40]. To overcome the shortcomings of the above two methods, the dimension compression
method was used to extract feature information to establish an inversion model. That is, the dimensions
of hyperspectral data were reduced using a dimensionality reduction algorithm, such as principal
component analysis (PCA) or partial least squares (PLS). The factor scores derived from PCA or PLS
containing feature information were used as the inputs for modeling, and other noise-containing
components were discarded. In theory, this method can make full use of hyperspectral information
while simplifying and accelerating the modeling process [41–43]. Therefore, if the appropriate PCs
derived from the PROSAIL simulation data are used as the input variables, a LAI model (or a model of
other parameters) with good universality, high accuracy, and strong noise immunity can be constructed.
Nevertheless, issues remain that should be experimentally studied: for example, is it possible to
obtain higher retrieval accuracy and stronger noise immunity when the proper PCs are used instead
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of the optimal VIs as input variables for the model? In the data simulation and modeling processes,
what methods can be adopted to achieve a better retrieval result?

In this study, we combine hyperspectral data dimension reduction and the hybrid inversion strategy
for crops LAI inversion via the following steps: (1) generating the simulated database, which includes
the simulated vegetation parameters generated using a truncated Gaussian distribution and simulated
canopy spectra generated using the PROSAIL model; (2) extracting the LAI-related spectral feature
information using PLS; (3) establishing a hybrid model to link the simulated LAI to the partial least
squares principal components (PLS_PCs) with different regression algorithms; (4) comparing the LAI
estimation models based on PLS and VIs to optimize the modeling strategy; and (5) validating the LAI
inversion model with data collected from the Sentinel-3 Experiment campaign (conducted in June 2009
in Barax, southern Spain).

2. Materials and Methods

2.1. Simulated Dataset of PROSAIL Model

There are multiple versions of the PROSAIL model [18,44–48]. In this paper, PROSAIL5B, a model
that combines the PROSPECT5 model with the 4SAIL model, was used to simulate various crops
canopy spectra [45,49].

When using the PROSAIL model for inversion, different combinations of crop canopy variables
can produce very similar spectra. Therefore, the results of the inversion are not unique, which leads to
the ill-posed inverse problem [50,51]. Previous studies have shown that an effective way to overcome
the defect and thus improve the estimation accuracy is to use prior information [3,52]. In this study,
three simulation datasets were built for this purpose. One dataset was based on only prior knowledge in
the literature and was called the Generic dataset [25,53–56]. The second dataset used prior knowledge
from ground-based observation data to constrain the ranges of major vegetation parameters (LAI,
Cab, and Cw), and this dataset was called Specific dataset 1. The third dataset used prior knowledge
from ground-based observation data and remote sensing image auxiliary information of the study
area to constrain the range of major vegetation parameters and observation geometric parameters
(zenith angle, azimuth angle, and altitude angle), and this dataset was called Specific dataset 2.
That is, Specific dataset 2 was based on more prior knowledge than Specific dataset 1, which in
turn incorporated more prior knowledge than the Generic dataset. Because various types of prior
knowledge were fully utilized, a portion of the parameters in Specific dataset 2 could be fixed: the
brown pigment was fixed at 0 because the crops were in the growing stage [57]; the fraction of diffuse
incoming solar radiation (i.e., skyl) was fixed at 15%, according to the weather conditions; and the
parameters of relative azimuth angle, solar zenith angle, and viewing zenith angle were fixed at 138.08◦,
30◦, and 13.31◦, respectively, characterizing the observation geometry of the compact high-resolution
imaging spectrometer (CHRIS) images captured at the quasi-nadir viewing angles [57]. The detailed
parameter ranges of the three datasets are listed in Table 1. For each dataset, 20,000 sets of variable
combinations were generated using a truncated Gaussian distribution (the upper and lower limits of
the Gaussian distribution are set according to the range shown in Table 1) and then used to generate
20,000 canopy spectra in the PROSAIL model.

The wavelength range of the simulated canopy reflectance spectrum data was 450–2500 nm,
and the step length was 1 nm. However, the spectrum of CHRIS pixels ranged from 405 to 1005 nm,
with a bandwidth of about 10 nm. To match the simulated data with the CHRIS remote sensing data,
the response parameters of each CHRIS spectral band were used to convert the simulated spectra in
the above datasets into CHRIS data, according to references [21,48]. Each dataset was then randomly
sampled and divided into a training subset (including 15,000 simulated samples) and a test subset
(including 5000 simulated samples).
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Table 1. Input parameters of the PROSAIL model used to simulate different datasets.

Model Parameters Abb.

Generic Dataset Specific Dataset 1 Specific Dataset 2

Value
Range Mean Std. Dev. Value

Range Mean Std. Dev. Value
Range Mean Std. Dev.

PROSPECT
Leaf chlorophyll

content Cab (µg cm−2) 10–90 40 20 10–50 33 6 10–50 33 6

Carotenoid content Car (µg cm−2) 6–10 8 2 6–10 8 2 6–10 8 2
Brown pigment Cbp Fixed (0) Fixed (0) Fixed (0)

Equivalent water
thickness Cw (cm) 0.005–0.130 0.012 0.020 0.010–0.080 0.030 0.020 0.010–0.080 0.030 0.020

Dry matter content Cm (g cm−2) 0.002–0.015 0.006 0.006 0.002–0.015 0.006 0.006 0.002–0.015 0.006 0.006
Leaf structural

parameter N 1.50–2.00 1.75 1.00 1.50–2.00 1.75 1.00 1.50–2.00 1.75 1.00

SAIL
Leaf area index LAI 0.1–10.0 2.0 2.5 0.1–8.0 2.0 1.8 0.1–8.0 2.0 1.8

Mean leaf inclination
angle angl (◦) 30–80 50 10 30–80 50 10 30–80 50 10

Soil brightness
parameter Psoil 0.2–0.9 0.7 0.4 0.2–0.9 0.7 0.4 0.2–0.9 0.7 0.4

Fraction of diffuse
solar radiation skyl (%) 0–40 0–40 20 20 Fixed (15.00)

Solar zenith angle tts (◦) 0–60 0–60 30 30 Fixed (30.00)
Viewing zenith angle Tto (◦) 0–60 0–60 30 30 Fixed (13.31)

Relative azimuth
angle psi (◦) 0–180 0–180 90 90 Fixed

(138.08)
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The PROSAIL model considers the contribution of different vegetation parameters to the canopy
spectra, which makes the LAI estimation model based on the PROSAIL-simulated dataset universal.
However, in the actual remote sensing process, both the parameters and the changes in random
environmental noise can affect the spectra. An appropriate LAI estimation model should not only
be sensitive to the LAI but also insensitive to noise. According to the correlation between random
noise and signal value, the random noise can be divided into additive noise, multiplicative noise,
and additive and multiplicative mixed noise [58–60]. In this paper, referring to previous research on
CHRIS data noise [61–64], three types of noise were added to 5000 spectral samples of the test subsets to
evaluate the anti-noise abilities of the different models: (1) additive noise with a standard deviation of
0.01; (2) multiplicative noise with a ratio of 3%; and (3) mixed noise that was a combination of additive
noise (with a standard deviation of 0.01) and multiplicative noise (with a ratio of 3%). The model with
the strongest noise immunity should be able to obtain good results for the samples containing noise
(i.e., the prediction accuracy will be less affected by noise).

2.2. Spectral Information Extraction

Because reflectance between different bands of hyperspectral data is highly correlated, using reflectance
in all bands as variables for the model will overcomplicate the calculation and make the modeling process
prone to overfitting and disturbance by spectral noise [65,66]. To avoid this situation, the PCA and PLS
methods were applied to reduce the dimensions of hyperspectral data to extract feature information.

PCA is a mathematical method used to reduce the dimensions of data. The basic idea is to
transform the original variables into a new set of independent synthetic variables. This process is
completed via a linear transformation. This transformation transforms data into a new orthogonal
coordinate system so that the data with the maximum variance are projected onto the first axis (called
the first PC), the data with the second-largest variance are projected on the second axis (the second PC),
and so on. Therefore, the PCs are orthogonal to each other and are ranked so that each PC carries more
feature information than any subsequent PCs. One can focus on the first few PCs for feature extraction
since they carry the most information [42,66]. A principal component regression (PCR) model can be
established using the extracted PCs with a standard linear regression algorithm.

PLS regression is a widely used modeling method that integrates the advantages of PCA,
canonical correlation analysis (CCA), and linear regression analysis [43,67–71]. In a PLS model, both the
independent and dependent variables are projected to new feature spaces, and the method obtains the
multi-dimensional direction of the independent variable space, which explains the multi-dimensional
direction with maximum variance of the dependent variable space [72,73]. PLS regression aims to not
only extract the principal components of independent and dependent variables as much as possible
(the idea of PCA) but also maximize the correlation between the PCs extracted from independent and
dependent variables (the idea of CCA). Therefore, in theory, PLS can effectively extract the main factors
with the strongest explanatory power for dependent variables [68,71].

VIs are commonly used to retrieve the physical and chemical parameters of vegetation from
satellite or airborne data. VIs have been widely used and have provided good results for the estimations
of LAI and other parameters. In this study, the VIs that could be used for LAI inversion were screened
according to the method provided by Liang et al. [3,27], and these VIs include simple ratio indices (e.g.,
Cartt1), triangular vegetation indices (TVIs), normalized difference vegetation indices (e.g., NDVI705),
improved versions of various indices (e.g., modified triangular vegetation index, MTVI), and red
edge reflectance-based indices. A detailed list of the VIs and their calculation formulas is given in
Appendix A. However, satellite data are unlikely to have fully matched bands with which to calculate
these VIs; therefore, the nearest CHRIS bands were used instead. The inversion model based on the
optimal VI was then compared with that based on PCR/PLS.
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2.3. Regression Model Construction

The PCR and PLS models for LAI estimation were established using the factors as the dependent
variables and the LAI values as the independent variables. Studies have shown that, compared
with PCR/PLS, some machine learning algorithms, such as the backpropagation-ANN (BP-ANN),
least squares-SVR (LS-SVR) algorithm, and RFR, are more capable of handling nonlinear problems
and can achieve better results in LAI inversion [3,21,27]. Therefore, in addition to the PCR/PLS model,
other new regression algorithms, i.e., BP-ANN, LS-SVR, and RFR, were also used to construct a model
to better determine the relationship between factors derived from PCA or PLS and LAI.

ANN algorithm: The ANN is a machine learning algorithm widely used in regression modeling [74].
To train the ANN model, the network type and network structure settings, parameter regularization
and weight initialization are very important. In this paper, a feed-forward network was optimized
using the back-propagation algorithm. Considering that the combination of tangent sigmoid and
linear transfer function can fit various types of functions, the network was composed of an input
layer, a hidden layer, made of hyperbolic tangent sigmoid neurons, and an output layer, made of
one single linear neuron [21]. The inputs and outputs were scaled by normalization, and the cost
function was defined as the root-mean-square error (RMSE) between the targets and network outputs.
The Nguyen–Widrow algorithm was used to initialize the network weights randomly, and cross
validation was used to prevent over fitting.

LS-SVR algorithm: As a machine learning algorithm widely used in various fields, the SVR
algorithm can improve the accuracy of machine learning while maintaining good fitting accuracy,
resulting in good generalization capability and prediction accuracy [75]. In recent years, this method
has been successfully applied in hyperspectral analysis [27]. In this study, the model parameters were
set as follows: the radial basis function (RBF) was used as the kernel function and the two parameters
with the greatest influence on the model accuracy, the RBF parameter g and the penalty coefficient C,
were determined by cross-validation. Cross-validation was conducted using a grid search, which was
divided into two steps for calculation simplification and time-saving: Step 1: optimize the parameters
over a greater range with a larger step; Step 2: based on the results of Step 1, determine the optimal
parameter value with a smaller step. The termination conditions for model training and grid search
were set to 0.001 and 0.1, respectively [65].

RFR algorithm: RFR is a new and widely-concerned machine learning regression algorithm
first proposed by Breiman [76]. RFR is based on the assumption that each independent predictor
exhibits less accurate predictions in different regions, although combining the results of different
predictors can improve the overall prediction accuracy. When the training data are slightly different,
the structure of the regression tree will show significant differences. Based on this feature, together with
the random feature selection and bagging (i.e., bootstrap aggregating) algorithm, a decision tree can be
built with independent predictors [76,77]. It is necessary to set the number of decision trees, random
characteristics, and termination conditions for RFR modeling. In this paper, the RFR model was
constructed by sampling with replacement. The number of trees was set to 100, and all of the feature’s
square root was used as the characteristic variable. The modeling process was terminated when the
samples at each leaf node was no greater than five.

2.4. Ground Observation Experiment and Validation Dataset

The validation data included ground measurements and satellite image data, which were acquired
by the Sentinel-3 Experiment conducted at Barrax, in an farming area called Castilla-La Mancha
in the south of Spain (30◦3′N, 2◦6′W), from 20 June 2009 to 24 June 2009 [57]. This experiment
was part of a European Space Agency (ESA) Earth observation experiment. The experimental site
was located at an altitude of approximately 700 m and included farmland with different crops
(such as oats, corn, and alfalfa) and dry, bare soils. The area had a temperate zone continental
monsoon climate. The average annual temperature was 11.8 ◦C, with an average annual rainfall of
550.3 mm and an average annual sunshine duration of 2684 h (Figure 1). Hyperspectral remote
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sensing images of the experimental area were obtained by CHRIS/PROBA. The spatial resolution
of the CHRIS subsatellite points was 34 m. The spectrum spanned 404.5–1004.5 nm, covering the
visible and near-infrared region, with a total of 62 bands. The image was resampled from the original
spatial resolution of 34–17 m, and geometric correction was conducted with ground control points
measured by differential global positioning system (GPS) to ensure a geometric correction accuracy of
approximately 13 m. BEAM 4.11, a CHRIS/PROBA data-specific toolbox, was used for atmospheric
correction (using the Atmospheric Correction Tool) and noise removal (using the Noise Reduction
Tool) (http://www.brockmann-consult.de/cms/web/beam).Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 26 
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Figure 1. Location of the study area and distribution of ground sampling point. On the right is the
composite image of compact high-resolution imaging spectrometer (CHRIS) data at 461 nm, 562 nm,
and 642 nm.

In the Sentinel-3 Experiment, the ground measurements were conducted from 20 June 2009
to 24 June 2009 for agricultural parameter data collection. The ground data acquisition method
was designed to ensure that the data represented the crop variability in the experimental area,
while minimizing field sampling (for more details, please refer to the report on the Sentinel-3
Experimental Campaign [57]). The LAI of 46 elementary sampling units (ESUs) was obtained
simultaneously using the LAI-2000 plant canopy analyzer and NIKON camera with a FC-E8 fisheye,
and 42 of these samples were valid (i.e., ESUs with complete parameter measurements and reasonable
standard deviation in repeated measurements); the leaf chlorophyll content (LCC) of 51 ESUs was
obtained using a SPAD-502 chlorophyll analyzer, and 44 of these samples were valid (see the work by
Jesús Delegido [78] for specific details on the treatment). The leaf equivalent water thickness (EWT)
was determined by measuring the difference between the dry and fresh weight of the sample (the
sample consists of about 5% stems and 95% leaves) and then dividing by the sample area. The size
of each ESU was 20 m × 20 m, which generally included a resampled CHRIS pixel. In each ESU,
the sampling strategy was based on the VALERI methodology (http://w3.avignon.inra.fr/valeri/).
Five pixels that intersected each ESU were averaged to calculate the representative information of
CHRIS reflectance [25,27,79]. The position of each ESU in the experimental area is shown in Figure 1.
The statistics of the biophysical and biochemical parameters of various crop samples are shown in
Table 2 and basically follow a Gaussian distribution.

http://www.brockmann-consult.de/cms/web/beam
http://w3.avignon.inra.fr/valeri/
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Table 2. Statistics of main biophysical and biochemical parameters measured in Sentinel-3 Experiment.

Parameters Samples Mean Value Standard Deviation Value Range

LCC (µg cm−2) 44 32.66 5.94 15.50–41.20
EWT (cm) 39 0.029 0.020 0.012–0.074

LAI 42 1.91 1.80 0.12–7.21

Note: LCC, leaf chlorophyll content; EWT, equivalent water thickness.

2.5. LAI Inversion Flow Chart

The LAI estimation process is shown in Figure 2. First, based on the variable combinations in
Table 1, simulated canopy spectral data (spectral range 450–2500 nm, sampling interval 1 nm) were
generated using the PROSAIL model. The simulated CHRIS spectral dataset was then generated
according to the simulated canopy spectra data and the CHRIS’s spectral response function. Next,
features were extracted from the simulated CHRIS spectrum using the PLS algorithm and the feature
components from PLS, and the algorithms mentioned in Section 2.3 were used to construct the LAI
inversion model.

Finally, the LAI inversion model was validated using the field observations described in Section 2.4.
At this stage, the crop coverage of the study area was extracted with the normalized difference vegetation
index (NDVI) threshold method, and then the true CHRIS data were analyzed using the conversion
matrix obtained from the PLS analysis on the CHRIS spectrum. PCs of the true CHRIS data and hybrid
inversion model were then used for mapping to obtain the LAI thematic map. For each sampling site,
the LAI values estimated by the model were validated against the measurements. The estimation
method based on VIs was used for comparative analysis. The data process was completed by using
MATLAB 7.10 (MathWorks, Inc., Natick, MA, USA) and Unscrambler 10.3 (Camo Analytics, Inc.
Gaustadalléen, Oslo, Norway).
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3. Results and Analysis

3.1. Spectral Feature Information Extraction for LAI Estimation

3.1.1. Appropriate PCs for LAI Estimation

PCR and PLS were conducted on the simulations of the training dataset, and the cumulative
explained variance contribution rates of the first nine PCs to the dependent variable (i.e., LAI) are shown
in Figure 3. The first nine PCs of Specific dataset 1 and Specific dataset 2 contributed approximately
90% of the variance and contained most of the feature information (in both the PCR and PLS models);
however, those of the Generic dataset contributed only approximately 80%. These results show that,
without prior knowledge constraints on the parameters of the PROSAIL model, the effect of extracting
LAI-related features from simulated spectra is relatively poor when both PLS and PCR are used,
which may affect the estimation accuracy of the model.

When establishing an inversion model, insufficient feature information will be introduced into
the model if too few PCs are selected; as a result, the prediction accuracy of the model will be reduced
due to underfitting. Redundant information will be introduced into the model if too many PCs are
introduced, resulting in overfitting and reduced prediction accuracy. The optimal number of PCs by
cross-validation based on the modeling data was determined by selecting the minimum number of PCs
without inducing significant changes in the cumulative reliability (cumulative variance contribution).
Figure 3 shows that each model had inflection points at the sixth PC and the first six PCs could explain
most of the variance in the dependent variables. The subsequent principal component reintroduction
model made little contribution to the cumulative variance of the dependent variables. Therefore,
the first six PCs were selected to establish the PCR and PLS models, and then the models were validated
by 5000 independent simulations of the test subset. The results are shown in Figure 4.
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Figure 3. Cumulative explained variance of the dependent variable (i.e., LAI) of the first nine principal
components of the principal component regression (PCR) (a) and partial least squares (PLS models)
(b) in different datasets.

As shown in Figure 4, the specific datasets achieved better results than the Generic dataset for
both the PCR and PLS models, which indicates that prior knowledge can effectively improve the
accuracy of the model. Furthermore, PLS obtained better prediction than the PCR model in both the
specific and Generic datasets. This result was achieved because the PLS analysis process combined
the information on independent variables and dependent variables and could effectively screen the
comprehensive variables with the strongest explanatory power for the dependent variables. Therefore,



Remote Sens. 2020, 12, 3534 10 of 27

PLS extracted the LAI-related PCs and achieved a better result than PCR in this paper. In the next
step, the PCs extracted by PLS were used to establish the optimization model for LAI inversion using
different algorithms. Additionally, due to the presence of random environmental noise in real remote
sensing data, the optimal PCs for simulated data may not be the optimal PCs for real remote sensing
data. Therefore, the first to sixth PCs were used to establish the LAI inversion model; the optimal PCs
were then selected by considering the inversion accuracy and noise immunity.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 26 
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Figure 4. The PROSAIL model inputted LAI versus the LAI estimated from the PCR/PLS model based
on different datasets: (a) PCR based on Specific dataset 2; (b) PLS based on Specific dataset 2; (c) PCR
based on Specific dataset 1; (d) PLS based on Specific dataset 1; (e) PCR based on the Generic dataset;
and (f) PLS based on the Generic dataset.

3.1.2. Selection of Vegetation Indices for LAI Estimation

To screen out optimal VIs for LAI inversion, the simulated LAI values were set as the dependent
variables (y), various simulated VIs were set as the independent variables (x), and the curve-fitting
models, which selected the optimal models from the linear regression, power regression, exponential
regression, logarithmic regression, and quadratic regression were constructed. Then, 5000 independent
simulations of the test subset were used for validation. Subsequently, the optimal VIs were chosen
according to the method provided by Liang et al. [3,27]. First, the performance of the VIs for LAI
estimation in each dataset (i.e., the Generic dataset, Specific dataset 1, and Specific dataset 2) was
evaluated by ranking the normalized root-mean-square error (NRMSE) of the validation results in
ascending sort order. The integrative performance of the various VIs across the three datasets was then
assessed by the comprehensive ranks, which were arranged in ascending sort order.

Using the test subset (5000 simulations) as the data source, the NRMSEs of the validation results
constructed by various VIs are shown in Figure 5. The models that utilized the two specific datasets
generally yielded lower NRMSEs than those that utilized the Generic dataset, confirming previous
studies, which stated that more completely utilizing prior knowledge (e.g., ancillary data measured
on site) is an effective method to reduce the estimation error [3,21,52]. VI selection is very important
for improving the accuracy of LAI estimations. Three VIs, i.e., optimized soil-adjusted vegetation
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index (OSAVI), modified triangular vegetation index 2 (MTVI2), and enhanced vegetation index (EVI),
appeared at the top of the comprehensive rankings, indicating that they estimated LAI accurately cross
the specific and generic datasets. Thus, OSAVI, MTVI2, and EVI were chosen as representative VIs for
comparative analysis.

The combination of the results presented in Sections 3.1.1 and 3.1.2 indicates that the accuracy of
the model based on Specific dataset 2 was the highest among the three datasets, both when different
VIs and when different statistical dimension reduction methods (PCR or PLS) were used to extract
spectral features. The accuracy of the model based on Specific dataset 1 was the second highest, but its
accuracy was close to that of the model based on Specific dataset 2, while that of the model based on
the Generic dataset was the lowest by a considerable margin.
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Figure 5. The normalized root-mean-square error (NRMSE) of the LAI estimation results using the
different datasets. The label of the upper x-axis corresponds to the comprehensive ranking (i.e.,
overall performance) of the various VIs for LAI estimation based on the different datasets. Different VIs
with the same number have the same ranking.

3.2. LAI Inversion Modeling for CHRIS

3.2.1. Model Construction and Anti-Noise Evaluation

Because the models would eventually be applied to the actual remote sensing process,
which contains random environmental noise, they were also used to predict the noise samples to
evaluate the model’s anti-noise ability. Figure 6 shows the original spectra and additive, multiplicative,
and mixed noise spectra, which were generated according to the method described in Section 2.1.
After the addition of noise, the spectral values showed random fluctuations, which represented
different types of environmental noise. The optimal VIs and PCs were then screened out through
comprehensive consideration of prediction accuracy and noise immunity. Finally, the models were
optimized using the new machine learning algorithms, such as BP-ANN, SVR, and RFR. The modeling
results are shown in Table 3.
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noise. The additive noise with a standard deviation of 0.01; the multiplicative noise with a ratio of
3%; the mixed noise that was a combination of additive noise (with a standard deviation of 0.01) and
multiplicative noise (with a ratio of 3%).

The model estimation accuracy based on a sufficient number of PLS_PCs (i.e., greater than four
PCs in this paper) was higher than that based on the optimal VI (i.e., OSAVI in this paper), as indicated
by the high R2 and low NRMSE in the prediction datasets (Table 3). The results show that, compared
with the VIs, the model constructed using a sufficient number of PCs utilized the spectral information
fully and achieved more accurate LAI estimation. However, to estimate LAI, both high accuracy
and good anti-noise ability of the model were required. The model based on the optimal VI (i.e.,
OSAVI in this paper) and appropriate number of PLS_PCs (i.e., four PCs in this paper) achieved a
high accuracy of LAI estimation considering both the accuracy and anti-noise ability of the model
(Table 3). Nevertheless, the models based on VIs had good anti-noise ability for only multiplicative
noise, while they had weak anti-noise ability for additive and mixed noise. After the addition of
random additive noise (with a standard deviation of 0.01) or mixed noise (which consisted of additive
noise with a standard deviation of 0.01 and multiplicative noise with a ratio of 3%), the estimation
accuracies of the models based on OSAVI, MTVI2, and EVI decreased sharply, especially that of the
model based on MTVI2. Compared with the models established by the VIs, the model based on the
first four PLS_PCs had better noise immunity, as indicated by the small decline in R2 and increase in
the NRMSE when the models were used to predict the noise samples. In PLS, the PCs were arranged by
ranking the eigenvalues in descending order, in which the first few PCs mainly contained the spectral
characteristic information related to LAI and the last few PCs mainly contained the noise information.
In this paper, the first four PCs, including characteristic information related to LAI, were used for
modeling and the PCs of the noisy information were discarded; therefore, good noise immunity was
achieved. The results indicate that the use of appropriate PCs to construct the inversion model was the
preferred method for LAI estimation.
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Table 3. LAI prediction and anti-noise analysis results of various modeling methods for independent validation samples (n = 5000). Bold represents the selected objects.

Dataset
Type

Feature
Extraction
Method

Model
Algorithm

Validation
Dataset with No Noise

Validation Dataset with
Additive Noise a

Validation Dataset with
Proportional Noise b

Validation Dataset with
Mixed Noise c

R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE

Specific
dataset 2

VIs

Curve
fitting_EVI 0.804 8.025 0.623 12.291 0.758 8.954 0.612 12.494

Curve
fitting_MTVI2 0.856 6.861 0.355 26.620 0.815 7.739 0.340 27.430

Curve
fitting_OSAVI 0.850 7.038 0.703 10.291 0.810 7.904 0.702 10.304

BP-ANN_OSAVI 0.857 6.835 0.701 10.312 0.804 7.952 0.695 10.354
LS-SVR_OSAVI 0.853 6.924 0.704 10.228 0.811 7.915 0.704 10.253

RFR_OSAVI 0.923 5.183 0.803 8.094 0.867 6.505 0.801 8.161

PLS

PLS_1PC 0.687 10.114 0.686 10.127 0.687 10.127 0.686 10.127
PLS_2PCs 0.757 8.911 0.756 8.937 0.757 8.924 0.756 8.949
PLS_3PCs 0.796 8.177 0.791 8.266 0.790 8.278 0.788 8.329
PLS_4PCs 0.805 7.987 0.797 8.152 0.794 8.215 0.787 8.342
PLS_5PCs 0.884 6.165 0.587 11.620 0.549 12.152 0.528 15.342
PLS_6PCs 0.902 5.646 0.429 13.671 0.268 15.468 0.187 19.494

BP-ANN_4PCs 0.854 6.899 0.790 8.316 0.803 8.038 0.740 9.291
LS-SVR_4PCs 0.837 7.443 0.821 7.734 0.828 7.582 0.815 7.823

PFR_4PCs 0.945 4.768 0.908 5.574 0.915 5.372 0.901 5.651

Specific
dataset 1

VIs

Curve fitting
EVI 0.764 8.835 0.589 12.747 0.731 9.476 0.580 12.962

Curve
fitting_MTVI2 0.821 7.671 0.344 26.819 0.782 8.486 0.328 27.532

Curve
fitting_OSAVI 0.820 7.734 0.693 10.873 0.791 8.337 0.682 11.076

BP-ANN_OSAVI 0.826 7.570 0.679 10.899 0.774 8.823 0.667 11.139
LS-SVR_OSAVI 0.823 7.886 0.683 11.203 0.792 8.464 0.671 11.418

RFR_OSAVI 0.902 5.581 0.783 8.476 0.867 6.505 0.767 8.827
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Table 3. Cont.

PLS

PLS_1PCs 0.642 10.861 0.641 10.873 0.642 10.861 0.641 10.873
PLS_2PCs 0.728 9.468 0.727 9.494 0.729 9.468 0.728 9.481
PLS_3PCs 0.782 8.481 0.775 8.608 0.774 8.633 0.773 8.646
PLS_4PCs 0.795 8.215 0.781 8.506 0.783 8.456 0.776 8.595
PLS_5PCs 0.868 6.582 0.612 11.316 0.630 11.051 0.377 14.342
PLS_6PCs 0.885 6.152 0.456 13.392 0.352 14.620 0.193 18.899

BP-ANN_4PCs 0.822 7.671 0.751 9.114 0.762 8.899 0.680 10.443
LS-SVR_4PCs 0.810 8.013 0.802 8.139 0.806 8.076 0.800 8.152

RFR_4PCs 0.926 5.164 0.896 5.772 0.906 5.573 0.890 5.881

Generic
dataset

VIs

Curve
fitting_EVI 0.574 12.273 0.488 13.636 0.567 12.374 0.477 13.828

Curve
fitting_MTVI2 0.658 11.010 0.349 22.808 0.652 11.101 0.324 22.747

Curve
fitting_OSAVI 0.657 11.000 0.588 12.222 0.652 11.081 0.573 12.455

BP-ANN_OSAVI 0.660 10.949 0.569 12.323 0.647 11.251 0.558 12.505
LS-SVR_OSAVI 0.658 11.172 0.585 12.131 0.651 11.232 0.570 12.364

RFR_OSAVI 0.856 7.983 0.723 10.535 0.731 10.382 0.714 10.326

PLS

PLS_1PCs 0.429 14.202 0.429 14.192 0.429 14.202 0.428 14.212
PLS_2PCs 0.568 12.354 0.567 12.364 0.567 12.354 0.565 12.384
PLS_3PCs 0.608 11.758 0.606 11.788 0.606 16.838 0.602 11.859
PLS_4PCs 0.643 11.222 0.634 11.374 0.633 11.374 0.618 11.616
PLS_5PCs 0.694 10.394 0.623 11.535 0.630 11.434 0.546 12.646
PLS_6PCs 0.752 9.343 0.390 14.677 0.273 16.020 017 19.879

BP-ANN_4PCs 0.727 10.047 0.690 10.758 0.706 10.284 0.656 11.374
LS-SVR_4PCs 0.726 10.051 0.709 10.303 0.713 10.242 0.688 10.626

RFR_4PCs 0.874 7.637 0.842 8.184 0.851 8.234 0.833 8.343

Note: a additive noise with a standard deviation of 0.01; b multiplicative noise with a ratio of 3%; and c mixed noise that was a combination of additive noise (with a standard deviation of
0.01) and multiplicative noise (with a ratio of 3%). Backpropagation artificial neural network (BP-ANN); least squares support vector regression (LS-SVR); random forest regression (RFR);
vegetation indexes (VIs); Blank lines are used to distinguish different data sets.
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Various modeling algorithms exhibited different sensitivity to noise. Compared with the PLS,
SVR, and RFR algorithms, the BP-ANN algorithm was more sensitive to noise (Table 3). Although good
prediction results were obtained in the noise-free simulation dataset, after the addition of noise,
the BP-ANN model exhibited a significant decrease in the prediction accuracy for the different datasets
(the Generic dataset and Specific dataset 1 and Specific dataset 2) and different feature extraction
methods (VIs and PLS), as indicated by the relatively large decline in R2 and increase in the NRMSE.
Moreover, according to Table 3, RFR had higher fitting and prediction accuracy than PLS, BP-ANN,
and SVR, as indicated by the lower NRMSE and higher R2. Therefore, in general, the RFR algorithm had
good predictability and good noise immunity and was the priority option for modeling. The conclusion
was consistent with the previous studies, namely, that RFR can be used as a powerful alternative to
other regression algorithms [27,80,81].

In addition, if the influences of the regression algorithm and the number of PCs (or the type of
VI) used for modeling were not considered, the order of the modeling accuracies of the three datasets
from high to low was Specific dataset 2, Specific dataset 1, and the Generic dataset, as indicated by the
changes in the R2 and NRMSE of the model based on these datasets. As shown in Table 1, the utilization
of prior knowledge in Specific dataset 2 was also the richest among the three datasets, followed by
Specific dataset 1 and finally the Generic dataset. This result shows that the use of more prior knowledge
is an effective way to improve the estimation accuracy [3,21,52]. Furthermore, compared with the
Generic dataset, the models established by Specific dataset 2 and Specific dataset 1 both achieved good
accuracies that were obviously higher than that of the model based on the Generic dataset. Table 1
shows that the difference between Specific dataset 1 and the Generic dataset was the formerly used
prior knowledge to constrain the range of major vegetation biochemical parameters (LAI, Cab, and Cw);
the difference between Specific dataset 2 and Specific dataset 1 was the formerly used prior knowledge
to constrain the range of observation geometric parameters (zenith angle, azimuth angle, and altitude
angle). The parameters LAI, Cab, and Cw contributed more to the vegetation canopy spectra than the
observation geometric parameters [30,82,83]. Therefore, when prior knowledge was used to constrain
the range of major vegetation biochemical parameters, the accuracy of the model was improved.
This result shows that in LAI estimation, the use of prior knowledge to constrain parameters, such as
LAI and Cab, which made important contributions to the spectra, was key to improving the accuracy
of the model. This result was also consistent with that reported in Section 3.1; that is, whether different
VIs or different statistical dimension reduction methods (PCR or PLS) were used to extract features,
the results show that using more prior knowledge can improve the modeling accuracy and constraints
on key parameters, such as LAI, Cab, and Cw, are more effective than constraints on other parameters.

3.2.2. The Contribution of Spectral Bands to PCs

PC selection had an important influence on the generalizability of a model. In the simulated data,
while changes in certain factors, such as soil background, were taken into consideration, the simulation
of random environmental noise was inadequate. At this time, the use of more PCs typically resulted
in increased accuracy (Table 3). However, the lower PCs typically contained only a small portion of
the characteristic information and they were susceptible to noise. Therefore, when adding random
noise in the spectra, these PCs contained more noise information, which lead to a decline in the
inversion accuracy if they were introduced into the model. As shown in Table 3, when introducing
the fifth principal component (PC5) and the lower PCs into the model, the prediction accuracy of the
samples containing noise was greatly reduced compared with that of the model using only the first
four PCs. This result occurred because PC5 and its posterior components contained noise information
(PC5 and its posterior PCs accounted for less than one percent of the overall feature information);
thus, when introduced into the model, these PCs served as an ineffective component and reduced
the accuracy.

The analysis showed that the first four PLS_PCs achieved good estimation accuracy and anti-noise
ability. To analyze the source of the feature information contained in the first four PCs, the contributions
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of various spectral bands to these PCs were analyzed. Figure 7 is an X-loading of each spectral band to
the first four PCs and can represent the contribution of each band to different PCs. The contribution of
various spectral bands to the first and second PCs was similar in the Generic dataset, Specific dataset 1,
and Specific dataset 2, i.e., the first PC reflects the information of the near-infrared spectra and the
second PC reflects information related to visible light. Since the first and second PCs contained most of
the feature information related to LAI (Figure 7), this result meant that the difference in the contribution
of each band to PCs was only reflected in the third and fourth PCs, which contained relatively less
feature information.

For Specific dataset 1 and Specific dataset 2, the contribution of the various spectral bands to
the third and fourth PCs was also similar. As seen from Table 1, the setting of observation geometry
parameters in these two data sets was different. Therefore, in the spectral region analyzed in this
paper (404.5–1004.5 nm), the values of different observation geometric parameters had little influence
on feature extraction with the use of PLS. This finding was consistent with the analysis results in
Section 3.2.1; that is, the inversion results of the two datasets were relatively similar. In the Generic
dataset, the contribution of the various spectral bands to the third and fourth PCs was somewhat
different from the above two datasets in the spectral regions near 560 nm (green peak of vegetation)
and 725 nm (red edge of vegetation). This difference was probably caused by the different ranges of
the input parameters, such as Cab and LAI, of the Generic dataset. Nevertheless, in all three datasets,
these two PCs generally reflected characteristic spectral information of vegetation, such as blue light
absorption bands, green peak, red light absorption bands, and the red edge area.
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3.3. Model Validation with the CHRIS Data

3.3.1. Image Feature and Crop-Covered Area Extraction

There were two major types of ground objects in the experimental area, namely, dry, bare soil,
and farmlands, where various crops were planted but only the crop area was the target. In this study,
the NDVI threshold method was used to extract crop growing areas by masking non-crop areas with
an NDVI less than 0.25 (Figure 8a). The OSAVI thematic map was then calculated using the masked
CHRIS image, and PLS transformation was conducted on true CHRIS images using the transformation
matrix obtained from the PLS analysis on a simulated CHRIS spectrum, as described in Section 3.1.1
(Figure 8b).
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Figure 8. (a) Crop growing areas of the experimental area and (b) color images of the crop cover area
generated using the first three principal components of PLS calculated by Specific dataset 2 conversion
matrix (PC_1 for red, PC_2 for green, and PC_3 for blue).

3.3.2. LAI Remote Sensing Mapping and Accuracy Evaluation

The first four PCs and optimal index (OSAVI) obtained from the CHRIS images were used as
variables and input into the RFR model established using the simulated data for crop LAI remote
sensing mapping (Figure 9). Because the crop LAI is unlikely to be negative, the negative estimation
results were assigned to zero. To better realize the visual interpretation of LAI mapping results,
they were color-density sliced to six levels of an LAI inversion result. The map provides the spatial
information related to crop LAI, which can provide data support for agricultural management.

The accuracy was then validated based on the ground data that were simultaneously collected
while the remote sensing image was taken (Figure 10). The LAI values of the 42 sampling sites
estimated by the Generic_PLS_RFR model (the RFR model established based on the Generic dataset
and PLS feature extraction method) yielded an accuracy of R2 = 0.898 and NRMSE = 8.124%.
The Specific1_PLS_RFR model (the RFR model established based on Specific dataset 1 and the PLS
feature extraction method), which used prior knowledge to constrain the range of major vegetation
biochemical parameters, yielded a higher accuracy (R2 = 0.934 and NRMSE = 7.292%) than the
Generic_PLS_RFR model. The Specific2_PLS_RFR model (the RFR model established based on Specific
dataset 2 and the PLS feature extraction method), which used prior knowledge to constrain both the
major biochemical parameters and observation geometric parameters, yielded an accuracy of R2 = 0.939
and NRMSE = 6.474%, exhibiting the highest accuracy of the three datasets, but the difference from the
Specific1_PLS_RFR model was not obvious (Figure 10). This result was consistent with the analysis
using the simulated data in Section 3.2; that is, whether simulated or measured data were used, it made
better use of prior knowledge to constrain the parameters of the PROSAIL model, especially the key
parameters, such as LAI, Cab, and Cw, which can help to obtain more accurate inversion results.
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Experiment: (a) Specific2_PLS_RFR; (b) Specific1_PLS_RFR; (c) Generic_PLS_RFR; (d) Specific2
_OSAVI_RFR.

The optimal VIs can usually obtain good results in vegetation parameter estimation. In this paper,
the Specific2_OSAVI _RFR model (the RFR model established based on Specific dataset 2 and the
OSAVI) yielded an overall accuracy of R2 = 0.928 and NRMSE = 6.842%. That is, it achieved a high
accuracy for crop LAI estimation. Nonetheless, the estimated accuracy was still slightly lower than
that of the Specific2_PLS_RFR model, as indicated by the lower R2 and higher NRMSE (Figure 10).
In addition, among the above validation data, three data points with high values had an impact on the
evaluation index. After removing these three points, R2 of the four validation results in Figure 10 (i.e.,
Specific2_PLS_RFR, Specific1_PLS_RFR, Generic1_PLS_RFR, and Specific2_OSAVI_RFR) decreased to
varying degrees, which were 0.845, 0.836, 0.802, and 0.820, respectively. Nevertheless, the results of
comparative analysis were consistent with the above analysis, i.e., Specific2_PLS_RFR had the highest
accuracy, followed by Specific1_PLS_RFR (the difference from the Specific1_PLS_RFR was not obvious)
and Specific2_OSAVI_RFR, and the Generic1_PLS_RFR model was the lowest.

This result was consistent with the analysis results of the simulated data presented in Section 3.2.
This finding indicates that, in both simulated and actual remote sensing, building an inversion model
based on the feature information extracted by PLS can obtain the same or even better estimation results
as optimal VIs, which is the preferred strategy for LAI inversion modeling.
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Figure 10. Ground-measured LAI versus the LAI estimated from the RFR inversion model in
the Sentinel-3 Experiment: (a) Specific2_PLS_RFR; (b) Specific1_PLS_RFR; (c) Generic1_PLS_RFR;
and (d) Specific2 _OSAVI_RFR.

4. Discussion

In this study, the crop LAI was estimated accurately using a new hybrid inversion method
that combined a physical model (i.e., the radiation transfer model) with the regression algorithm.
Physical models usually have a general applicability; therefore, in principle, the hybrid method in this
study could be applied to different spaceborne and airborne data for similar crop types. Furthermore,
unlike empirical models, which require an extensive amount of ground-measured data for modeling,
the hybrid inversion method proposed in this paper only needs a few field samples for model
assessment [3,15,21]. Compared to other physical model-based strategies (e.g., iterative optimization),
the associated calculations of the hybrid inversion method are simple, quick, and accurate, providing a
convenient application to real remote sensing for estimating crop parameters [3,26,27,30,84].

The use of the entire band in inversion can make full use of hyperspectral information. However,
this approach is computationally complex and prone to interference by factors such as atmospheric
moisture absorption, information from the underlying soil, and sunshine conditions when applied
to remote sensing data analysis [85–87]. In contrast, VIs are simple to calculate and less susceptible
to interference factors. Nevertheless, compared with the use of the entire band, VIs contain only
part of the effective spectral information, which leads to the loss of information related to the
spectral characteristics [16,88–90]. Moreover, according to the results of Broge and Leblanc [91] and
Liang et al. [3], different vegetation indices are suitable for different conditions, while no universal
index is suitable for all conditions. Therefore, the optimization of the VI is important to improve LAI
inversion accuracy. This phenomenon, to some extent, complicates the process of LAI inversion using
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VIs. In this paper, the feature information of hyperspectral data was extracted using PLS dimension
reduction and the first four PCs were used as the input variables for modeling. This modeling strategy
can reduce the influences of noise interference while fully utilizing the spectral information, avoiding
complex index screening processes, and obtaining sufficient or even higher accuracy than the models
based on VIs.

Due to the narrow spectral band channel, hyperspectral data are sensitive to random noise;
thus, determining how to reduce the impact of random noise is an important aspect of hyperspectral
research [92–94]. Random noise can be divided into additive noise (independent of wavelength),
multiplicative noise (related to wavelength), and additive and multiplicative mixed noise [58–60].
Both additive noise (such as thermal noise of the sensor) and multiplicative noise (such as atmospheric
disturbance and other environmental changes) are present in remote sensing image data [58–60].
In this paper, considering research on the noise of CHRIS data [61–64], additive noise with a standard
deviation of 0.01, multiplicative noise with a proportion of 3%, and mixed noise of the two were used
to test the anti-noise ability of the model. The results show that, compared with VI-based model,
the PLS-based model showed better anti-noise ability in different noise types. This improvement arose
because, compared with the feature factors extracted by PLS, the VIs used only a few wavebands,
which are relatively easily affected by random noise [92–95]. Therefore, the PLS-based estimation
model not only had a high inversion accuracy but also a strong anti-noise ability, providing an optimal
strategy to estimate a crop’s physical and chemical parameters, such as the LAI.

Combal et al. [52] argued that field-measured data are among the most critical prior knowledge
sources. In the present study, the ground-measured data allowed us to more accurately define statistics,
such as mean, range, and standard deviation of crop parameters. Therefore, we can reduce the
uncertainty of the input parameter of the PROSAIL model, improving the LAI inversion accuracy.
In this study the model accuracy based on Specific dataset 2 was shown to be the highest among the
three datasets, followed by Specific dataset 1 and, finally, the Generic dataset. These results correspond
to the adequacy of the prior knowledge utilized in each dataset and validate the conclusions of
previous studies, which indicated that the use of prior knowledge was an effective way to reduce
the error of inversion model. The more accurate the prior knowledge is, the higher the inversion
accuracy [3,27,91,96]. Furthermore, the results in the study indicated that to improve model accuracy,
using prior information to constrain the key parameters, such as LAI and Cab, was more effective than
constraints on other parameters (e.g., zenith angle, azimuth angle, and altitude angle). This finding
was indicated by the results that the models established using Specific dataset 2 and Specific dataset 1,
which both achieved good accuracies that were obviously higher than those obtained by the model
based on the Generic dataset.

The selection of the appropriate modeling algorithm can improve LAI inversion accuracy [27,65].
According to Breiman [76] and Polikar [77], the RFR method is simple and robust and thus is preferred
for regression models. In the present study, the RFR model showed higher R2 and lower NRMSE
values than the PLS, BP-ANN, and SVR models, revealing a higher prediction accuracy. This is
consistent with recently published findings [27,31,32,80,84,97]. The RFR algorithm can get good results
in various applications, perhaps due to its reasonable hypothesis that different predictors might not
be very accurate in different regions, whereas combining the prediction of different predictors can
improve the overall prediction accuracy. Therefore, accurate and reliable predictions can be obtained
by establishing multiple regression trees for the prediction and then averaging the results of multiple
regression trees [76,77].

5. Conclusions

The LAI is a good indicator for crop growth status assessment and health diagnosis. To retrieve
this index quickly and accurately over a large scale, a new LAI estimation method was proposed that
combines a physical model, spectral feature extraction, and a hybrid inversion strategy. The observation
data, including CHRIS remote sensing images and simultaneously measured ground data, were used
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to validate the inversion results. The validation result indicated that it was feasible to achieve accurate
LAI estimation by extracting the feature information of PROSAIL-simulated data by PLS and then
constructing the inversion model using the RFR algorithm.

VIs are considered a promising method for estimating vegetation parameters, such as the LAI [3].
Nevertheless, this study showed that using appropriate PCs for modeling is not only as simple and
convenient as using VIs but also provides higher precision and stronger anti-noise ability than using
VIs for LAI estimation. This result means that the use of PLS to achieve PROSAIL-simulated data
reduction and construct the hybrid inversion model can fully combine the advantages of radiation
transmission models and empirical models, which is the preferred strategy for LAI estimation.

To reduce the inversion error, it is necessary to select an appropriate modeling algorithm.
Compared to PLS, BP-ANN, and LS-SVR algorithms, RFR was the preferred algorithm to establish
a regression model of crop LAI estimation, as indicated by its low NRMSE and high R2 for both the
generic and specific datasets (Table 3).

Although a model based on physical principles, such as the PROSAIL model, is considered
universal to estimate crop physical and chemical parameters, using prior knowledge to constrain
model parameters is still necessary. The compared analysis results of the estimation accuracy for
various regression algorithms in the Generic dataset, Specific dataset 1, and Specific dataset 2 showed
that using prior knowledge was an efficient method for accuracy improvement. Moreover, using prior
knowledge to constrain parameters such as LAI and Cab, which provide important contributions to
the spectra, is key to improving the model accuracy.
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Appendix A

Table A1. Hyperspectral vegetation indices for LAI estimation used in the paper.

Vegetation Index Formulation References

NDVI705 (R750−R705)/(R750+R705) [98,99]
mNDVI705 (R750 −R705)/(R750 + R705 − 2R445) [100,101]

mSR705 (R750 −R445)/(R705 −R445) [100,101]
GNDVI (R750 −R550)/(R750 + R550) [102]
RDVI (R800 −R670)/

√
R800 + R670 [103]

NDCI (R762 −R527)/(R762 + R527) [104]
Datt1 (R850 −R710)/(R850 −R680) [100]
Datt2 R850/R710
Carte1 R695/R420 [105]
Carte2 R695/R760
Carte3 R605/R760
Carte4 R710/R760
Carte5 R695/R670
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Table A1. Cont.

NVI (R777 −R747)/R673 [106]
EVI 2.5[(R800 −R670)/(R800 − 6R670 − 7.5R475 + 1)] [107,108]

OSAVI (1 + 0.16)(R800 −R670)/(R800 + R670 + 0.16) [109]
TVI 0.5[120(R750 −R550) − 2.5(R670 −R550)] [91]

MTVI1 1.2[1.2(R800 −R550) − 2.5(R670 −R550)] [90]

MTVI2
1.5[1.2(R800−R550)−2.5(R670−R550)]√
(2R800+1)2

−(6R800−5
√

R670 )−0.5
[90]

SPVI 0.4 ∗ 3.7(R800 −R670) − 1.2|R530 −R670| [110,111]
SPVI2 0.4 ∗ 3.7(R800 −R670) − 1.2|R550 −R670| [111]
REP 700 + 40[(R670 + R780)/2−R700]/(R740 −R700) [112]
PRI (R531 −R570)/(R531 + R570) [113]

VOG1 R740/R720 [114]
VOG2 (R734 −R747)/(R715 + R726)
VOG3 (R734 −R747)/(R715 + R720)

Note: DVI705, red edge normalized difference vegetation index; mNDVI705, modified red edge normalized
difference vegetation index; mSR705, modified red edge simple ratio index; GNDVI, green normalized difference
vegetation index; RDVI, renormalized difference vegetation index; NDCI, normalized difference cloud index; Datt,
Datt vegetation index; Carte, Carte vegetation index; NVI, new vegetation index; EVI, enhanced vegetation index;
OSAVI, optimized soil-adjusted vegetation index; TVI, triangular vegetation index; MTVI, modified triangular
vegetation index; SPVI, spectral polygon vegetation index; REP, red edge position index; PRI, photochemical
reflectance index; VOG, Vogelmann red edge index.
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