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Abstract: The extreme form of land degradation through different forms of erosion is one of the
major problems in sub-tropical monsoon dominated region. The formation and development of
gullies is the dominant form or active process of erosion in this region. So, identification of erosion
prone regions is necessary for escaping this type of situation and maintaining the correspondence
between different spheres of the environment. The major goal of this study is to evaluate the gully
erosion susceptibility in the rugged topography of the Hinglo River Basin of eastern India, which
ultimately contributes to sustainable land management practices. Due to the nature of data instability,
the weakness of the classifier andthe ability to handle data, the accuracy of a single method is not very
high. Thus, in this study, a novel resampling algorithm was considered to increase the robustness of
the classifier and its accuracy. Gully erosion susceptibility maps have been prepared using boosted
regression trees (BRT), multivariate adaptive regression spline (MARS) and spatial logistic regression
(SLR) with proposed resampling techniques. The re-sampling algorithm was able to increase the
efficiency of all predicted models by improving the nature of the classifier. Each variable in the
gully inventory map was randomly allocated with 5-fold cross validation, 10-fold cross validation,
bootstrap and optimism bootstrap, while each consisted of 30% of the database. The ensemble
model was tested using 70% and validated with the other 30% using the K-fold cross validation (CV)
method to evaluate the influence of the random selection of training and validation database. Here,
all resampling methods are associated with higher accuracy, but SLR bootstrap optimism is more
optimal than any other methods according to its robust nature. The AUC values of BRT optimism
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bootstrap, MARS optimism bootstrap and SLR optimism bootstrap are 87.40%, 90.40% and 90.60%,
respectively. According to the SLR optimism bootstrap, the 107,771 km2 (27.51%) area of this region is
associated with a very high to high susceptible to gully erosion. This potential developmental area of
the gully was found primarily in the Hinglo River Basin, where lateral exposure was mainly observed
with scarce vegetation. The outcome of this work can help policy-makers to implement remedial
measures to minimize the damage caused by erosion of the gully.

Keywords: gully erosion susceptibility; multivariate adaptive regression spline; boosted regression
trees; GIS; Hinglo River Basin; India

1. Introduction

Soil erosion is a threat to the environment through various forms of erosion, such as sheet, rill,
gully, ravine and which finally becomes part of the badland’s topography [1–3]. Gullies (0.5 m deep
and more than 100 m wide) are formed after the complete process of rill erosion and before the starting
stage of a ravine [4,5]. The world suffers from severe soil-related issues, such as loss of fertility and soil
quality, and this erosion does in fact have limitations on land use. On-site and off-site environmental
problems sometimes cause social or economic losses [2,3,6]. Water moves eroded soil towards rivers,
where it reduces the depth of the river and reservoir, causes sediment loss and reduces agricultural
productivity. In gully erosion, the top soil of the land is transported away by water and becomes
a major source of sediment in rivers. Walling (1998) and May et al. (2005) argued that when soil
particles retain less strength than wind, water, and glacier power, soil erosion (rill formation) occurs on
the Earth’s surface [7,8]. Soil erosion is considered as a disaster because of its association with several
issues such as land degradation, less agricultural productivity and surface quality and quantity, all of
which are inversely related to human and environmental health. This type of phenomenon causes
desertification, groundwater pollution, flooding and a decline in soil fertility. In order to achieve the
objective of sustainable development in modern times, land-use planners, engineers, farmers and the
general public are likely to prevent soil loss.

Asia has the highest soil erosion with an annual soil erosion rate of 29.95 tons per hectare due
to land degradation. Das (1985) stated that in India, 38% of the total geographical area is subjected
to serious erosion. The Ministry of Agriculture, Government of India, published in 1980 that 53% of
India’s geographical area has been affected by land degradation in general and soil erosion in particular.
According to the information in World Soil Erosion and Conservation (1994), in India, more than 70%
of the population is dependent on the agricultural system and 3.7 million hectares of agricultural land
suffer from fertility losses [9,10]. The loss of nutrients in the soil causes a number of losses in cereal,
oilseed and pulse production, equivalent to USD 2.51 billion [11].

Soil erosion and land degradation are common in the eastern part of India because of prevalent
flash floods and the high intensity of rainfall during the monsoon season.

The literature shows that over the last 40 years, one third of the world’s agricultural land has
been severely affected by soil erosion, and this process continues [12]. Various studies have provided
several suggestions for mitigation strategies of gully erosion. Among them, many researchers argued
that the presence of vegetation could reduce gully head cuts and the development of the gully [13–16].
Land use and land cover change are strongly related to gully influences and controls the topographic
threshold condition [13,17]. On the other hand, the root characteristics are capable of increasing soil
resistance, and the presence of vegetation in the gully area has a direct effect on soil [18]. Increased root
density, size and species may increase head cuts and soil tensile strength in the river bank as indicated
by different researchers whoinformed that root related parameters have also been used to determine the
gully erosion model [19–21]. Although gully erosion is a common type of water erosion, many related
factors have made it complex, such as slope, elevation, aspect, plan curvature, profile curvature,
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stream power index (SPI), distance to river, topographical wetness index (TWI), rainfall, drainage
density, surface runoff, organic matter, soil texture, soil moisture, lithology, lineament, distance to road,
land use and land cover (LULC), and normalized difference vegetation index (NDVI) [22,23].

In recent times, machine learning (ML) algorithms have been widely used for the spatial
prediction of gully erosion [24–26]. Based on different causes, land use assessment not only helps
to evaluate the resource, but also helps to categorize the risk zone from high to low [27]. Although
topographic, geomorphological, geological, hydrological and soil characteristics play an important
role in identifying vulnerable areas, they sometimes become insufficient. Chorley (1969) stated
that the hydro-geomorphological parameters have a good predictable capacity to establish basin or
catchment gully zones. A large number of geo-morphometric parameters were used with statistical
techniques and resulted in a logical and systemic output. The Geographic Information System (GIS)
environment has made research work more valuable by handling large databases.The GIS considers
all factors to determine the occurrence of gully erosion and may be used in the data processing
system. Various machine learning, artificial intelligence based, statistical and other models based on
the GIS have been used to assess gully susceptibility in a number of literature reviews, such as logistic
regression [28–30], random forest [25], multivariate adaptive regression spline (MARS) [31], frequency
ratio [32], artificial neural network [33] and support vector machine [26,34]. Various physical-based
methods have also been used to estimate the amount of erosion from gullies such as the condensed
real-time model(CREAMS), which is conducted by runoff and erosion from agricultural management;
the ephemeral gully erosion model (EGEM); and the water erosion prediction project (WEPP). In the
present study, boosted regression tree (BRT), machine learning model (MARS) and statistical approach
(SLR) were used to predict gully areas.

Current research focuses on assessing the impact of different geo-environmental factors on gully
erosion susceptibility and identifying the vulnerable regions. All the data were processed and validated
by using machine learning and statistical model based approaches. There are two types of approaches
to the occurrence of gully erosion which have been identified considering the existing literature.
The relationship with gully erosion and physical conditions is based on a training dataset that will
finally be validated through different model and field based information. Various factors, such as
topographical, hydrological, climatic, anthropogenic and morphometric factors, have influenced soil
erosion. The overall objectives are: 1. Identify the major geo-environmental causes of gully erosion in
the study region. 2. Evaluate changes in the land area and their environmental impact 3. Establish
and locate gully prone areas in a variety of models (BRT, MARS, and SLR) 4. Finally, produce a map
of the susceptibility of gully erosion with management of erosion and control planning. The main
contributing aspect of this paper is the development of the most optimal model considering different
appropriate resampling algorithms.

2. Study Area

We have focused on the Hinglo river basin, a tributary and fifth order stream of Ajoy River in
eastern India. Gully erosion is getting acute due to soil erosion by water through poor drainage systems
and over unprotected land surfaces in this river basin. The basin area covers 444.308 km2 and the length
of this river is 65 km. The Hinglo River basin is located between 23◦42′7” N to 24◦0′56” N and 86◦59’32”
E to 87◦23′31” E (Figure 1). Granitic rock of the Pleistocene age was found in the upper catchment area,
while Barakar formations and ironstone shale formed in lower catchment area [35]. The groundwater
potentiality increased towards the east, where older alluvium deposition also increased over time.
Mukherjee et al. (2007) stated groundwater table variation depends on seasonal fluctuations [36].
In this region, ferruginous processes made the soil characteristics different and produced a reddish
type soil which is called laterite. The north-western part is characterized by physical and chemical
weathering, mass wasting, laterization, the red weathered zone and formation of duricrust (a hard layer
of minerals developed at or close the soil surface) (Figure 2). The south-eastern part of this region has
physiographic features with an alluvial plain. The direction of the slope of this river basin is north to
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east. The Hinglo River is divided between two states of India (Jharkhand and West Bengal). Originating
from the spring of the Jamtara district of Jharkhand, it enters into West Bengal and covers the Birbhum
district and finally merges with the Ajoy River near Palashdanga. The climatic characteristics of the area
are dominated by the north-eastern monsoon and the south-western monsoon. It is under subtropical
climatic categories where the summer is hot and dry, and the winter is dry. The rainfall (80%) is due to
the south-western monsoon and the forest land is quite low. The annual rainfall is 1316 mm and the
elevation ranges from 0 to 289 mt. The National Atlas and Thematic Mapping Organization (NATMO)
(2001) recognized the soil textural class of the area as sand, clay, loam, sandy loam, loam and fine
loam. By completing a geological survey, we identified different geological segments such as quartzite,
alluvium, shale and granite gneiss. During the field survey, the erosion of the gully was mainly found
in the upper and middle regions where the slope is steeper to gentle. The Hinglo River covered the
Chhotanagpur Plateau in the West Bengal Plain and, therefore, the erosion distribution of the gully is
heterogeneous. In the upper and middle parts, people are converting their own land into agricultural
land, building construction profiles and clearing the forest, which in turn affects the soil and forms
gullies. Preparing the gully profile, we found the ‘V’ shaped gully in the upper segment and the U
shaped gully in the middle section due to the deposition process.
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Figure 2. (a) Major erosion prone areas: formation of large gullies, (b) large scale erosion in deciduous
forest, (c) development of gullies in plantation area and (d) development of permanent gullies in upper
part of the basin.

3. Materials and Methods

3.1. Database

Various databases were considered in this study. Detailed information about the databases is
shown in Table 1.

3.2. Data Source and Framework of Methodology

In this research, different geo-environmental data were used, such as topographical parameters,
hydrological, soils, geological and environmental factors. The whole procedures of current research
work have been presented infour steps. These are: 1. Create an inventory map of the gully using
satellite data and information from field observation. 2. Based on geo-environmental causative factors,
prepare the gully erosion susceptibility map of the Hinglo River basin by applying different approaches.
3. Use ArcGIS 10.3 to prepare the thematic layers and create the gully erosion susceptibility map for
the study area.

3.3. Gully Inventory Map (GIM)

The locations of the gullies were identified during the field survey using a hand-held GPS, Google
Earth images, aerial photos (1:10,000) and a topographical map (1:50,000). We considered the training
to be an input process and this map validates the models as a result. Among the 100 gully inventory
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points, 70% were used as inputs and 30% were used as validations, which were randomly divided.
Not only the gully area, but also the non-gully area is shown in this inventory map.

Table 1. Database and its sources.

Parameters Data Type Sources Data Details

1 Elevation Raster grid ALOS PALSAR DEM, (Alaska
Satellite Facility) 12.5 m spatial resolution

2 Slope gradient (degree) Raster grid ALOS PALSAR DEM, (Alaska
Satellite Facility) 12.5 m spatial resolution

3 Slope aspect Raster grid ALOS PALSAR DEM, (Alaska
Satellite Facility) 12.5 m spatial resolution

4 Plan Curvature Raster grid ALOS PALSAR DEM, (Alaska
Satellite Facility) 12.5 m spatial resolution

5 Profile curvature Raster grid ALOS PALSAR DEM, (Alaska
Satellite Facility) 12.5 m spatial resolution

6 Geology (detailed
lithology and deposits) Line, point and polygon coverage

Geological Survey of India
(http://bhukosh.gsi.gov.in/

Bhukosh/Public)
Different unit of lithology

7 Geomorphology Line, point and polygon coverage
Geological Survey of India
(http://bhukosh.gsi.gov.in/

Bhukosh/Public)

Different spatial
geomorphological unit

8 Soil texture polygon coverage NBSS&LUP, SAMETI (Jharkhand) Textural class

9 Drainage density Polygon coverage buffer ALOS PALSAR DEM, (Alaska
Satellite Facility) 12.5 m spatial resolution

10 Stream Power Index
(SPI) Raster grid ALOS PALSAR DEM, (Alaska

Satellite Facility) 12.5 m spatial resolution

11 Drainage Proximity Polygon coverage buffer ALOS PALSAR DEM, (Alaska
Satellite Facility) 12.5 m spatial resolution

12 Topographical Wetness
Index (TWI) Raster grid ALOS PALSAR DEM, (Alaska

Satellite Facility) 12.5 m spatial resolution

13 Land use and land cover
(LULC) Spatial/Raster grid Sentinel 2A (European Space

Agency) 10 m spatial resolution

14 Normalized difference
vegetation index (NDVI) Spatial/Raster grid Sentinel 2A (European Space

Agency) 10 m spatial resolution

15 Soil Moisture netCDF file format Simulation model by IIT
Kharagpur, India [37] Monthly soil moisture data

16 Distance from Road Spatial/Raster grid, Polygon
coverage buffer

Topographical map, Google earth,
Sentinel 2A (European Space

Agency)
10 m spatial resolution

17 Distance from Lineament Line, point and polygon coverage Geological Survey of India Different shape of lineament

18 Slope length and
steepness factor Raster grid ALOS PALSAR DEM, (Alaska

Satellite Facility) 12.5 m spatial resolution

19 Rainfall and runoff
erosivity factor

Point wise collected rainfall data
in storm period Primary observed data Raster

20 Soil erodibility factor Estimated from the collected
samples Primary observed data Raster

3.4. Conditioning Factors

A literature review shows us different geo-environmental factors that cause gully erosion [38,39].
Therefore, each and every factor must be very prominent. These geo-environmental factors were
classified into such categories:

3.4.1. Topographical

Topography plays a major role in developing gullies. Gómez-Gutiérrez et al. (2015)
stated topographic features control the drainage network, erosive power and water velocity [40].
Six topographic parameters were counted to develop the gully erosion susceptibility map, such as
slope, elevation, aspect, plan curvature, profile curvature and slope length and steepness (LS) factor
(Figure 3). These were extracted from ALOS (Advanced land observing satellite) PALSAR (Phased

http://bhukosh.gsi.gov.in/Bhukosh/Public
http://bhukosh.gsi.gov.in/Bhukosh/Public
http://bhukosh.gsi.gov.in/Bhukosh/Public
http://bhukosh.gsi.gov.in/Bhukosh/Public
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array L-band synthetic aperture radar) DEM (Digital elevation model) with 12.5 mt resolution. The
detailed methods for estimating the LS factor are as follows:

LS = (FlowAccumulation× cellsize/22.13)0.4
× (Sin[Slopegrid× 0.01745]/0.0896, 1.4) × 1.4) (1)

LS = Pow([FlowAccumulationGrid] × 12.5/22.13, 0.4) × Pow (Sin [Slopegrid× 0.01745)/0.0896, 1.4) × 1.4) (2)

where Pow is the Power on the ArcGIS platform, Flow Accumulation is the grid layer of the accumulation
of the flow as expressed the number of grid cells, and the cell size is the length of the grid cells. The L
and S factors have been estimated from the ALOSPALSAR DEM.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 35 
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3.4.2. Hydrological Factors

Drainage density, drainage proximity, rainfall, rainfall and runoff erosivity (R) factor, topographical
wetness index (TWI) and stream power index (SPI) were considered as hydrological parameters
(Figure 4). The drainage density of this region has been estimated from ALOSPALSAR DEM,
taking into account 1000 threshold values in the GIS environment. The rationale for selecting this
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threshold value was based on the previous literature in this region [41]. Apart from this, the estimated
drainage network is similar to Google Earth, satellite images and topographic maps (Survey of India).
Annual rainfall data were collected from the India Meteorological Department(IMD). The drainage
density and stream power index were extracted from the DEM. By forming and developing gullies,
the river can extend its own length. The SPI is calculated as follows [42]:

SPI = As × tan σ (3)

where As represent total catchment area, σ indicates the slope gradient [43].
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TWI has been computed by using the following equation:

TWI = Ln
∝

tanβ+ C
(4)

where ∝ is the Flow Accumulation β is the Slope and C is the Constant (0.01).
The R factor of this region has been calculated with the help of the following equation [44,45]:

R =
12∑

i=0

1.735× 10(1.5 log10 (
P2

i
P )−0.08188) (5)

where R is the rainfall and runoff erosivity factor and it express in MJ/ha/year.

3.4.3. Soil Characteristics

Gully erosion is a type of soil erosion by water, where soil texture, soil depth and soil properties
control the erosive capacity of the water (Figure 5), where organic matter, soil moisture and soil texture
are considered asthe primary role for creation and development of gullies. TheNational Bureau of Soil
Survey and Land Use Planning (NBSS&LUP), State Agriculture Management and Extension Training
Institute(SAMETI) and collected soil samples helped to provide the soil erodibility of this region:

K = 2.1× 10 – 6M1.4 × (12 –OM) + 0.0325 × (P– 2) + 0.025 × (S– 3) (6)

where K is the soil erodibility (ton ha-1 unit of R); M is the (% silt +% very fine sand) (100—% clay);
OM is the percentage of organic matter and P is the permeability class; and S = structure class [46].
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3.4.4. Geological Factors

The thickness of the soil (Figure 6) is dependent on the soil parent material and indirectly controls
the formation of the gully. Further information on the geology of the study area was provided by the
Geological Survey of India.
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3.4.5. Environmental Factors

Distance from the river, LULC, NDVI and distance from the road affects the surface runoff and is
considered as environmental factors (Figure 7). These features were estimated from the topographical
map at 1:50,000 and Sentinel 2a satellite image at 10 mt spatial resolution (28 March 2020). The NDVI
was estimated using the following equation [47]:

NDVI =
NIR−RED
NIR + RED

. (7)
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3.5. Methodology Flow Chart for Gully Erosion Susceptibility

The flowchart shows the methodology used in this work. Four parts of this methodology have been
included: (1) preparation of data; (2) multi-collinearity assessment using Variance inflation factor (VIF)
and tolerance; (3) gully erosion susceptibility modeling by BRT (machine learning), MARS (machine
learning ensembles) and SLR (statistical approach) with different resamples (5-fold CV, 10-fold CV,
bootstrap and optimism bootstrap) techniques; and (4) process of validation by means of receiver
operating characteristics (ROC) curve and different statistical indices (Figure 8).
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3.6. Multi-Collinearity Test

Multi-collinearity shows the linear relationship between different variables. This assessment
provides the conformity of the application and clarifies the result when statistical approaches are
used [22]. It shows the linear dependence of the different independent variables. In each method used,
no covariance is passed on to the least absolute shrinkage and selection operator [48]. Cama et al. (2017)
stated that the use of VIF with TOL tends to predict co-relationships [49]. VIF connected with TOL,
based on the calculation of 1-R2., where R2 is the regressing variable in multivariate regression. The
result of VIF associated with TOL varies from less than 0.1 to more than 10 and is strongly multi-collinear.

3.7. Model Used

3.7.1. Boosted Regression Tree

Boosted regression tree (BRT) is a combination of regression tree and boosting [50]. Many decision
trees have repeatedly been fitted to the BRT, such as the random forest model, in order to improve the
accuracy of the model. There was a difference between the two methods used to construct selected
trees in the data. In both techniques, all data were taken randomly for the construction of each new tree.
However, the random forest model used the baggage method, which indicated the same probability
of subsequent samples being selected for each occurrence. BRT was used as a boosting method,
where input data were weighted in the trees. Applying this model, the weights were poorly modeled
so that the previous tree was chosen as the new tree. This indicates that the first tree to be fitted to
the model will take account of the error and that the tree will become a new tree. In this way, taking
the previous tree against a new tree, the model improved its accuracy and became a powerful model.
The BRT model considered two parameters to be discussed:
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Tree complexity (TC): The number of splits in each tree was controlled by this procedure.
The value of 1 showed 1 tree split, which means that the model did not consider interactions between
environmental variables. Values greater than 1 or 2 showed two divisions of very high interactions.

Learning rates (LR): This parameter was used to determine the contribution of each tree used to
make the model. It was necessary to construct small values of LR in the trees.

The large number of environmental variables compared to observations makes it very useful to
strengthen the missing values and the outliers. This model is correlated with sets of independent
variables and can accommodate any type of variables such as continuous, categorical, missing and
non-independent variables. Important predictor variables enable functions, and their interactions have
been identified by BRT and the model has been formed without the assumptions of these interactions
or functions [51]. It has been used to solve the problem of regression and classification. It determines
the input variables. This is a boosting and optimization technique that boosts the tree’s decision
weekly, then prepares the residual, determines the loss of function to calculate it, and shows the
difference between the tree’s output and the target values. To minimize the loss of function, boosting
the algorithm has added a new tree to each step [51].

MCV : sign

 M∑
m

am·cm(x)

 (8)

where MCV is the majority vote classification, am : log (1−rm)
rm

which rm: is associated to compute the
(weighted) misclassification rate, fit classifier cm to the weighted data. In this equation, recalculate
weights wi = w exp(mI(yi , cm) that initialize weights equal to wi = 1

n for m = 1 to the next
category cm [52].

3.7.2. Multivariate Adaptive Regression Spline

Friedman stated MARS is an extension of the generalized linear model and is one type of
non-parametric regression technique [53]. MARS uses a set of independent variables to predict the
value of the output variable and to solve the problem of the regression type. In order to establish a linear
or non-linear relationship between dependent and independent variables, this model is partitioned
using binary recursive splines. By assessing cut points similar to step functions, the non-linearity
aspect of the polynomial regression was captured by the convenient approach provided by multivariate
adaptive regression spline (MARS). Predictors have been developed by the procedure, and its individual
data points have been developedas a knot and a linear regression model with candidate characteristics.
The whole process continues until several knots have been found and a high non-linear pattern has
finally been created. These many knots will help tie a good relationship to training data without
generalizing new unseen data. In addition, creating a full set of knots makes it easy to remove those
knots which do not measure the accuracy significantly. This new removing process, named “Pruning”,
uses cross validation with the previous model to find the optimal number of knots. To predict the
probabilities in MARS incorporated with logistic regression, we can look at the example of when
generalized linear models are incorporated with MARS through the link function. On the other
hand, when the underlying form of function is known in the MARS model, non-linear regression
and regression have been used to estimate function parameters. Not only that, MARS also estimates
functions that have serious limitations on the nature of the functions. As a generalization of recursive
partitioning, MARS can better handle non-categorical data. The equation of MARS may be as follows
by Quirós et al. (2009) [54]:

max(0, x− k)ormax(0, k− x) (9)
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where k is the connections and findings one of the dependent components and x is an independent
component. Thus, the MARS model is explained as follows:

ŷ = f̂ (x) = β+
M∑

m=1

αmHm(x) (10)

where y is the function-predicted dependent variable, β is a constant, M is the number of terms and x is
the categorical variables. Hm is the baseline constant and αm, coefficients calculated by reducing the
total squared errors.

Craven and Wahba (1978) has stated that to determine the optimal model for MARS, the generalized
cross validation method is used [55].

GCV =

1
N

∑N
i=l

[
yi − f̂ (xi)

]2[
1− C(H)

N

]2 (11)

where N is the size of samples and C(H) is the dependent variable which rises with both the amount of
base functions (BF) in the model and is determined on the basis of following equation:

C(H) = (H + 1) + dH (12)

where d is the justice for each origin utility is considered in the model and H is the number of essential
purposes. The MARS theory does not require a generalization study of the effect between the response
variable and the causative parameters. The MARS model is applicable as a machine learning technique
by applying specific adaptive developments.

3.7.3. Spatial Logistic Regression

Logistic regression or binary logistic regression is a multivariate regression model where
a categorical dependent variable related to many independent variables [56,57]. The predictor
variables for regression values predicted the presence and absence of dependent variables [58,59].
The algorithm of logistic regression converted the dependent variables to logit variables by applying
maximum likelihood estimation [60]. The merit of LR is that any type of independent variable can be
used for the logistic regression algorithm, which means that variables may be normal or categorical [61].
In order to predict the ratio of each independent variable to the dependent variables, the LR coefficient
was used for the multivariate model [62]. The factors and the dependent variables are numerical,
and the dependent variables must have the nominal data for the LR algorithm. The occurrence of gully
erosion depends on a number of pedo-gromorphic and hydrological factors. The forward, backward
stepwise and enter logistic regression method have been used in many studies, but the entire method
gets the all coefficients of regression. Now, all coefficients of regression were needed for further raster
calculation and developed a gully erosion susceptibility map by spatial logistic regression. Statistically,
the LR algorithm with the relationship of independent (gully erosion causative factors) and dependent
(occurrences of gullies) variables is expressed below as Equations (13) and (14) [61,63].

P =
1

(1 + e−z)
(13)

Z = b0 + b1x1+b2x2 + . . .+ bnxn (14)

In Equation (13), P is the predicted probability of gully erosion, where the probability value
varies from 0 to 1 on anS-shaped curve, and z is the linear combination expressed in the following
equation. In Equation (14), b0 is the constant of the model, bi (i = 1, 2, . . . , n) is the slope or coefficients
of the LR model, and xi (i = 1, 2, . . . , n) is the independent variable. Binary LR is a non-spatial model
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and there is a spatial auto-correlation between data. As a result, the spatial structure is included in
the logistic regression model by changing some expressions. Now, the following modified equation
may be used for spatial logistic regression (SLR). In this spatial autocorrelation, three things are
important.These are spatial weight matrix (W), spatial autocorrelation parameter (p) and error term
obeying a Gaussian distribution (ε). The spatial structure of gully erosion is calculated through
Equations (15) to (18) below [64]:

W =


0 f (d12) · · · f

(
di j

)
f (d21) 0 . . . f

(
d2 j

)
...

f (di1)

...
f (di2)

. . .

. . .

...
0

 (15)

f
(
di j

)
=

di j∑ j
1 di j

(16)

L = y ln
exp(a + Xβ+ ρWy)

1 + exp(a + Xβ+ ρWy)
− (1− y) ln(1 + exp(a + Xβ+ ρWy)) (17)

Z = b0 + b1x1+b2x2 + . . .+ bnxn + ρWY + ε (18)

where ρWY is the spatial structure effect caused by spatial autocorrelation, W is the weight matrix,
f
(
di j

)
is the inverse weighting function expressed as Equation (15),ε is the error term obeying

a Gaussian distribution, and L is the integrated nested Laplacian approximation to reduced time during
estimation [65]. The statistical software was used to calculate the correlation between the location and
erosion of the gully, which affects the coefficient of the factors. The rest of the work on the GIS platform
was carried out by the raster calculator, following Equations (15) and (18) to produce an SLR map of
gully erosion susceptibility.

3.8. Resampling Methods

Resampling methods are used to draw samples from a dataset repeatedly and to re-assemble
a model for each sample in order to learn more about the fitted model. Resampling methods can
be costly, as they require repeated output from different N subsets of data using the same statistical
method. In order to obtain further information on the model fitted, this method adjusts the model
of interest to the samples generated by the training dataset. They provide the estimates of test-set
forecast error, the confidence interval, and the bias of our estimates for the parameters. The error of
the experiment is the average error resulting from the use of a statistical learning system to evaluate
the effects on a sample not used to train the process. On the other hand, the error in training can be
conveniently assessed by finding a statistical learning method for the measurements used in training.
Various resampling algorithms are available, including: cross validation (CV), leave-one-out cross
validation (LOOCV), K-fold cross validation, and bootstrap.

3.8.1. K-Fold Cross Validation

K-fold cross-validation is performed by arbitrarily dividing the result collection into K classes or
folds of approximately the same scale. Related to a single-out cross-validation, one of the K-folds is
used as a collection of validation, while the other K-folds are used as a collection of checks to calculate
the check error for K. The forecast check error for K-fold cross-validation is the sum of all results.

Typical values for K are 5 or 10, since they require fewer calculations than when K is equal to
n. Cross-validation can be used both to determine how well a specific statistical learning process
performs on recent data and to determine the lowest point in the calculated square mean error curve,
which may be helpful in contrasting statistical learning methods or in contrasting different degrees of
versatility for a single statistical learning model.
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3.8.2. Bootstrap

The bootstrap is a universally applied method used to quantify the uncertainty of a given
estimation method or statistical learning process, along with those for which it is difficult to measure
the variability. By repeatedly collecting data from the source data set, bootstrap generates a separate
dataset. These datasets can be used instead of sampling independent datasets from the target
population as a whole. Bootstrap sampling includes anarbitrary selection of substitution inferences,
which means that certain findings can be identified numerous times while other observations have not
been included [66].

This method is reproduced B times to produce B data sets, Z, Z1, Z2, ..., ZB, which can be used to
measure only certain quantities like standard error.

3.9. Validation and Accuracy Assessment

Various statistical methods like sensitivity (TPR), specificity (SPC), precision (PPV), negative
predictive value (NPV), false positive rate (FPR), false discovery rate (FDR), false negative rate
(FNR), accuracy (ACC), F1score (F1)and positive predictive values (PPV) were used [67–78] to test
the performance of the machine learning models used in the present research. Positive and negative
predictive values (PPV and NPV) are the amounts of positive and negative results, respectively, in data
and experimental measures, which are true positive and true negative findings. Greater values of these
predictive measures suggest higher performance of the models [79].

Sensitivity of the predicted models has been estimated with considering following equation:

TPR =
TP

TP + FN
(19)

where, TP is the true positive and FN is the false negative.
Specificity of this estimation has been worked out with considering the following equation:

SPC =
TN

FP + TN
(20)

where, TN is the true negative, FP is the false positive and TN is the true negative.
PPV is the pixel probability value is classified as a gullying area. The calculation is given bellow:

PPV =
TP

TP + FP
(21)

where, PPV is the positive predictive value, TP is the true positive, FP is the false positive of
this estimation.

Negative predictive value has been measured with the help of the following equation:

NPV =
TN

TN + FN
(22)

False positive rate has been estimated with the help of the following equation:

FPR =
FP

FP + FN
(23)

False discovery rate of this estimation has been worked out with the help of the following equation:

FDR =
FP

FP + TP
(24)

where, FDR is the false discovery rate, FP is the false positive and TP is the true positive.
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False negative rate of this analysis has been estimated with considering the following equation:

FNR =
FN

FN + TP
(25)

where, FNR is the false negative rate, FN is the false negative and TP is the true positive.
Accuracy of the all predicted models was estimated with the help of the following equation:

ACC =
TP + TN

P + N
(26)

where, ACC is the accuracy, TP is the true positive, TN is the true negative, P is the positive and N is
the negative values of this estimation.

F1 Score has been estimated with the help of the following equation:

F1 =
2TP

2TP + FP + FN
(27)

where, F1 is the harmonic mean of the precision, TP is the true positive, FP is the false positive and FN
is the false negative.

Alternatively, the Matthews correlation coefficient (MCC) is a much robust statistical metric that
only generates a high scores if the forecast yielded good outcomes in all basic uncertainty matrix groups
(TP, FN, TN, and FP), both in comparison to the amount of positive sides and the size of negative
aspects in the database:

MCC =
((TP× TN) − (FP× FN))√

((TP + FP) × (TP + FN) × (TN + FP) × (TN + FN))
(28)

The AUC of ROC has been estimated with the help of the following method:

SAUC =
n∑

k=1

(Xk+1 −Xk)
(
Sk + 1− Sk+1 −

Sk
2

)
(29)

where, SAUC is the area under curve, Xk is the 1-Specificity and Sk is the Sensitivity of the ROC.
A common instrument for calculating model output is the receiver operating characteristic (ROC).

ROC is plotted on the x- and y-axis, depending on the sensitivity and 1-specificity. ROC’s area under
curve (AUC) is projected on model efficiency. The statistical principle and the equation of this method
are presented in detail in previous studies [80]. Sensitivity (i.e., likelihood of detection) raises the
issue of which portion of the gully erosion observed is correctly labeled, and its optimum value is 1.
The precision (i.e., negative predictive rate) raises the issue of which part of the non-gully erosion is
accurately defined, and its optimum value is 1 [81]. AUC values below 0.6, 0.6–0.7, 07–0.8, 0.8–0.9 and
above 0.9 suggest the model’s poor, fair, average, outstanding and very high consistency, respectively.
The ROC, which trains data collection, generates model performance and finally tests the suitability of
a model. The ROC from the data collection of the evaluation shows the predictive importance of the
model and how strong or poor the predictive model is.

4. Results

4.1. Multi-Collinearity Analysis

Analysis of multicollinearity is another factor selection methodology for assessing the
"non-independence" of gully erosion conditioning parameters. Due to higher relationships
betweenvariables, the projected outcomes can be inaccurate and inconsistent [82]. It is considered as
a linear relationship between different independent variables. The TOL and VIF values are ≥0.1 and
≤10, representing optimal multi-collinearity [83]. In the present study, multi-collinearity has been
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considered when taking into account the VIF and tolerance values for better accuracy of the predicted
models and minimizes the error in this perspective. The highest and lowest VIF and TOL values
were 1.099 to 3.688 and 0.271 to 0.909, respectively, taking into account 20 gully erosion conditioning
factors (Table 2). It has been shown that there is no problem of multi-collinearity, therefore the factors
responsible for the erosion of the gully have been considered in this research. From Table 3, it can be
seen that every selected parameter for gully erosion is independent in nature and the values of VIF and
TOL are associated with the permissible limit (values of TOL and VIF are ≥0.1 and ≤10, respectively).
Predictions of the coefficient will vary significantly, depending on which independent variables are
associated with this model. Coefficients throughout the method differ from significantly optimistic to
minor alterations. Multi-collinearity affects the accuracy of the coefficients that also undermine the
outcomesof optimal capacity.

Table 2. Multi-collinearity assessment.

Sl No. Variables Variance Inflation Factor (VIF) Tolerance

1 Elevation 1.944 0.514

2 Aspect 2.949 0.339

3 Slope 1.276 0.643

4 LS Factor 1.498 0.543

5 Plan Curvature 1.890 0.530

6 Profile Curvature 2.025 0.494

7 Drainage Density 1.655 0.604

8 Drainage Proximity 3.107 0.322

9 Rainfall 2.360 0.420

10 R Factor 1.109 0.902

11 TWI 1.919 0.584

12 SPI 3.060 0.330

13 Soil Texture 2.124 0.471

14 Soil Moisture 1.574 0.635

15 K Factor 2.880 0.350

16 Geomorphology 3.688 0.271

17 Geology 1.460 0.685

18 Distance from
Lineament 1.099 0.909

19 LULC 2.290 0.437

20 NDVI 2.430 0.410
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Table 3. Predictive capability of head gully erosion models using train and test data.

Models Resampleing Type Sensitivity Specificity Precision Negative
Predictive Value

False Positive
Rate

False
Discovery Rate

False Negative
Rate Accuracy F1 Score Matthews Correlation

Coefficient

BRT

Non
Training 0.7143 0.5556 0.7895 0.4545 0.4444 0.2105 0.2857 0.6667 0.75 0.2566

Validation 0.7262 0.5556 0.7922 0.4651 0.4444 0.2078 0.2738 0.675 0.7578 0.2693

5-fold CV
Training 0.7275 0.5449 0.7912 0.4575 0.4551 0.2088 0.2725 0.6733 0.758 0.2603

Validation 0.7327 0.5389 0.7872 0.4641 0.4611 0.2128 0.2673 0.6745 0.759 0.2612

10-fold CV
Training 0.7357 0.5363 0.7883 0.4638 0.4637 0.2117 0.2643 0.6761 0.7611 0.2618

Validation 0.7392 0.5304 0.7843 0.4683 0.4696 0.2157 0.2608 0.6761 0.7611 0.2609

Bootstrap Training 0.7416 0.5249 0.7828 0.468 0.4751 0.2172 0.2584 0.6761 0.7617 0.2585

Validation 0.7464 0.522 0.782 0.4726 0.478 0.218 0.2536 0.6783 0.7638 0.2614

Optimism
Bootstrap

Training 0.7608 0.5251 0.7891 0.4845 0.4749 0.2109 0.2392 0.6901 0.7747 0.2797

Validation 0.7692 0.5193 0.7862 0.4947 0.4807 0.2138 0.2308 0.6935 0.7776 0.2847

MARS

Non
Training 0.7156 0.5618 0.7947 0.4545 0.4382 0.2053 0.2844 0.67 0.7531 0.263

Validation 0.7303 0.5525 0.7907 0.4695 0.4475 0.2093 0.2697 0.6767 0.7593 0.2713

5-fold CV
Training 0.7322 0.5525 0.7923 0.4695 0.4475 0.2077 0.2678 0.6783 0.7611 0.273

Validation 0.7329 0.548 0.7949 0.4619 0.452 0.2051 0.2671 0.6783 0.7626 0.2686

10-fold CV
Training 0.7387 0.5337 0.7893 0.4634 0.4663 0.2107 0.2613 0.6778 0.7632 0.2624

Validation 0.7422 0.5278 0.7854 0.468 0.4722 0.2146 0.2578 0.6778 0.7632 0.2615

Bootstrap Training 0.747 0.5225 0.7864 0.4673 0.4775 0.2136 0.253 0.6801 0.7662 0.2615

Validation 0.753 0.5196 0.785 0.4745 0.4804 0.215 0.247 0.6829 0.7687 0.2659

Optimism
Bootstrap

Training 0.7632 0.5196 0.7877 0.4844 0.4804 0.2123 0.2368 0.6901 0.7752 0.2773

Validation 0.7722 0.511 0.7835 0.4947 0.489 0.2165 0.2278 0.6928 0.7778 0.2806

SLR

Non
Training 0.718 0.5618 0.7953 0.4566 0.4382 0.2047 0.282 0.6717 0.7547 0.2655

Validation 0.731 0.55 0.7912 0.467 0.45 0.2088 0.269 0.6767 0.7599 0.2693

5-fold CV
Training 0.7346 0.5393 0.7908 0.4615 0.4607 0.2092 0.2654 0.6767 0.7617 0.2629

Validation 0.7376 0.5367 0.7919 0.4612 0.4633 0.2081 0.2624 0.6783 0.7638 0.2635

10-fold CV
Training 0.7411 0.5281 0.7879 0.4631 0.4719 0.2121 0.2589 0.6778 0.7638 0.2599

Validation 0.7435 0.5225 0.7864 0.4627 0.4775 0.2136 0.2565 0.6778 0.7643 0.2574

Bootstrap Training 0.7482 0.5169 0.7855 0.4646 0.4831 0.2145 0.2518 0.6795 0.7664 0.2575

Validation 0.7578 0.514 0.7841 0.4767 0.486 0.2159 0.2422 0.6846 0.7707 0.2662

Optimism
Bootstrap

Training 0.7722 0.5084 0.7854 0.4892 0.4916 0.2146 0.2278 0.693 0.7787 0.2776

Validation 0.7754 0.5028 0.7845 0.4891 0.4972 0.2149 0.2249 0.6935 0.7798 0.2758
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4.2. Validation of the Models

The results of the training data reinforce the gully erosion susceptibility models, while the results
of the validation data reflect the optimal evaluation of the final models to fit with the training samples.
In this analysis, we present estimation of the statistical index and ROC curve for calculation of the
validity of various gully erosion models. Table 3 shows the performance of the various models—BRT,
MARS and SLR—with multiple resampling techniques with the help of different statistical outcomes.
All statistical findings show that the performance of spatial logistic regression is much better than
that of other models. In addition, the findings of gully erosion susceptibility models are validated by
performing AUC of ROC on the basis of a database of known gully points. In ROC, the susceptibility
models were compared with the gully and non-gully erosion points in the region. The ROC curves have
been graphically represented depending on the different threshold reductions using optimistic-class
ratios, i.e., true positive rate and false positive rate, to evaluatethe binary classifiers’ dynamic response
and associated accuracy. The ROCs for BRT, BRT 5-fold CV, BRT 10-fold CV, BRT bootstrap and BRT
optimism bootstrap are 83.1, 83.8, 84.9, 85.4 and 87.4, respectively. The ROC for MARS, MARS 5-fold
CV, MARS 10-fold CV, MARS bootstrap and MARS optimism bootstrap are 85.4, 86.1, 88.0, 87.6 and
90.4, respectively. The AUC values of ROC for SLR, SLR 5-fold CV, SLR 10-fold CV, SLR bootstrap and
SLR optimism bootstrap are 85.9, 86.4, 88.1, 88.6 and 90.6, respectively. The optimism bootstrap of BRT,
MARS and SLR gives better prediction in comparison to the other models. Of them, the SLR model is
most optimal according to its predictive capacity (Figure 9).

4.3. Gully Erosion Susceptibility Modeling

For a fair evaluation of the estimated susceptibility map, it is essential to find the optimal variables
for simulation, as chosen factors in the training dataset depend on each other to create uncertainty in
the experiments. In addition, it is important to quantify the predictive efficiency and multi-collinearity
of the twenty conditioning parameters chosen when predicting the susceptibility to gully erosion.
Thus, calculating the important values of the conditioning parameters is necessary.

Machine learning algorithms such as BRT, MARS and SLR with different resampling approaches
(5-fold CV, 10-fold CV, bootstrap and optimism bootstrap) have been used to assess the gully erosion
susceptibility (Figure 10). The optimism bootstrap of BRT, MARS and SLR isassociated with better
prediction capability than other resampling methods. The optimal capacity of the resampling algorithm
has been observed in this research, and the main feature of the resampling algorithm is that it improves
the accuracy of the classifier. In the BRT optimism bootstrap model, most of the regions are associated
with very low (20.03%), low (28.66%) and medium (25.60%) gully erosion susceptibility where the
remaining part of the region isassociated with high (17.55%) and very high (8.16%) susceptible zones.
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In the MARS optimism bootstrap model, most of the regions are associated with very low (25.28%),
low (21.50%) and medium (25.81%) gully erosion susceptibility where the reaming part of the region
isassociated with high (18.79%) and very high (8.62%) susceptible zones (Table 4).

Table 4. A real percentage of gully erosion susceptible zones.

Susceptibility Class

Models

Optimism Bootstrap BRT Optimism Bootstrap MARS Optimism Bootstrap SLR

Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%)

Very Low 101.973 26.030 99.034 25.280 99.465 25.390

Low 80.936 20.660 84.226 21.500 83.756 21.380

Moderate 100.288 25.600 101.111 25.810 100.758 25.720

High 76.587 19.550 73.610 18.790 73.845 18.850

Very High 31.967 8.160 33.769 8.620 33.926 8.660

Total 391.750 100 391.750 100 391.750 100

In the SLR optimism bootstrap model, most of the regions are associated with very low (25.39%),
low (21.38%) and medium (25.72%) gully erosion susceptibility where the reaming part of the region
isassociated with high (18.85%) and very high (8.66%) susceptible zones.

Apart from this, the quality of the predicted models (BRT, MARS and SLR with different resampling
techniques) is shown from direct observation with the help of the Taylor diagram (Figure 11). It is
capable of drawing graphical findings where a pattern or sets of patterns are closely linked with
observations. The relation between different patterns has been identified byconsidering the nature of the
correlation, root mean square error (RMSE) and degree of variations. The degree of variations has been
estimated byconsidering the standard deviations [84]. The location of an individualpointappearing on
the plot evaluates the estimatedpattern of gully erosion susceptibility modelwhich coincides with the
observed information. The RMSE-based variation amongthe trends being estimated and observed is
proportional to the differencesto the point defined as "observed" on the x-axis. Here, the gray contour
indicates the RMSE in the distribution of patterns. The efficiency of optimism bootstrap (SLR optimism
bootstrap, MARS optimism bootstrap and BRT optimism bootstrap) is more optimal than other models.

4.4. Importance Value

The selection of the appropriate parameters for modeling is important, as the selected factors
depend on each other in the training dataset. Therefore, it is necessary to calculate the predictive
capacity and multi-collinearity of the 20 selected conditioning parameters for modeling gully erosion
susceptibility, and therefore to calculate the importance values for each conditioning parameter.
The findings suggest that the elevation (18.48), drainage density (18.33), LS factor (16.56), R factor
(16.06), soil texture (13.52) and rainfall (11.72) are of greater importance where gully erosion occurs,
while the other variables, such as aspect (1.60), TWI (1.19), geology (1.46), geomorphology (2.18),
distance from lineament (2.33) and others are of lesser importance (Table 5). From a partial plot of
important variables, it is easy to understand the importance of significant factors and their relationship
to the formation of gully erosion (Figure 12). The use of a partial plot is very important because it is
capable of evaluating the effect (in the context of the dependent’s prediction accuracy index) of the
independent factorith in the context of other existing factor-independent features [85]. To determine the
nonlinearity, if there are any ith parameters, the appropriate transformation must be picked precisely,
such that the normal residual plot indicateslinearity differences, whereas the partial residual plot
indicatesboth the magnitude of the linearity variance and the linearity magnitude and position. In first
plot, the importance of elevation in correspondence to the drainage density shows the maximum
importance. Here, the importance of topographical and hydrological factors was relatively higher than
the other conditioning factors used in this study.
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Table 5. Importance values of the gully erosion conditioning factors.

Sl No. Variables Importance

1 Elevation 18.48

2 Aspect 1.60

3 Slope 3.47

4 LS Factor 16.56

5 Plan Curvature 4.76

6 Profile Curvature 3.13

7 Drainage Density 6.68

8 Drainage Proximity 18.33

9 Rainfall 11.72

10 R Factor 16.06

11 TWI 1.19

12 SPI 4.92

13 Soil Texture 13.52

14 Soil Moisture 8.16

15 K Factor 6.41

16 Geomorphology 2.18

17 Geology 1.46

18 Distance from
Lineament 2.33

19 LULC 3.63

20 NDVI 4.17
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5. Discussion

In this research, three machine learning models (BRT, MARS and SLR) and four resampling
methods (5-fold CV, 10-fold CV, bootstrap and optimism bootstrap) were used for the creation of gully
erosion susceptibility. Resampling methods have been used as a reliable process that can improve the
predictive efficiency of all models. While, unlike resampling, empirical sampling distributions do not
solve all inferential problems, they will help to generate new statistics and bring robustness to other
conventional ones [86]. Before the modeling of gully erosion susceptibility, it is important to quantify
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the predictive potential and multi-collinearity of the selected parameters; therefore, the values of each
conditioning variable have been determined [24,33]. In contrast, few experiments have mainly focused
on gully erosion in order to establish and forecast a relation between gullies and its absence, keeping
in mind a number of variables in the models [87–89]. We therefore have measured the importance
value of every causal parameter behind the presence of gully locations in the catchment area of the
Hinglo river basin. Additional comprehensive work on environmental elements is needed to obtain
an optimum understanding of the factors that influence the erosion of the gully itself and the impact
on the expansion of this occurrence at multiple locations in different climatic conditions. The results
are correlated with the assumption that the rate of gully erosion depends on the volume of the runoff

area above the gully and on many other variables, such as elevation, drainage density, LS factor,
R factor, soil texture and rainfall. Here, elevation is the most important determinant element of erosion
susceptibility. The spatial distribution of gullies depends to a large extent on the characteristics and
nature of the topographic parameters, such as elevation, amount and direction of slope, ruggedness of
the topography, etc. [90]. There is a very high dependency of the occurrences of gullies and existing
drainage networks of this region. In any region, the gullies can continuously form according to the
drainage network and can be differentiated by the drainage network. So, a positive relationship has
been observed between drainage density and the occurrence of gullies [91]. In other words, the high
drainage density is very much optimistic for generatingthe maximum runoff which is responsible for
large scale erosion in the form of gullies [28]. In this study, topographical factors, like LS factor, are one
of the important determining elements for gully erosion susceptibility. Slope length and steepness are
direct influences on other topographical parameters which are responsible for creating the complex
hydro-geomorphic regime. So, these scenarios of hydro-geomorphic characteristics are favorable for
large scale erosion. In the monsoon-dominated climate region, the extreme soil erosion and associated
land degradation are strongly influenced by rainfall. The impact of raindrops in the form of rainfall
accelerates the amount of erosion in various forms of erosion. The existence of a long dry season and
a limited wet season are the key features of the monsoon climatic region. The rate of erosion and
its associated vulnerability to land resources is therefore increasing at an alarming rate. Apart from
rainfall, the R factor is capable of estimating the increased impact of rainfall on erosion in a storm
rainfall event. So, the importance of the R factor for modeling the gully erosion susceptibility is greater
than any other factors.

Numerous ensemble models are applicable, but new and updated techniques and approaches for
spatial modeling of gully erosion susceptibility occurrence are necessary. Therefore, three machine
learning algorithms (BRT, MARS and SLR) and four resampling approaches (5-fold CV, 10-fold CV,
bootstrap and optimism bootstrap) were used to assess the efficiency of machine learning models
and we selected from the most optimal one. Modelling efficiency evaluation reveals that the ideal
approach is a set of models (SLR, MARS and BRT optimism bootstrap) of machine learning approaches
with excellent precisions of 90.6%, 90.4% and 87.4%, respectively, in the corresponding susceptibility
categories of the gully positions relative to the majority of the ensemble and single machine learning
methods. The ensemble of SLR optimism bootstrap, MARS optimism bootstrap, and BRT optimism
bootstrap actually improves the generalization of base predictors for gully positions to locate the
combination of the SLR optimism bootstrap ensemble method with greater precision.

It is obvious from the field photos that there are more numbers of gully development sites in
and around the studyregionof the Chota Nagpur Plateau. Unscientific management strategies and
land use modifications have been observed to play a crucial role in regional scale gully development,
as subsurface pipping and gully head-cut experiences have led to the creation and development
of gullies. Our results are comparable with other researchers who identified that gully erosion is
largely triggered by precipitation, land use, drainage density, LS factor, soil texture, rainfall and runoff

erosivity factor and elevation [92–94]. In addition, the resampling-based ensemble machine learning
models (SLR, MARS and BRT optimism bootstrap) established these gully erosion sites more accurately
on a regional scale than other evaluated ensemble machine learning models and individual models.
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The upper portion of this region is very much prone to gully-high erosion because the topography of
this portion is very rugged in nature and this region is associated with a diverse geo-hydrological setup.
This outcome is similar in terms of the regional occurrences of gullies which were done previously by
different researchers in this region [95,96].

6. Conclusions

Over recent decades, this region has been facing the problem of extreme soil erosion. Comparatively,
in the western and middle portion, the rate of gully formation and development is very high. This leads
to extreme land degradation in this region and adversely affects agricultural production. Our main
objective of this paper to propose an optimal model for gully erosion susceptibility using novel resample
techniques from the existing regression models. Machine learning algorithms, including BRT, MARS,
SLR, bootstrap, optimism bootstrap and 5-fold cross validation and 10-fold cross validation, rendered
it possible to analyze the results of factors impacting the frequency of these gully erosion characteristics
in the catchment area of the Hinglo river basin. The multi-collinearity study was used to identify 20
gully erosion causal parameters and its function in gully formation and development. In addition,
the importance of these causal parameters was also evaluated where six variables, including elevation,
drainage density, LS factor, R factor, soil texture and rainfall, had the strongest impact on gully erosion
in the study region. The influences of topographical and hydrological parameters are more prominent
than other parameters. For modeling of gully erosion, 70% of the data was used for testing and the
remaining 30%was considered for model validation. Validation of the models was made using the area
under curve (AUC) from receiver operating characteristic (ROC) curve and other statistical indices.
Validation of the results mainly demonstrated that the SLR, MARS and BRT optimism bootstrap models
with ROC values of 90.6, 90.4 and 87.4, respectively, had excellent accuracy levels based on selected
relevant parameters. Our proposed models have fulfilled our objective of assessing gully erosion
susceptibility with adequate accuracy. The use of various resampling techniques has increased the
performance of the models by developing the nature of the classifier. The susceptibility map of gully
erosion obtained in this study region can be used to manage land and water conversations, land use
planning and eventually, sustainable development throughout the region. The main task of future
researchers is to propose more optimal models for this subtropical region with the development of
the base-classifier.
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