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Abstract: Measuring and forecasting changes in coastal and deep-water ecosystems and climates
requires sustained long-term measurements from marine observation systems. One of the key
considerations in analyzing data from marine observatories is quality assurance (QA). The data
acquired by these infrastructures accumulates into Giga and Terabytes per year, necessitating an
accurate automatic identification of false samples. A particular challenge in the QA of oceanographic
datasets is the avoidance of disqualification of data samples that, while appearing as outliers,
actually represent real short-term phenomena, that are of importance. In this paper, we present a
novel cross-sensor QA approach that validates the disqualification decision of a data sample from an
examined dataset by comparing it to samples from related datasets. This group of related datasets
is chosen so as to reflect upon the same oceanographic phenomena that enable some prediction of
the examined dataset. In our approach, a disqualification is validated if the detected anomaly is
present only in the examined dataset, but not in its related datasets. Results for a surface water
temperature dataset recorded by our Texas A&M—Haifa Eastern Mediterranean Marine Observatory
(THEMO)—over a period of 7 months, show an improved trade-off between accurate and false
disqualification rates when compared to two standard benchmark schemes.

Keywords: ocean remote sensing; ocean observatories; quality assurance; quality control; prediction
of data; data validation; change detector; regression

1. Introduction

1.1. Background

Understanding the ever-changing oceans, biota and atmosphere is one of the greatest
global challenges. The future of measuring and forecasting trends in coastal and deep-water ecosystems
and climates lies in obtaining long-term time-series from marine observation systems. A new era in
ocean observation has begun—an integrated approach to the gathering and sharing of information.
Today, there are already hundreds of marine observatories, each collecting vast amounts of time-series
data samples ranging from oil spill monitoring [1] to meteorological and oceanographic global
coverage [2]. One of the key challenges in handling these data is quality assurance (QA). The acquired
data are used to derive conclusions about climate change, weather patterns and marine biodiversity,
and inform public opinion and legislation activities, therefore the data acquired must be highly accurate
to reflect trends of real phenomena. With billions of data samples collected, man-in-the-loop QA
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becomes impractical and necessitating automation. For example, from the Texas A&M—Haifa Eastern
Mediterranean Marine Observatory (THEMO) [3]—which produces data samples simultaneously
from 40 sensors every 30 min, we have collected more than 2.5 million data samples over a period of
18 months.

1.2. State-of-the-Art

Current approaches to QA in marine observatories can be categorized into three groups:
(1) thresholding, where bounds are set by the sensor’s specifications and by an expert; (2) sequential QA,
where different quality metrics are applied along the route from the sensor to the server; and (3) the
Automatic vs. Man-in-the-loop QA. Thresholding relies on bounds set by experts based on the expected
range and resolution for each dataset [4,5], or, to detect a phenomenon such as spikes or drift in the
data [6], and are used to test statistical properties of the data [6,7].

QA can be performed at the sensor in real-time (e.g., [7] for upper/lower bounds according to the
sensor’s specifications) or off-grid at the data server. Performing QA at the sensor level may include
simple data processing, e.g., averaging and smoothing, and holds the benefit of low system load;
for example, when the data syntax is faulty [8]. In contrast, performing QA at the server allows more
advanced QA by measuring statistical metrics for the entire time-series, and can thus take into account
trends in the dataset [7].

Data processing is performed either offline or online. In the offline case, data is collected and
stored internally by the observatory and released in large batches. An example of this is the standard
procedure of operating Ocean Bottom Seismometers (OBS) [9], which collect data over periods that
range from weeks to months between intermittent recoveries. In the online approach, the observatory
is connected either to a surface gateway, such as a buoy with radio communication to shore as is the
case for THEMO [10], or a direct cable connection as in the Monterey Accelerated Research System
(MARS) [11] and in the Ocean Network Canada (ONC) observatories [7]. In these cases, the data
are received and examined in small batches of samples. Offline QA allows an in-depth data analysis
that can take into account both the causal and non-causal properties of the time-series. In contrast,
the online approach requires a quick response to events and real-time analysis, and therefore cannot
take into account trends in the examined dataset. While suitable for both applications, the approach
presented in this paper mostly addresses the online case.

Typically, QA operations in marine observatories are handled through a flagging system.
For example, ONC uses a 0–9 numeric value flagging approach to determine data quality, where level 0
indicates no quality control; level 1 indicates that the data has passed all tests; and level 9 indicates
that a data sample is missing [7]. In contrast, the Integrated Ocean Observing System (IOOS) applies a
five-level flag system that distinguishes between critical tests and all QA tests [12,13]. Classification to
QA levels is made by set thresholds, such as the gross range test that determines upper and lower
bounds by the sensors’ specifications [13]. When an expert is involved, these bounds can be tightened
to reflect the likelihood of the measured data in a certain context. For example, the water temperature
is unlikely to exceed 30 ◦C. In principle, a breach of the sensor’s specifications is labeled as an error,
while deviations from expert-defined thresholds are labeled as suspect data [7]. Thresholds are also
set to test the data statistically. For example, ONC examines measurements obtained in fixed time
windows and identifies transients as measurements that deviate far from the mean value in the
window [6,7]. Other threshold methods include identifying faulty sensors that produce fixed values
while the phenomenon they observe is expected to be time-varying, e.g., the water current [8,12],
or identifying drift within the dataset by testing for stable increasing/decreasing trends in the data
samples [12].

Another approach is adaptive QA, where thresholds are determined according to the time-of-year
and/or region of testing [7,8,13], and can facilitate a learning process where the statistics of data
from previous years are used to adjust the threshold levels [7]. This allows for the fine-tuning of
bounds according to seasonal changes, and mostly involves an expert overlooking the adjusted bounds.
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This man-in-the-loop approach can incorporate oceanographic knowledge about the expected values
from sensors and about acceptable trends in the data [8,13]. However, because existing databases have
become very large, the man-in-the-loop approach is no longer manageable. Considering this challenge,
the authors in [14] performed a proof-of-concept method over data from the Hobart observatory,
Australia, and offered a fuzzy-logic-based algorithm to automatically identify anomalies. However,
the performance is not robust enough for all sensor types.

Although QA operations are performed, to some degree, by all marine observatories, due to
the complexities of the observed physical phenomena and the long time periods observed, the QA
decisions made are not considered robust enough to cover the full extent of anomalies that may
arise [15,16]. The main concern is placing too-tight thresholds which leads to false identification of
valid data samples as anomalous, while in fact, such short-time phenomenon are of great interest to
researchers. The validation of disqualification decisions is thus the focus of this work.

1.3. Summary of Proposed Solution

The above-mentioned complexity of physical phenomena also lends itself to diversity in the
acquired datasets. Specifically, an interesting property of data from marine observatories has the
potential for relationships among groups of datasets related to a similar oceanographic property [17].
Thus, in contrast with common sensor-specific QA approaches e.g., [1,5], we propose a novel QA
method that handles the aforementioned limitation by validating the disqualification of data samples
across sensors. In particular, by comparing an examined dataset to its group of related datasets
we can determine if an observed anomaly is, in fact, an erroneous data sample and should thus
appear only in the examined dataset, or reflects a real physical event and hence appears in the related
datasets as well. An example for this is shown in Figure 1, where some of the seemingly suspicious
anomalies observed in data samples of water temperature at a certain depth appear also in datasets
for other depths, and are thus likely valid. To identify the group of datasets related to a specific
examined dataset, we first consult an expert to identify potential relationships among datasets by the
physical phenomena they observe. We then quantify the level of dependency within the identified
group by using support virtual regression (SVR) that, after training, makes a prediction from the
potentially related datasets to the examined one. A small prediction error would reflect a strong
dependency between the different datasets.
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Figure 1. Temperature data at three water depth measured in THEMO. Some anomalies in temperature
are shown to correlate at different depths (example marked by the purple-dashed arrow), while others
exist only at a single depth (example marked by the green-solid arrow).

Our contribution is twofold:

1. A formalized way to obtain sets of oceanographic data related to similar phenomena.
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2. A first of its kind cross-sensor scheme to verify the disqualification of identified anomalies.

We demonstrate the applicability of our cross-sensor QA approach for a time-series dataset
of surface water temperature collected in a duration of 7 months by THEMO [3]. Using expert
labeling as a baseline, and comparing with two anomaly detection benchmarks, our cross-sensor
QA validation approach displayed an improved trade-off between false and accurate data sample
disqualification rates across all receiver operating characteristics (ROC). With the aim of pushing
towards standardization in QA of oceanographic data, in [18] we freely share our QA code and
tagged datasets.

The remainder of this paper is organized as follows. Preliminaries and our system model are
presented in Section 2. In Section 3, we describe our cross-sensor QA approach in detail. Performance
over the THEMO database is discussed in Section 4. Discussion is offered in Section 5, and conclusions
are drawn in Section 6.

2. System Model

2.1. Preliminaries for Potential Relationships between Datasets

We start the description of our system model with a brief motivation for our approach, introducing
general engineering community readers to a few basic concepts of the possible relationships between
oceanographic datasets and their origins. Since the prime source and sink of heat transfer and
freshwater to the ocean is at the ocean surface, this is where most of the water’s physical properties
are acquired (e.g., [17]). Once acquiring their properties at certain surface conditions, water masses
maintain primarily isopycnal paths, preserving the source signature and undergoing approximately
adiabatic changes of their physical properties. These variations are controlled to a major extent by
gravitational instabilities, resulting from lateral differences in the water density, e.g., [17]. The water
density is, in turn, controlled by directly measured temperature, which is measured directly,
and salinity, which is estimated from electrical conductivity. The relationship between temperature and
salinity is well established and persists away from the surface over large spatial and temporal scales.
This persistence enables the characterization of oceanic water bodies [19,20]. It has recently been shown
to correlate over fine (10 m) horizontal scales across the upper mixed layer and thermocline [21,22].
Similarly, planktonic productivity in the upper ocean layer, which is estimated from the optical
properties of the water, can be related to fine-scale turbulence [23] and is therefore related to seawater
temperature [24].

Relations in oceans dynamics are routinely modeled through empiric estimations (e.g., [25]) and
numeric approximations (e.g., [26]) of the equation of state. In particular, the combined effects of the
seawater’s high heat capacity and multi-scale internal horizontal turbulence smooth the temporal and
spatial variability of physical properties within each water mass, and establish characteristic vertical
stratification. The situation is different for the chemical and biological properties of the ocean, which are
often not conservative within water masses (e.g., [17]). However, many of these properties, including
dissolved nutrients, plankton distribution, and concentrations of oxygen and other gasses, etc.,
correspond with the characteristics and evolution of water masses. Such multiple inter-dependencies
reflect relationships among oceanic properties, which allow approximate predictability of their
co-variations within water masses and the distinction of different water masses based on multiple
oceanographic measurements.

In Figure 2, we provide a collection of expected related datasets between sensors mounted on
the THEMO mooring [3]. These expected relations allow us to propose preliminary related groups
of datasets from which the final list of related datasets is determined quantitatively. More general
guidelines on how to anticipate such preliminary related groups are given in Appendix A.
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Figure 2. Dependencies between datasets measured in THEMO.

2.2. Setup and Main Assumptions

We consider a time series database collected by several oceanographic sensors. All sensors
were assumed to probe the same water body, but were expected to measure different characteristics.
The sensors are assumed to be calibrated but may potentially induce faulty data. In terms of QA
validation, our goal is to mark data samples identified as anomalies as either valid or suspected.
This reflects a degree of belief in the quality of the data sample. Users are then encouraged to use the
valid data samples, and to be wary of analyzing suspect samples.

We assume that the subsets of sensors in the observatory are affected by similar
oceanographic events. As a result, we expect the data from these sensors to be related. Consequently,
we assume that data samples from one or more datasets can predict those of another. We further
assume this relationship between datasets has the same time scale as the physical phenomenon. That is,
data from sensors found to be affected by similar continuous or periodic phenomena remain related
over time, while data from sensors affected by similar phenomena that appear in transients, are only
partly related.

2.3. The Used Datasets

In this paper, we showcase our QA approach over datasets from our THEMO mooring [3].
THEMO is located at Latitude/Longitude: 33.03961◦/34.9472◦ in the southeastern Mediterranean Sea
margin, which represents an extremely oligotrophic (Low Nutrient Low Chlorophyll) marine area.
The salinity of the Levantine Surface Water (LSW) in this region has significant inter-annual fluctuations
defined by cyclonic/anticyclonic circulation in the north Ionian Sea and cyclonic/anticyclonic
circulation in the Levantine basin. Anticyclonic circulation in the North Ionian Sea decreases the
advection of Atlantic Water (AW) in the Levantine Basin and leads to high salinity, whereas a low level
of cyclonic circulation in the Levantine Basin leads to stagnation of the LSW and to a further increase
in salinity. The intensification of the cyclonic circulation after stagnation leads to the emergence of
anomalously saline water in regions of intermediate and deep water formation. The THEMO location
is ideal for observing these inter-connected physical phenomena, as utilized by our QA approach.
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We demonstrate our QA validation approach over the water temperature dataset measured
in THEMO 1 m below the surface. Figure 3 shows the entire time-series of the examined dataset.
Anomalies tagged by an expert are marked over the plot. We observe that most anomalies are
evenly spread in time while a cluster of anomalies is identified at the beginning and ending of the
considered period.
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Figure 3. A time-series (blue) of the surface water temperature recorded by THEMO over the selected
time frame (the examined dataset), with the anomalies tagged by an expert marked (red).

Following Figure 2, for this examined dataset we consider nine potentially related datasets:
barometric pressure, chlorophyll, salinity, conductivity, air humidity, air temperature, and water
temperature at 5 m, 14 m, and 16 m below the surface. Table 1 gives additional information about the
sensors used for the measurements considered.

Table 1. Spesification of sensors used for data analysis.

Description Sensor Model

Barometric pressure [mbars] (3 m above sea surface) Vaisala (PTB210)

Chlorophyll [µg/L] (depth 1 m) Wet Labs (ECOFLNTUS)

Salinity [PSU] (depth 1 m) CTD microcat (SBE37-SI)

Conductivity [S/m] (depth 1 m) CTD microcat (SBE37-SI)

Temperature [◦C] (depth 1 m) CTD microcat (SBE37-SI)

Air humidity [RH%] (3 m above sea surface) Rotronics (mp101a)

Air temperature [◦C] (3 m above sea surface) Rotronics (mp101a)

Temperature [◦C] (depths 5 m, 14 m, 16 m) Sound-nine (Ulti-Modem)

We use datasets collected between 24 July 2017 through 15 January 2018. This period was chosen
because during this time the observatory was fully functional and no failures were detected in any
sensor. The raw datasets and their manual tagging for anomalies by an expert are freely shared at [18].

3. The Cross-Sensor QA Method

Our cross-sensor QA method is performed in two steps. First, an offline step, where, for a given
examined dataset, we identify its list of related datasets. This list is chosen based on the set of potential
relationships between the available datasets (see in Figure 2 for datasets in the THEMO observatory),
and by examining the prediction capability from the possible related sensors to the examined dataset.
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The second step is an online step, where we verify each identified anomaly in the examined dataset,
using the prediction scheme found in the offline step. The initial detection is made by a baseline
“change detector” scheme, which can be a simple threshold test or more complex analysis, e.g., a “spike”
in the dataset as in [7]. The corresponding time frame of the identified anomaly is used to search for
similar additional anomalies in the related datasets. Our key idea is that the existence of an anomaly
both in the examined and the related datasets would reflect a real physical phenomenon, in which
case the detected anomaly should be considered valid. In contrast to common approaches, e.g., [1,5],
which perform a separate QA for each dataset, our cross-sensor QA approach is designed to be robust
in terms of the examined dataset. In the following, we describe in detail the steps of our approach.

3.1. Offline: Identification of Related Datasets

The suitability of a dataset to the related group of an examined dataset was quantified by the
outcome of a prediction from the former to the latter. While we do not expect perfect prediction, we do
anticipate that the original dataset and the predicted one will share common trends and ‘behavior’.

3.1.1. Prediction of Datasets

We make the following distinction:

I Prediction always agrees with the original dataset. Such a relationship is relevant for a direct
comparison between the datasets.

II Prediction agrees with the original dataset only for transient samples. This similarity refers to
rare events that may be falsely identified as outliers.

III Prediction does not agree with the original dataset. This lack of connection means that the
datasets used for the prediction cannot be part of the related group.

Type I reflects an agreement between the predicted and original datasets and can be recognized
by a distance metric. Type II can produce a good prediction only for anomalies in the original dataset.
Type III is simply the fallback of the previous two tests. To make the distinction between the relationship
of Type I to Type II, we consider prediction matching based on both the raw sensory data and the
discrete wavelet transform of the data. This transform is useful for identifying wideband transients [27]
and serves as a data smoother, such that for relationships of Type II, the prediction over the transformed
data is expected to show good agreement throughout the dataset.

For prediction, we turn to machine learning regression tools. While the relatively large amounts
of time-series data produced by marine observatories may foster the employment of convolutional
neural networks (CNN), the diversity in the data across sensors may be too challenging to handle
in a robust manner. In particular, how to best design the CNN is expected to vary for different
datasets and decrease robustness. As a result, we adopt the simple but effective support vector
regression (SVR). With its kernel ‘trick’, SVR can capture highly non-linear relations with only a few
user-defined parameters. As shown in our recent works for optic–acoustic classification and sonar
target detection [28,29], SVR can be used successfully for seemingly non-related datasets.

An SVR is trained to find a separating hyperplane between classes of data [30]. Consider an input
set of samples from the examined dataset X = {x1, x2, . . . , xN} and a set of samples from the related
datasets Y = {y1, y2, . . . , yN} acquired at the same time, where the sub-index represents the time index
when the data sample was acquired. The SVR aims to obtain a subset {L} incidence of data samples
in X, called support vectors, and corresponding L weights wi that minimize [31]

min
1
2
||w||2 + c

n

∑
i=1
|ξi| ,

s.t.|X− < wi, Y > | ≤ ε + |ξi| ,

(1)

where ε is a specified margin called the maximum error, c is a hyperparameter, and ξi are slack variables.
The product < wi, yi > represents the projection from the related datasets to the examined one. As the
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relation is expected to be highly non-linear, we use the Gaussian Radial Basis Function (RBF) with
parameter σ,

< wi, yi >= exp
(
− |wi − yi|

2/(2σ2)
)

. (2)

After training, prediction is performed by projecting all support vectors

Xtest = ∑
j∈{L}

wj· < ytest, X(j) > , (3)

where ytest and Xtest are a single input from the related datasets and a single prediction for the
examined dataset, respectively.

3.1.2. Comparing Predictions

Since measurements from oceanic sensors hold the memory of physical processes, they cannot
be assumed to be independent and identically distributed random variables (i.i.d). We thus divide
the dataset into training (A), validation (B) and testing (C) sections for which ‘training’ is used to
learn the model, ‘validation’ for setting the model’s parameters using the k-fold approach, and ‘testing’
for predicting the dataset. The resulting prediction of the (C) section is used to evaluate the relation
between the related and examined datasets. Specifically, for the examined dataset in section (C), s,
and its prediction, p, we measure the relation by the Canberra distance [32]

ρ(p, s) =
1
α

k

∑
i=1

|si − pi|
|si|+ |pi|

, (4)

where α is a normalization factor and k is the number of elements in the compared sets. We have
chosen this measure due to its built-in normalization, in which the numerator decreases the more
similar the two sets are while the denominator pushes the results to 1 for non-similar sets.

We determine a group of datasets to be related to the examined one if ρ from (4) is below a
threshold ρth. To accommodate the above Type I and Type II of similarities, the above process
is repeated for the raw data and for the wavelet transformed version of it. An example for the
classification into ‘valid’ and ‘anomaly’ of a salinity dataset using predictions from the water
temperature dataset over a period of 80 days is shown in Figure 4. We observe that anomalies
are detected well by comparison between the predicted (valid) samples and the full original dataset.

Figure 4. Classification of a THEMO salinity dataset into valid (blue plus marks) and transient (black
circles) data using predictions from a water temperature dataset.



Remote Sens. 2020, 12, 3470 9 of 16

3.2. Online: Identifying Faulty Data Samples

3.2.1. Anomaly Detection

As the focus of this work is on QA verification, we avoid suggesting a new technique for
anomaly detection. Instead, as benchmarks, we follow the procedure in [7] for the definition of
a Spike Test and Gradient Test as two different methods for identifying anomalies. A spike is a rapid
and temporary change in value whose probability of occurrence is low. In the frequency domain,
a spike will appear as a short wideband signal of high or low intensity. In turn, a gradient change is
a difference in the value of the tangent vector that reflects a change in the directional sample-wise
derivative of the dataset. Formally, for a set of data samples v = v1, v2, . . . , vN and a tested value vn,
the spike test aims to identify a sample that stands out from its local environment and is defined by

ρspike = |vn −
vn+1 + vn−1

2
| − |vn+1 − vn−1

2
| . (5)

The gradient test identifies outliers and is set by

ρgradient = |vn −
vn+1 + vn−1

2
| . (6)

To detect an anomaly, both the above tests were compared to dataset-specific detection thresholds.

3.2.2. Detection Verification

Once an anomaly is detected within the examined dataset, verification is performed. Verification
is based on the comparison between the examined dataset and its related datasets within the time frame
where the anomaly was detected. We consider two approaches: (1) majority vote, and (2) soft analysis.
A unified combination of these two is also possible.

Referring to the illustration in Figure 5, in majority vote each data sample in a related dataset
is tested separately for the presence of a corresponding anomaly. Define τ as the time at which an
anomaly was found in the examined dataset, and let ∆τ be a corresponding time window around τ.
An anomaly is verified only if an anomaly is also detected within ∆τ by more than r related datasets.
The value for ∆τ can be widened to consider delays between the effect of physical phenomena as
it gets reflected in different datasets, or narrowed to avoid misalignment between datasets. In our
analysis below, we set ∆τ to be 30 min, which allows a window of 3 samples on average, and, for three
related datasets, we consider r = {1, 2, 3}.

Figure 5. Illustration of the detection verification approaches.
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The hard decision approach of the majority vote holds the advantage of eliminating the flagging
of valid transients as false, but cannot manage the case of hardware malfunction of sensors where
data is false at all datasets. Further, because each dataset is analyzed separately, this approach does
not utilize the relationship between all the related datasets. For these cases we offer a soft analysis
approach, where data samples from all related datasets are combined. A matrix of data samples
from all related datasets within ∆τ serves as an input to an SVR whose output is a prediction of the
examined dataset at τ, i.e., the anomaly. This is the same SVR as trained during the offline step to
identify the related datasets. The anomaly identified from the examined data sample is then considered
valid if the prediction is successful, i.e., ρ in (4) exceeds threshold ρth. Since a faulty data sample is
not expected to allow accurate prediction, the soft analysis approach can discover batches of samples
where all sensors produced faulty data.

4. Results

In this section, we explore the results of our cross-sensor QA scheme for the surface water
temperature dataset measured at the THEMO observatory. As a baseline to evaluate our results,
we have used an expert to hand-label the examined dataset. Out of 5520 observed samples taken over
a period of 7 months, the labeling identified 328 anomalies.

As benchmarks, we compared the performance of our cross-sensor approach with the spike
and gradient anomaly detectors offered in [7] and described in (5) and (6), respectively. As spikes
are easily observed in the time domain, for the spike test we use raw measurements. Contrarily,
since gradients are harder to observe, for the gradient test we use the wavelet transform that
highlights high-frequency components. Performance are explored for the majority vote and the
soft analysis approaches. For the former, the same spike or gradient test used for the benchmark is
passed over the found related datasets using the same detection threshold.

To identify the list of related datasets, we examined the nine datasets in Table 1, namely, salinity,
chlorophyll, conductivity, barometric pressure, humidity, air temperature and water temprature at
three different depths (see also Figure 2). Results in Figure 6a,b shows the ratio between the prediction
error obtained when using all nine possible related datasets and the error obtained when removing
one dataset. The rational behind this exploration is to quantify the contribution of a single dataset
for the overall prediction task. Formally, for an examined data sample x and its predictions, x̂(d)
and x̂(dj), where d is the entire set of considered related datasets and dj is the entire set without the
j-th dataset, respectively, we measure

Error Ratej =
E
[
||x− x̂(dj)||2

]
E [||x− x̂(d)||2]

. (7)

It is expected that the prediction error obtained when using a single dataset would be higher than
when using the entire dataset.

The results shown in Figure 6a,b identify the salinity, conductivity, and humidity datasets as
the related datasets when raw data is considered, and the salinity and conductivity datasets as the
related datasets when the wavelet transform of the datasets are analyzed. We note that using the above
group of related sensors, d̂, the absolute prediction error during testing, E

[
||x− x̂(d̂)||2

]
, is 0.08 ◦C.

Considering that the examined temperature dataset lies between 19 and 30.6 ◦C, with a standard
deviation of 3.9 ◦C, we argue that this is a sufficiently accurate prediction. This strengthens our claim
for the diversity gain obtained when utilizing cross-sensor information. In the below, we use only
these identified datasets as the related set.
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Figure 6. The ratios between the prediction errors (7) when using all N possible related datasets vs.
when using a subset of N − 1 datasets. The bar labels (bottom) indicate the removed dataset in each of
the cases, bar level indicates the mean value while error bars represent the 95% confidence interval.
(a) Raw dataset. (b) After wavelet transform.

An example of the prediction obtained by SVR of the surface temperature dataset from the
conductivity dataset is shown in Figure 7. Both datasets were recorded by the THEMO observatory
over a period of 900 days. The prediction closely resembles the decreasing trend in time for
the examined dataset, and it is shorter (tens of days) term transient variability. To quantify this,
the surface temperature data samples and their prediction can be fitted, respectively, with the following
linear trends

Temperature = −0.0018825 · Time + 23.203

Temperature = −0.0018823 · Time + 23.234,
(8)

with close R-squared values of 0.972 and 0.97, respectively, a cross-correlation of 0.9983, and a p-value
of 0 for testing the hypothesis of no correlation between the two datasets. The obtained mean error of
the prediction, defined by the Euclidean distance

E [||x− x̂||2] (9)

between the examined data sample, x, and its prediction, x̂, has a value of 0.0019 ◦C, which is extremely
small with respect to the apparent transient variability of the examined dataset. Some prominent
transients in the original water temperature dataset are also observed in the predicted dataset,
for example, on day 380 and around day 600. In contrast to standard methods, the cross-sensor
criteria show that these are valid data samples. Consequentially, our approach avoids classifying these
samples as anomalies.

Results in terms of the receiving operating characteristics (ROC) with respect to the expert labeling
are shown in Figure 8a,b for the gradient and spike tests, respectively. The former is computed for the
raw data and the latter for the wavelet transform of the data. Pairs of false alarm vs. correct detection
rate are obtained by changing the detection threshold. False alarm values are calculated as the count of
samples falsely determined to be erroneous, and results are normalized by the number of data samples
examined per day. Detection probability is counted as the percentage of correctly identified anomalies
out of all expert tagged valid anomalies. We show results for the majority vote (marked by x-Sensor,
with x = 1, . . . reflecting the number of related datasets required for the majority decision) and for the
soft analysis (marked by SVR-Prediction). These are compared with the per-sensor anomaly detection
(marked by Change-Detector that serves as a benchmark.
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Figure 7. THEMO water temperature data (blue) and its prediction from conductivity data (red),
as obtained by the support vector regression (Radial Basis Function (RBF) kernel) method.
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Figure 8. Receiver operating characteristics (ROC) results shown for standard anomaly detection
(change detector) and for cross-sensor validation—majority vote for anomaly agreement by 1, 2 and
3 datasets, and soft-analysis by support virtual regression (SVR). (a) A gradient test for raw data.
(b) Spike test for wavelet transform over the data.

As expected, adding verification to the anomaly detection benchmark reduces the false alarm
rate at the cost of a decrease in the detection rate. However, examining the trade-off between the
two metrics (considered better the more ‘left’ the curve in the ROC is), we note that, compared to the
per-sensor anomaly detection, improved performance are obtained for our cross-sensor validation
approach. For example, in the gradient test on the raw dataset (Figure 8a) and for a detection rate
of 0.2, the false alarm rate reduces from 0.83 per day for the per-sensor QA to 0.72 for the majority
vote (three sensors) and to 0.65 for the soft analysis SVR prediction. Similarly, for the spike test on the
wavelet transform of the dataset (Figure 8a) and for a detection rate of 0.2, the false alarm rate reduces
from 2.15 per day for the per-sensor QA to 2.09 for the majority vote (2 sensors) and to 0.743 for the
SVR prediction. Comparing the two QA verification approaches, we conclude that the soft analysis
using the SVR prediction achieves better results than the majority vote. This is mostly because the SVR
is able to fuse datasets rather than comparing hard decisions by the majority vote, and thus obtains
higher diversity gain. This gain is shown to be more significant in the case of the spike test over the
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wavelet transform. This is because the SVR classifier is able to capture better differences in datasets
that are highlighted by the wavelet transform.

Finally, in Figure 9 we explore the influence on performance of the time-frame parameter, ∆τ.
For different values of ∆τ, we show the ROC results of the majority vote approach using the spike
test (6) as a benchmark. The results show that the choice of ∆τ = 30 min yields the best performance.
However, the difference in performance for other choices of ∆τ are negligible, which suggests that,
within reasonable values, our approach is robust with respect to the choice of the ∆τ parameter.

Figure 9. ROC results of majority vote using the spike test as a function of ∆τ.

5. Discussion

Our method for QA validation is designed to decrease the false identification rate, Pfa, of anomalies
in the examined dataset at a small cost of a decrease in the correct identification rate, Pd. Compared with
the two benchmark schemes from [7], the results show that our approach yields a favorable trade-off
for the Pd and Pfa objectives, such that, for a given Pd, less false identifications of anomalies are made.
As we demonstrated for the surface water temperature dataset collected by THEMO, such false
identifications of anomalies are common, yielding the discrimination of important samples that are
sometimes key for understanding temporal phenomena. Our approach, thus, not only approves
more data samples for analysis, but more importantly, avoids neglecting valid anomalies that may
correspond to short-term physical phenomena that are of high importance.

Our solution is general in principle and can be applied for any marine observatory or station
including multiple sensors of various kinds. However, it has some limitations. First, the sensors must
be at an approximate location and sample the same water body; second, data samples must be obtained
simultaneously at roughly the same time instance; third, the datasets should be a time-series so to
allow the identification of anomalies. Finally, the geographical area explored must be stable enough
such that different physical phenomena could be related.

Our results showed that validation by SVR prediction offers better performance than the
majority vote. This result was explained by the capability of the SVR to capture non-linear relations
between different datasets. We, therefore, expect that results would improve the more related the
datasets are. Thus, one way to enhance performance is to train the SVR separately per-season.
Since oceanographic datasets tend to considerably change between seasons, a per-season analysis has
the potential to better capture the relationships between the explored datasets. Furthermore, a unified
validation that combines decisions made by the majority vote and by the soft analysis may produce
better results. Since in this work we focus on introducing the concept of cross-sensor validation,
we leave this investigation for future work.
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6. Conclusions

In this paper, we explored the use of multiple sensors for the task of validating quality assurance
(QA) decisions for datasets from a marine observatory. Different than the existing methods that perform
QA for each dataset separately, we utilize the likely relationships among different datasets probing the
same water body as a form of spatial diversity. For each examined dataset, our approach identifies a
group of datasets whose data samples can be used for the prediction of the examined dataset. We use
this group of related datasets to validate each anomaly identified in the examined dataset. We offer two
approaches: a majority vote in which an anomaly detection is determined valid only if anomalies are
not found in the related datasets, and a soft decision approach using SVR prediction where an anomaly
is approved if it cannot be predicted from the corresponding list of related datasets. Results from
our marine observatory, THEMO, comparing our cross-sensor approach to two per-sensor anomaly
detectors demonstrate a favorable trade-off for decreasing the false alarm rate at the cost of a slight
increase in the detection rate.
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Appendix A. Guidelines for Anticipating Related Datasets

Relationships among the different oceanographic measurables are diverse. For example,
rain should be associated with a decrease in conductivity that is measured close to the surface.
A more complex relationship exists in the case of upwelling, where a consistent along-coast wind
eventually causes surface water to be displaced off-shore, bringing colder, high nutrient water upwards.
Alternatively, there are other cases where the mechanisms are complex. For example, there are many
factors affecting the dynamics of algae blooms with variable levels of influence. However, the general
consensus is that algae blooms are usually the combined result of high nutrient availability with
optimal temperature and light conditions. In this case, a turbidity sensor, for example, may play a dual
role before and after the event. In calm waters and low turbidity, the light would penetrate deeper and
foster the rapid multiplication of algae, and in turn resulting in an increase in turbidity and, eventually,
oxygen depletion.

The identification of related datasets can be done in two basic alternative approaches.
The first is to exploit the physical, chemical and/or biological relationships between the different
environmental measurables, as modeled through a range of methodologies. At one end of this range
are pre-known relations that can be explicitly computed directly from the different measured values.
The primary example is the equation of state, relating the potential temperature, salinity and density
within a specific water mass away from its boundaries. Within the range of methodologies is the
use of a-priory models to resolve the variability of the relations. An example is the use of typical
seasonal vertical profiles of oceanic measurables to define the boundaries of water masses and help
asses measurements taken near and across boundaries. At the end of this spectrum of methodologies
is the utilization of dynamic synoptic models to relate the measurables expected. An example is the
relationship between temperature measurements and current measurements, related through water
turbulence in response to the temperature field. The second, alternative, basic approach is to derive
empiric relationships among different measured datasets by analyzing data accumulated in these
datasets at the measurement site or region. Such analysis can have manual components or be entirely
automatic, and normally would evaluate the dependence on additional basic parameters, such as the
hour, season and depth. These empirical relations can be improved as data accumulates.
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