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Abstract: Despite yielding considerable degrees of accuracy in landslide predictions, the outcomes of
different landslide susceptibility models are prone to spatial disagreement; and therefore, uncertainties.
Uncertainties in the results of various landslide susceptibility models create challenges in selecting
the most suitable method to manage this complex natural phenomenon. This study aimed to propose
an approach to reduce uncertainties in landslide prediction, diagnosing spatial agreement in machine
learning-based landslide susceptibility maps. It first developed landslide susceptibility maps of
Cox’s Bazar district of Bangladesh, applying four machine learning algorithms: K-Nearest Neighbor
(KNN), Multi-Layer Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM),
featuring hyperparameter optimization of 12 landslide conditioning factors. The results of all the
four models yielded very high prediction accuracy, with the area under the curve (AUC) values range
between 0.93 to 0.96. The assessment of spatial agreement of landslide predictions showed that the
pixel-wise correlation coefficients of landslide probability between various models range from 0.69 to
0.85, indicating the uncertainty in predicted landslides by various models, despite their considerable
prediction accuracy. The uncertainty was addressed by establishing a Logistic Regression (LR) model,
incorporating the binary landslide inventory data as the dependent variable and the results of the four
landslide susceptibility models as independent variables. The outcomes indicated that the RF model
had the highest influence in predicting the observed landslide locations, followed by the MLP, SVM,
and KNN models. Finally, a combined landslide susceptibility map was developed by integrating
the results of the four machine learning-based landslide predictions. The combined map resulted in
better spatial agreement (correlation coefficients range between 0.88 and 0.92) and greater prediction
accuracy (0.97) compared to the individual models. The modelling approach followed in this study
would be useful in minimizing uncertainties of various methods and improving landslide predictions.
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1. Introduction

Due to the destructive potential of landslides, this natural phenomenon poses a serious threat
to human life, property, and the environment in the areas in which they occur [1,2]. Access to
continuous and accurate information on landslide occurrence is essential for managing the risk to
this unpredictable hazard [2,3]. Mapping landslide susceptibility is a widely conceived approach to
estimating the likelihood of occurrence of this complex natural phenomenon [1,3–5]. The development
of remote sensing technologies in the last few decades enables researchers to map landslide susceptibility
more efficiently, due to the availability of high spatial and temporal resolution data [3,4,6]. For instance,
high-resolution remote sensing (satellite imagery) data are used to develop various thematic layers
explaining the topography, land cover, geology, and hydrology, which are essential parameters for
predicting landslides [4,7]. Remote sensing techniques are also useful in developing accurate landslide
inventory maps [3,6].

Along with the quality of available data, the choice of appropriate methodology is essential for
developing reliable susceptibility maps [2]. During the last several decades, many landslide susceptibility
models have been developed based on the geographic information system (GIS) and remote sensing
technology [8]. Examples of such models include the weights-of-evidence [9,10], multivariate regression
analysis [10,11], analytical hierarchy process [12], and the evidential belief function [13]. Applications of
various machine learning algorithms in landslide susceptibility mapping (LSM) have evolved in recent
decades. As a widely applicable method in data mining, the K-Nearest Neighbor (KNN) algorithm made
early appearances in landslide prediction [14,15]. The Logistic Regression (LR) [2,12] and Support Vector
Machine (SVM) [8,16] models also gained much popularity as adaptive systems for LSM [15]. Artificial
neural networks in the form of a Multi-Layer Perceptron (MLP) were also used for this task [17]. More
recently, evidence from various studies indicates that ensembles such as the Random Forest (RF) model
can improve machine learning-based landslide prediction [1,18]. However, the outcomes of landslide
susceptibility mapping could be subject to considerable uncertainties due to errors and variability in
model choice, data used, system understanding, weighting factors, and human judgment [19,20].

Since the access to accurate landslide prediction maps is the prerequisite to decision-makers,
the results must be carefully analyzed and critically reviewed before disseminating to support the
end-users [9]. While developing landslide susceptibility maps, challenges may arise in (i) measuring the
accuracy of a susceptibility assessment [21], and (ii) selecting an “optimal” combination of methods for
susceptibility assessments [22]. Most of the validation processes of LSM consist of two steps: simulating
landslide susceptibility and comparing the predicted results with the observed landslide locations [1,9].
Validation techniques must possess qualities such as reliability, robustness, degree of fitting, and
prediction skill [21]. However, the performance evaluation of most of the LSMs was carried out based
on the testing datasets [9,23]. Thus, a similar performance of multiple models at the testing landslide
locations does not ascertain the same degree of agreement in terms of spatial predicted patterns [9].

Whilst many recent studies applied various combinations of machine learning algorithms to
map landslide susceptibility [23–26], pixel-wise agreement in landslide prediction between various
methods is inadequately understood. The resultant spatial heterogeneity in landslide prediction with
different techniques creates uncertainties in LSM [9,19,27]. To address this challenge, this study aimed
to propose a method to reduce uncertainties in landslide prediction. Therefore, it evaluated the extent
of agreement of landslide prediction maps generated by applying four different machine learning
algorithms. A combined landslide prediction map was developed by integrating the results of these
four models. The study was carried out in Cox’s Bazar district of Bangladesh (Figure 1).



Remote Sens. 2020, 12, 3347 3 of 23Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 23 

 

 
Figure 1. (a) Location map of Cox’s Bazar district in Bangladesh; and (b) the sub-districts of Cox’s 
Bazar district. Digital Elevation Model (DEM) source: [28] 
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study area were developed using four machine learning algorithms: K-Nearest Neighbor (KNN), 
Multi-Layer Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM). Second, 
the extent of spatial agreement of predicted patterns in LSMs was assessed by estimating the pixel-
wise correlation of landslide probabilities obtained using various methods. Finally, an LSM was 
developed combining results from the four machine learning models (Figure 2). This study also 
estimated population exposure to landslide by overlaying gridded population layers of the year 2020, 
collected from WorldPop [29] and UNHCR [30], on LSMs. 

2.1. Study Area 

This study addressed the Cox’s Bazar district, which is located in the south eastern region of 
Bangladesh (Figure 1a). The study area lies between latitude 20°53’46.7” N and 21°14’29.8” N, and 
longitude 92°02’08.2” E and 92°18’27.0” E. It is comprised of seven (out of eight) sub-districts (locally 
termed as Upazilas) of Cox’s Bazar district (Figure 1b). The low-lying areas such as Kutubdia sub-
district, part of Maheshkhali sub-district, and Saint Martin’s island (Figure 1b) were not considered 
in this study. The study area is diverse and unique, both in terms of ecosystem services and 
biodiversity, and currently, an epitome of global geopolitics as it is accommodating over one million 
Rohingya refugees. It is characterized by relatively high elevation land (mean elevation is 18 m), 
compared to the rest of the country. At present, approximately a total of 3.4 million people inhabit 
1869 km2 of land (estimated using data from WorldPop [29] and UNHCR [30]).  

The area receives the annual mean precipitation of 4288 mm [31]. The heavy rainfall triggers 
both flash floods and landslides in this area [11,12]. The majority of the historical landslides in 

Figure 1. (a) Location map of Cox’s Bazar district in Bangladesh; and (b) the sub-districts of Cox’s
Bazar district. Digital Elevation Model (DEM) source: [28].

2. Materials and Methods

The study was conducted in three stages. First, landslide susceptibility maps (LSMs) of the study
area were developed using four machine learning algorithms: K-Nearest Neighbor (KNN), Multi-Layer
Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM). Second, the extent of
spatial agreement of predicted patterns in LSMs was assessed by estimating the pixel-wise correlation
of landslide probabilities obtained using various methods. Finally, an LSM was developed combining
results from the four machine learning models (Figure 2). This study also estimated population exposure
to landslide by overlaying gridded population layers of the year 2020, collected from WorldPop [29]
and UNHCR [30], on LSMs.

2.1. Study Area

This study addressed the Cox’s Bazar district, which is located in the south eastern region of
Bangladesh (Figure 1a). The study area lies between latitude 20◦53′46.7” N and 21◦14′29.8” N, and
longitude 92◦02′08.2” E and 92◦18′27.0” E. It is comprised of seven (out of eight) sub-districts (locally
termed as Upazilas) of Cox’s Bazar district (Figure 1b). The low-lying areas such as Kutubdia sub-district,
part of Maheshkhali sub-district, and Saint Martin’s island (Figure 1b) were not considered in this
study. The study area is diverse and unique, both in terms of ecosystem services and biodiversity, and
currently, an epitome of global geopolitics as it is accommodating over one million Rohingya refugees.
It is characterized by relatively high elevation land (mean elevation is 18 m), compared to the rest of
the country. At present, approximately a total of 3.4 million people inhabit 1869 km2 of land (estimated
using data from WorldPop [29] and UNHCR [30]).
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Rahman, Sammonds, Islam, and Uddin [11] (Figure 3). They developed the latest landslide inventory 
map of the Cox’s Bazar district by retrieving the historical landslide information from newspapers 
and various organizations and later verified those with global positioning system (GPS) and 
reconnaissance surveys. This study also used information about landslide movement type, its 
distribution and style, rate of flow, damage, the volume of displacement, material, and the reason for 
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Figure 2. The process of evaluating spatial agreement among various machine learning technique-based
landslide susceptibility maps and optimizing the landslide prediction map. LSM = landslide susceptibility
maps; KNN = K-Nearest Neighbor; MLP = Multi-Layer Perceptron; RF = Random Forest; SVM =

Support Vector Machine.

The area receives the annual mean precipitation of 4288 mm [31]. The heavy rainfall triggers both
flash floods and landslides in this area [11,12]. The majority of the historical landslides in Bangladesh
occurred in this region [11]. For instance, a major landslide triggered by heavy rain in June 2017 killed
at least 156 people in the south eastern hilly region of Bangladesh where the study area is located [32].
Unplanned urbanization, rapid growth of population, hill cutting, and deforestation are associated
with the recent increase in landslide hazards [11,31]. Notably, Rohingya refugee camps, especially the
Kutupalong camp of Ukhia sub-district (Figure 3) is located in areas that are highly susceptible to
landslides. The Kutupalong camp is considered as the most densely populated refugee settlement area
in the world, where around 75,000 people live per km2 [31,33]. Any catastrophic landslide will cause
significant damage to human lives and assets. Hence, an accurate assessment of landslide susceptibility
is paramount for developing a plan for landslide risk management.

2.2. Landslide Inventory Mapping

Landslide inventory mapping is one of the essential steps for landslide prediction and susceptibility
mapping. This study utilized the landslide inventory map developed by Ahmed, Rahman, Sammonds,
Islam, and Uddin [11] (Figure 3). They developed the latest landslide inventory map of the Cox’s Bazar
district by retrieving the historical landslide information from newspapers and various organizations
and later verified those with global positioning system (GPS) and reconnaissance surveys. This
study also used information about landslide movement type, its distribution and style, rate of flow,
damage, the volume of displacement, material, and the reason for movement by preparing a landslide
investigation form collected from Ahmed, Rahman, Sammonds, Islam, and Uddin [11]. A total of 1262
sample locations were used, where the number of landslide and non-landslide locations was 670 and
592, respectively. To develop the models, it is necessary to obtain non-landslide cells (where landslides
did not occur). From the existing literature, Huang et al. [34] identified three methods for obtaining
non-landslide grid cells: (i) the seed cell procedure; (ii) randomly selecting non-landslide locations
from the landslide free areas; and (iii) non-landslide locations selected in areas with a slope lower
than 2◦. This study followed the second approach to select random locations within the study area,
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where landslides did not occur. These cells provided the models with the necessary data during the
training stage [35,36]. The sample locations were split into two classes: (i) 60% locations (52% landslide
and 48% non-landslide locations) were used to train the machine learning-based landslide prediction
models, and (ii) 40% testing locations (54% landslide and 46% non-landslide locations) were employed
to evaluate the performance of the machine learning models (Figure 2).
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2.3. Landslide Conditioning Factor

The performance of LSMs depends on the choice of landslide conditioning factors. Numerous
studies on LSM have been conducted based on machine learning techniques [1,16,18,23,26,37,38],
with various combinations of landslide conditioning factors being used. However, the selection of
factors should be (i) based on their degree of affinity with landslide locations, (ii) measurable, (iii)
non-redundant, and (iv) based on the knowledge of geomorphological characteristics of the area under
study [2]. Based on the knowledge obtained from the literature, as well as, expert knowledge on the
study area, a total of 12 variables were selected in this current study (Table 1). Areas with an elevation
of less than 5 m, as well as, waterbodies and sandy sea beach areas (waterbody and restricted in
Figure 4) were excluded from the LSMs [39].
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Topographical and hydrological parameters including aspect, elevation, slope, curvature, and Stream
Power Index (SPI) are important factors that limit the density and spatial extent of landslides [2,37,38,40].
Raster maps of aspect, elevation, curvature, slope, and SPI were derived at 30-m spatial resolution
from the Advanced Land Observing Satellite (ALOS) Digital Elevation Model (DEM) [28] (Figure 4a–e).
Elevation influences landslides primarily by affecting different biophysical parameters and anthropogenic
activities. Only a limited number of studies, conducted on a specific basin, found that landslides occur
at certain elevations [41]. Elevation can determine the spatial variability of landslides because it is
affected by geological tectonics [37]. It can also influence the occurrence of landslides by impacting other
causative factors such as slope, curvature, and SPI [42]. Aspect, indicating the direction of slope [43],
indirectly influences the distribution of landslide locations by affecting the general physiographic trend
of the area and/or the main precipitation direction [37,40]. Slope angle is considered as one of the most
influential factors for the occurrence of landslides, as it affects the concentration of moisture and the
level of pore pressure, as well as, controls regional hydraulic continuity [2,40]. All of these processes
influence slope instability [8]. Curvature is also considered as a landslide influencing factor that directly
controls the velocity of water flow, delimiting erosion [8,40]. SPI also determines the erosion potential of
the surface [43] and is considered as an essential predictor of landslides [37,38]. Areas with high SPI
values indicate a higher erosion potential, while negative values suggest no predicted erosion [44,45].
In this study, a layer of SPI was derived using the following equations in GIS:

SPI = As × tan β (1)

where As and β indicates the specific catchment area (m2/m) and slope gradient, respectively [43].
It is widely conceived that various geological factors significantly influence the occurrence of

landslides, as these factors often lead to a difference in strength and permeability of rocks and soils [2].
This study considered the three geological factors of surface geology, soil type, and soil texture (Figure 4i–k).
Digital geologic and geophysical data of Bangladesh were collected from the U.S. Geological Survey [46].
The surface geology map of the study area includes a total of 11 classes: water (H2O), Bhuban formation
(Miocene, Tb), Dupi Tila formations undivided (QTdd), valley alluvium and colluvium (ava), Girujan clay
(Pleistocene and Neogene, QTg), Tipam Sandstone (Neogene, Tt), Boka Bil formation (Neogene, Tbb),
beach and dune sand (csd), marsh clay and peat (ppc), Dupi Tila formation (Pleistocene and Pliocene,
QTdt), and Dihing formation (Pleistocene and Pliocene, QTdi) (Figure 4i). Primary-level parameters
such as soil type and soil texture are essential predictors of landslides. These parameters determine the
amount of moisture content indicating the degree of stability of the soil [25,37,47,48]. Soil type and soil
texture data were collected from the Bangladesh Agricultural Research Council [49].

Other anthropogenic, environmental, and locational factors considered in this study include distance
to stream, land cover, normalized difference vegetation index (NDVI), and distance to road (Figure 4f–h,l).
The land cover and NDVI maps of the year 2020 were prepared using Landsat satellite images based
on the Google Earth Engine Platform. The land cover map was developed applying a supervised
classification technique with the Random Forest algorithm. In the case of southern Bangladesh, a recent
study demonstrated that this method has a higher classification accuracy compared to other land cover
classification techniques [50]. The land cover map contains five classes: bare land, built-up area, crop
land, vegetation, and waterbody (Figure 4g). Proximity to roads explains the locations of landslides, as
the artificial and natural slopes adjacent to a road are sensitive to this hazard [51]. Road-cuts, excavation,
and additional load can induce anthropogenic instability of the soil, promoting landslides [2,5]. A layer
of distance to road network was developed using the Euclidian distance algorithm. Likewise, the location
of areas with respect to natural drainage channels can also demonstrate the locations of landslides [11],
as streams may change the stability of an area by eroding the slopes [5,51]. In this study, distance to
stream networks was derived from the ALOS DEM. Again, by applying the Euclidian distance algorithm,
a map of distance to stream was generated.
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Table 1. Landslide conditioning factors used in this study.

No. Conditioning Factor Spatial
Resolution Variable Type Data Source Variance Inflation Factors

(VIF)

1 Aspect 30 m Continuous Estimated from the Digital Elevation Model
(DEM) 1.02

2 Elevation ” ” DEM [28] 2.77
3 Curvature ” ” Estimated from the DEM 1.57
4 Slope ” ” ” 2.83
5 Stream Power Index (SPI) ” ” ” 1.60
6 Distance to stream ” ” ” 1.15

7 Land cover ” Discrete Landsat Operational Land Imager (OLI)
(https://earthengine.google.com) 1.13

8 Normalized difference
vegetation index (NDVI) ” Continuous ” 1.24

9 Geology ” Discrete [46] 1.06
10 Soil type ” ” [49] 1.13
11 Soil texture ” ” ” 1.06
12 Distance to road ” Continuous [52] 1.10

https://earthengine.google.com
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2.4. Multi-Collinearity Analysis of Landslide Conditioning Factors

The selected landslide causative factors could be subject to multi-collinearity; hence, it is necessary
to estimate the correlation of independent variables before modelling landslide susceptibility [8].
To eliminate the factors susceptible to multi-collinearity, this study determined variance inflation
factors (VIF) [53] of 12 selected landslide conditioning factors using R [54]. VIF is a well-known method
to determine the multi-collinearity of landslide conditioning factors [8,55]. A VIF value of a variable
exceeding 5 indicates potential serious multicollinearity [53,55]. In this study, the selected landslide
conditioning factors yielded VIF values < 2.8, indicating the absence of potential multi-collinearity
(Table 1).

2.5. Landslide Susceptibility Modelling

2.5.1. Pre-Processing

Using the binary locations (landslide and non-landslide), values of the selected 12 conditioning
factors were extracted in a geographic information system (GIS) environment. As evident in Table 1,
eight were continuous variables, while the remaining four variables had discrete characteristics. In order
to represent discrete (categorical) variables semantically, they must be considered as a composite feature
(where the number of generated binary features and the number of categories are equal). These discrete
variables were encoded using a one-hot encoding scheme [31], implying that multiple binary features
were generated to represent a single discrete feature. The number of one-hot encoded features depends
on the number of variable classes. For instance, there are 11 categories in the geology variable. If a
landslide location was found in a geology class, a value 1 was encoded to the class, while the other 10
classes were encoded as 0. This data pre-processing method was applied for all other discrete variables.
For each variable, mean and standard deviation were calculated. The mean of each variable was then
subtracted from the corresponding value in a variable and divided by the standard deviation. This
reduces training time since optimization routines have a smaller parameter space to traverse.

2.5.2. Hyperparameter Optimization

Hyperparameter optimization can improve the accuracy of machine learning algorithm-based
models. The process aims to select the optimal hyperparameter values according to the evaluation
index [56]. Three approaches are frequently used for optimizing hyperparameters: grid search, random
search, and Bayesian optimization [57]. This current study applied the grid search technique along with
5-fold cross-validation on the training set to perform hyperparameter optimization. Hyperparameters
that provide the best performance were chosen for final training and testing samples of respective
machine learning models. For instance, the optimal number of neighbors of five in the KNN (Table 2)
indicates that values of landslide conditioning factors corresponding to a landslide location were
compared against the values of landslide predictors of five other sample locations, to obtain the most
reliable prediction. Table 2 summarizes the hyperparameters, their search range and optimal values of
the four models.
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Table 2. Hyperparameters, search range, and optimal values of the machine learning-based landslide susceptibility models.

Classifier Hyperparameter Remark Search Range Optimal Value

K-Nearest
Neighbor

Metric Distance metric to use Euclidean, Manhattan Manhattan
Number of neighbors Number of neighbors used for prediction 3, 5, 11, 19 5

Weights Weight function used in prediction Uniform, distance Distance

Support
Vector

Machine

C value Inverse regularization strength 10−3, 10−2, 10−1, 1, 101, 102, 103 103

Kernel Functions for transforming inputs Polynomial, radial basis function, sigmoid Radial basis function
Gamma Kernel coefficient 10−3, 10−2,10−1, 1 10−3

Multi-Layer
Perceptron

Hidden layer Size Number of hidden units 10, 15, 20, 25, 30, 35, 40, 45 20

Activation function Nonlinearity for squeezing output to desired range Identity, logistic, hyperbolic tangent,
rectified linear unit Rectified linear unit

Learning rate Specifies if learning rate is constant or variable Constant, adaptive Constant
Alpha L2 penalty/regularization term 10−4, 10−3, 10−2, 10−1 10−4

Random
Forest

Number of estimators Number of trees in the random forest 200, 300, 400, 500 500
Maximum features Maximum features to be considered Auto, square root, logarithm (base = 2) Auto
Maximum depth Maximum depth of internal trees 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 10

Criterion Function for measuring quality of split Gini, entropy Entropy
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2.5.3. Machine Learning Models

(1) K-Nearest Neighbor (KNN)

The KNN algorithm classifies an instance (landslide or non-landslide) that is mostly represented
within its (k) neighbors. The parameter k is often a small positive integer [58]. The proximity between
the samples is measured using a distance metric. The distance metric indicates how similar or different
are the profiles of conditioning factors for any given two samples. Data points with similar conditioning
factors will have a small feature distance between them. Though the model is simple in terms of
hyperparameters, it becomes computationally expensive as the number of samples becomes large.
The landslide susceptibility associated with a certain set of values of conditioning factors is determined
by calculating its distance to each training data point (in high-dimensional feature space). The k
nearest data points are used to determine the landslide susceptibility. The dominant susceptibility
class within those k nearest neighbors (i.e., the class with the highest number of members in the k
members) becomes the class membership of the new data point [14,59].

(2) Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP) is a type of neural network with one or more hidden layers. Due to
the presence of a hidden layer, the internal representations (as higher-order intermediate features) can
be learned. Each layer consists of one or more neurons; the outputs (activations a) can be represented
by Equation 2 [31]. The output of the ith neuron in the jth layer was obtained by calculating the sum
of activations from the previous layer (i − 1) weighted by the parameters of layer i and then passing
into an activation function f. Considering that there are several types of activation functions (sigmoid,
hyperbolic tangent, rectified linear unit), the choice of activation functions is discussed in Section 2.5.3
(Hyperparameter Optimization). In this study, since a total of 23 features were derived by one-hot
encoding during the pre-processing step, the first input layer of the MLP had 23 neurons. The resultant
map was represented in terms of the probability of landslide occurrence.

a j
i = f (

n∑
k=0

ω
j
ka j−1

k ) (2)

where f is the activation function, ω j
k is the weight of kth neuron in layer j, a j−1

k is the activation of
neuron k in layer j − 1 (the previous layer), j is the layer index, i is the neuron index, and n is the
number of neurons in layer j.

(3) Random Forest (RF)

Random forest (RF) is considered as a powerful ensemble-learning method that can be applied for
classification, regression, and unsupervised learning [18]. This method has been widely applied in
landslide susceptibility mapping [18,56,60]. Ensemble models generally train several weak learners
and then take their aggregated outputs to obtain more reliable predictions. The RF algorithm builds
weak learners in the form of decision trees. It estimates the mean of outputs of the individual weak
learners, as shown in Equation (3). Each weak learner (b) corresponds to a function fb(x). The RF uses
bootstrap aggregating where the weak learners train parallelly [31].

F̂(x) =
1
B

B∑
b=1

fb(x) (3)

where F̂(x) is the ensembled prediction from weak learners, B is the total number of weak learners, b is
the weak learner index, and fb(x) is the function for bth weak learner.
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(4) Support Vector Machine (SVM)

Support Vector Machine (SVM) is also a widely used machine learning algorithm in landslide
susceptibility mapping [8,16,23,26]. This supervised learning method separates the classes with a
decision surface that maximizes the margin of class boundaries [8]. The training locations, closest to the
optimal hyperplane, are called support vectors [23]. Suppose each sample location has M number of
features, the objective of the SVM algorithm is to find a hyperplane in M dimensional feature space that
separates the samples of different classes. A hyperplane is R(M−1) dimensional in RM. A hyperplane in
R2 is a line, a hyperplane in R3 is a plane, and so on. This hyperplane functions as a decision boundary,
which determines the label of a sample (i.e. landslide or non-landslide). The margin around the hyper
lane indicates that value exceeding 1 denotes a positive sample (landslide), and a value equal to −1
denotes a negative sample (non-landslide). If X (X1, X2, . . . . . . . . . , Xn) is the vector of landslide
affecting factor and Yj (Y1, Y2) is the vector of landslide (1) or non-landslide (0) event, the optimal
hyperplane can be found by solving Equation (4) [26].

f (x) = sign

 n∑
1=1

αiY jk(X, Xi) + k

 (4)

where k is the offset from the origin of the hyperplane, n is the total number of factors that affects
landslide, αi is the positive real constant, and k(X, Xi) is the Kernel function. To classify the binary
events (landslide or non-landslide), the condition to solve Equation (4) was assumed as below:

Y j
[
ωTϕ(xi) + c

]
≥ 1 ⇔

 ωTϕ(xi) + c ≥ 1 if landslide events occur
(
Y j = 1

)
ωTϕ(xi) + c ≤ 0 if landslide events not occur

(
Y j = 0

) (5)

where w is the weight vector and ϕ(xi) is the total number of factors that affects landslide.

2.5.4. Performance Evaluation Methods

The performance of landslide susceptibility models was evaluated using a well-known method called
receiver operating characteristic (ROC) curve and subsequent area under the curve (AUC) [1,11,23,31,43].
The ROC curves were developed using the 40% sample testing data. The ROC curve indicates the
performance of a binary classifier system, representing sensitivity as a function of the false positive rate
(1-specificity).

The sensitivity of a model is the ratio of the number of true positives to the sum of the number of
true positives and false negatives. The specificity is the ratio of the number of true negatives to the
sum of the number of true negatives and false positives. The ROC curve can be developed by plotting
sensitivity in the y-axis against the cumulative distribution function of the false positive rate in the
x-axis. The estimated AUC value can be categorized as poor (0.5–0.6), average (0.6–0.7), good (0.7–0.8),
very good (0.8–0.9), and excellent (0.9–1) [1,43,60]. Besides, various statistical indices such as overall
accuracy, precision, recall, and F1-score were estimated by developing a confusion matrix [1,11,43].

2.6. Evaluation of Spatial Agreement and Optimizing Prediction Map

To evaluate the inter-model agreeability, a pixel-wise agreement between two machine learning
algorithms was estimated. Therefore, Pearson’s correlation coefficient was estimated for a total of
six possible combinations of machine learning model-based landslide susceptibility maps. Here,
Pearson’s correlation coefficient indicates the covariance of landslide predictions, obtained by using two
algorithms, divided by the product of their standard deviations. The correlation coefficient can range
from +1 to −1, where values zero as indicating no agreement and ±0.29 as low degree, ±0.30–±0.49 as
moderate degree, ±0.50 to <±1 as high degree, and ±1 as perfect agreement [60].

Following the evaluation of spatial agreement, an optimized landslide prediction map was
developed combining susceptibility maps generated by applying the four machine learning algorithms.
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The combined map was developed by following a methodology proposed by Rossi, Guzzetti,
Reichenbach, Mondini, and Peruccacci [22], where they established a logistic regression (LR) model.
The LR model included binary landslide and non-landslide locations as the dependent variable and
the results of the four landslide susceptibility models as the independent variables. The obtained
regression coefficients were incorporated in Equation (6) [43] in GIS to derive the probability (P) of
landslides in the study area.

P =
1

1 + e−z (6)

where z is the linear combination of independent variables which was estimated using the following
equation:

z = θ0 + θ1x1 + θ2x2 + . . .+ θnxn (7)

where θ0 is the intercept of the model, θi (i = 1, 2, . . . , n) indicates the regression coefficient of
independent variables, and xi (i = 1, 2, . . . , n) represents the n number of independent variables.
Validation of the resultant combined model was performed by developing the ROC curve by using the
40% testing data.

3. Results

3.1. Landslide Susceptibility Modelling

3.1.1. Landslide Prediction

Figure 5 shows landslide susceptibility maps of Cox’s Bazar district developed by applying the
four machine learning algorithms. The generated landslide probability maps were classified into five
categories each by applying the Jenks natural breaks classification method in GIS: (i) very low (0–0.1),
(ii) low (0.11–0.3), (iii) medium (0.31–0.5), (iv) high (0.51–0.85), and (v) very high (0.86–1). As evident
in Figure 6, the proportion of landslide susceptible area varied from one model to another. Among
all methods, the SVM resulted in the highest proportion of area (38.7%) susceptible to the landslide
of ‘high’ and ‘very high’ severity, while the Random Forest (RF) algorithm yielded a relatively lower
proportion (23.1%) of landslide susceptible area. Likewise, the ratio of the population exposed to ‘high’
and ‘very high’ landslide susceptible zones varied for different algorithms. For all the four methods,
the percentage of landslide exposed population ranged between 34% to 48% (Figure 6).
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3.1.2. Evaluation of Models’ Performance

To evaluate the performance of various landslide susceptibility models, a performance matrix
was derived using the test samples (40% of the total data) (Table 3). The performance evaluation
indices indicated a very high prediction accuracy of all the models. In terms of overall accuracy, the
RF classifier resulted in the highest accuracy (96.63%), followed by the MLP (95.45%), SVM (94.06%),
and KNN (90.69%). However, the overall accuracy is a universal metric, hence, it does not indicate
which specific classes were being inaccurately classified. To obtain further insights into the agreement
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between the observed and modelled locations (landslide and non-landslide)—precision, F1-score,
and recall were estimated (Table 3). The RF classifier achieved the best accuracy with respect to all
performance indicators. The MLP followed closely and consistently in terms of all indicators. In relation
to the estimated AUC values, the RF classifier yielded the highest accuracy (0.962), followed by the
MLP (0.960), SVM (0.935), and KNN (0.927) (Figure 7). The relatively greater values of performance
indicators of RF and MLP can be attributed to their ability to learn complex relationships between
geospatial characteristics of an area and the occurrence of landslides [17,18,60].

Table 3. Performance evaluation indicators of the machine learning based landslide susceptibility models.

Model
Overall

Accuracy
Precision F1-score Recall

Non-Landslide Landslide Non-Landslide Landslide Non-Landslide Landslide

KNN 0.9069 0.9227 0.9227 0.9015 0.9015 0.8811 0.8811
MLP 0.9545 0.9547 0.9547 0.9528 0.9528 0.9508 0.9508
RF 0.9663 0.9633 0.9633 0.9652 0.9652 0.9672 0.9672

SVM 0.9406 0.9385 0.9385 0.9385 0.9385 0.9385 0.9385
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3.2. Spatial Agreement of Various Methods

This study developed a correlation matrix by comparing pixel-wise landslide probabilities between
various methods (Figure 8) to evaluate the extent of agreement of one landslide susceptibility model over
another. Although the values of AUC were very similar for various methods (Figure 7), a substantial
difference in the agreement was observed in LSMs obtained using the different techniques. Overall, the
correlation coefficient ranges from 0.69 to 0.85 (Figure 8). The combinations of SVM-RF resulted in the
highest degree of the agreement, while the KNN-SVM yielded the lowest agreement.
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3.3. Aggregated Landslide Susceptibility Mapping

Since spatial heterogeneity in landslide prediction exists between the different machine
learning-based approaches, an aggregated susceptibility map combining the outputs of all algorithms
would minimize the uncertainty of individual methods. In this study, a regression-based approach was
adopted. A multivariate logistic regression (LR) was established incorporating the binary landslide
inventory data as the dependent variable and the results of the four landslide susceptibility models as
independent variables. The outcome of the LR model is summarized in Table 4. Among the four models,
the MLP, RF, and SVM were statistically significant (p-value < 0.05). The coefficient of determinants (R2)
of 0.80 indicates a very good model performance. In relation to the estimated regression coefficients,
the RF model had the highest degree of agreement with the landslide inventory, followed by the MLP,
SVM, and KNN. The pattern of influence of various models in predicting landslides corresponds to
their level of accuracy in terms of their respective AUC values (Figure 7).

Table 4. Outcomes of the logistic regression model.

Variables
(Landslide Susceptibility Models) Coefficient p-Value

Intercept −5.84 <2.2e−16 ***

KNN 0.64 0.34
MLP 3.52 2.67e−09 ***

RF 5.01 8.449e−09 ***

SVM 2.02 0.01205 *

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘n’ 0.1 ‘ ’ 1.
Coefficient of determination R2: 0.80

Log-Likelihood: −178.42
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The estimated LR coefficients of the four models and intercept were incorporated in Equation (6)
to derive the combined LSM. Again, the resultant aggregated map was categorized into five classes
applying the Jenks Natural Break algorithm (Figure 9). The combined susceptibility map yielded the
highest AUC value (0.965) compared to the single susceptibility forecasts (Figure 7). About 26.8% of the
total study area was within the ‘high’ and ‘very high’ landslide susceptible zones, where approximately
21.7% of total population inhabit (Figure 6). In respect to spatial agreement, the combined LSM resulted
in greater spatial agreement with the all four models, with the correlation coefficient ranging between
0.85 and 0.92 (Figure 8).Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 23 
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susceptible zones (high and very high) in various sub-districts (Upazila), and (c) landslide susceptibility
in the Rohingya refugee camps of Ukhia sub-district.

The extent of landslide susceptible areas varies in different sub-districts (Upazila) of Cox’s Bazar.
Teknaf Upazila is the most susceptible, where more than 8% of the total study area was susceptible to
landslides of ‘high and ‘very high’ severity (Figure 9b). A substantial proportion of area (7% of the
study area) in Ukhia sub-district was also susceptible. The Rohingya refugee camps in this area were
located within high and very high landslide susceptible zones. Various recent studies also found that
changes in the geomorphological, hydrological, and anthropogenic environments due to the Rohingya
influx caused their settlement areas vulnerable to landslides [11,31].
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4. Discussion

The spatial disagreement in prediction among various techniques creates challenges in selecting
the most suitable susceptibility map for managing landslide hazards [9,21,22]. The current study
seeks to address this challenge by estimating the extent of spatial agreement, as well as, proposing a
method to combine landslide susceptibility maps and thus incorporating the valid results of various
models. The study focused on the Cox’s Bazar district of Bangladesh, which is well known as being
vulnerable to landslide disasters [11,12,31]. First, LSMs were developed by applying four machine
learning algorithms—K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP), Random Forest (RF),
and Support Vector Machine (SVM)—featuring hyperparameter optimization. In comparison to the
existing studies on LSM of Cox’s Bazar district [11,12,31], this current study employed up-to-date
data of landslide conditioning factors. In addition, it restricted low-lying areas (waterbodies and
elevation < 5 m) in susceptibility mapping, otherwise, the resultant maps would have been prone to
overestimation of landslide susceptible zones, as was the case of some recent studies. While evaluating
the models’ performance, all of them yielded very high prediction accuracy, with the AUC values
ranging between 0.927 to 0.962. The results of various recent studies have also ascertained that different
machine learning-based models yielded high accuracy in predicting landslides [1,15,17,26,27,61].

This study hypothesized that different susceptibility models can result in different LSMs, despite
incorporating similar landslide inventory data. The assessment of spatial agreement between various
models revealed spatial heterogeneity in landslide predictions, with the estimated pixel-wise correlation
coefficients of landslide probability between various models ranging from 0.69 to 0.85. The spatial
distribution of landslide susceptibility obtained in this study was also different than that of a recent
study conducted in Cox’s Bazar district of Bangladesh [11]. This highlights the uncertainty in landslide
predictions of various models, despite their considerable prediction accuracy in terms of the AUC
values. Most of the existing studies on machine learning-based LSM had a major focus on identifying
the most suitable method for predicting this natural phenomenon [1,8,18,23,60], while little attention has
been given in analyzing uncertainties resulting from the spatial disagreement in landslide prediction [9].
The current study is the first case study-based contribution to investigate this major gap in the existing
literature.

This study further developed a combined LSM by integrating the results of the four machine
learning-based landslide predictions, adopting a method proposed by Rossi, Guzzetti, Reichenbach,
Mondini, and Peruccacci [22]. The result indicates an improvement in landslide prediction accuracy.
Existing studies, which applied multiple machine learning algorithms to map landslide susceptibility,
mainly evaluated different methods based on quantitative measures [8,16,18]. Whilst quantitative
measures of model fit are useful, they are not conclusive in determining the efficacy and reliability of
susceptibility assessment [22]. A combined landslide susceptibility map that this study developed
would help to minimize the uncertainties of individual methods.

5. Conclusions

Predicting a complex natural phenomenon such as a landslide is a challenging task and subject to
considerable uncertainties. An accurate prediction of landslides is the prerequisite for managing this
hazard. In this study, the spatial association in landslide prediction between various machine
learning-based models was analyzed to quantify the spatial agreement of predicted landslide
susceptibility. By addressing uncertainties in various models, this study also developed a landslide
susceptibility map combining the outcomes from various models. The results indicate an improvement
in landslide prediction compared to the individual models.

Despite achieving an improved result in landslide prediction, this study has some limitations
that could be addressed in future results. Landslide inventory data used in this study was developed
based on various secondary sources and validated through fieldwork [11]. Scarcity of data, including
detailed landslide inventory on the study area, made it difficult to model a landslide more accurately.
Accuracy of the LSM results depended on input parameters used, particularly the DEM. The ALOS
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DEM of 30-m resolution used in this study had a low root-mean-square error (1.78 m) in vertical
accuracy and was considered to be the most accurate freely available DEM [43,62]. However, for future
research, high-resolution DEM could be employed to improve the existing landslide susceptibility
modelling frameworks.

This study is an attempt to integrate results of multiple machine learning-based landslide
susceptibility models to minimize uncertainties and improve landslide predictions. The modelling
framework used in this study could be transferred to other landslide-susceptible regions. Landslide
susceptibility maps can enable urban planners in identifying suitable areas for urban development [63].
The combined landslide susceptibility map of Cox’s Bazar district could be useful to policymakers and
practitioners in sequencing and prioritizing interventions in managing landslides. The proposed model
is an advancement in the existing landslide susceptibility models that intends to predict landslides
more accurately. The results of this model could be utilized in improving the existing landslide early
warning system [11], to strengthen landslide disaster risk mitigation strategies to support for the
resilient future of inhabitants of the study area.
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