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Abstract: The fusion of microwave and optical data sets is expected to provide great potential for the
derivation of forest cover around the globe. As Sentinel-1 and Sentinel-2 are now both operating
in twin mode, they can provide an unprecedented data source to build dense spatial and temporal
high-resolution time series across a variety of wavelengths. This study investigates (i) the ability of
the individual sensors and (ii) their joint potential to delineate forest cover for study sites in two
highly varied landscapes located in Germany (temperate dense mixed forests) and South Africa (open
savanna woody vegetation and forest plantations). We used multi-temporal Sentinel-1 and single
time steps of Sentinel-2 data in combination to derive accurate forest/non-forest (FNF) information via
machine-learning classifiers. The forest classification accuracies were 90.9% and 93.2% for South Africa
and Thuringia, respectively, estimated while using autocorrelation corrected spatial cross-validation
(CV) for the fused data set. Sentinel-1 only classifications provided the lowest overall accuracy of
87.5%, while Sentinel-2 based classifications led to higher accuracies of 91.9%. Sentinel-2 short-wave
infrared (SWIR) channels, biophysical parameters (Leaf Area Index (LAI), and Fraction of Absorbed
Photosynthetically Active Radiation (FAPAR)) and the lower spectrum of the Sentinel-1 synthetic
aperture radar (SAR) time series were found to be most distinctive in the detection of forest cover.
In contrast to homogenous forests sites, Sentinel-1 time series information improved forest cover
predictions in open savanna-like environments with heterogeneous regional features. The presented
approach proved to be robust and it displayed the benefit of fusing optical and SAR data at high
spatial resolution.

Keywords: forest cover; Sentinel-1; Sentinel-2; data fusion; machine-learning; Germany; South Africa;
temperate forest; savanna

1. Introduction

According to the Food and Agriculture Organization of the United Nations (FAO), approximately
one-third of global land area is covered by forests, yet exhibiting a decreasing trend since the 1990’s [1].
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These estimates include decrease in forest area by deforestation and increase by afforestation. Forests
are highly vulnerable ecosystems that are not only habitat to a large number of species and the
most widely distributed terrestrial type of vegetation, but also act as a key control in the global
carbon and water cycle, hence shaping land-atmosphere feedbacks [2—4]. Forests serve as essential
sinks for carbon, storing approximately 202-275 PgC [5]. These two account for 82% of the global
aboveground biomass carbon (ABC) stores if combined with savanna ecosystems (including woody
savanna) [5]. Consequently, land cover changes in these areas are regarded as a major source of
emission of greenhouse gases [6,7]. These figures indicate the importance of the monitoring and the
related aboveground biomass (AGB) in these areas. The spatial assessment of the amount and related
dynamics of woody AGB is crucial to project future developments and assess past changes, not only
on the local or national level, but also the global level.

Remote sensing techniques have been applied for decades to foster sustainable forest monitoring.
Since the 1970’s, this was predominantly accomplished by using optical remote sensing systems due to
their more extensive archive, accessibility, as well as straightforward interpretation as compared to
microwave data [4,8,9]. Thus, forest cover monitoring using optical data from coarse to fine spatial
resolution was conducted on the regional to global scale [10-13]. Nevertheless, the impact of persistent
cloud cover/haze over many forested areas, leading to gaps in time series analysis, is a major limitation
of optical remote sensing data. This problem can be remediated by the joint use of SAR and optical
data [10]. In this context, it could be shown that using both, C- and L-Band SAR together with optical
data is capable of significantly improving the forest monitoring results [14-16] and minimizing issues
of data continuity [17].

With the start of Sentinel-1 and -2, which are acquiring data in the microwave and optical range of
the electromagnetic spectrum, data in high geometrical and temporal resolution became freely available.
Recent studies demonstrated the potential of Sentinel-2 data for the distinction of land cover classes
and forest types with high accuracy when applying single time steps or multi-date information [18-20].
Similarly, various studies analyzed the suitability of C-Band radar data from Sentinel-1 to investigate
land cover [15], forest extent [21], forest change [22], deforestation [23], and woody cover [24]. The fusion
of both data sources was reported to increase the classification quality in numerous applications, such
as crop [25], forest [26,27], and primary vegetation mapping [28]. The existence of more data sources
and fast growing data archives naturally led to an increasing demand for machine-learning approaches
that are capable of dealing with high-dimensional multi-source data for forest structure related
applications [29,30]. A large number of studies utilized such algorithms in the past to map various
land cover related metrics while using multi- and hyper-spectral [31,32] as well as radar data [33].
Similarly, these techniques were used to derive forest/land cover changes [6,34-36] and associated
parameters, such as tree species [18,37,38] on different scales, woody cover assessments [39,40], or forest
habitats [41]. Multiple studies investigated the potential of Sentinel-1 C-Band SAR data to improve the
classification accuracies of optically based approaches of estimating tree cover [42] and characterizing
forest ecosystems [17,43]. Further, Sentinel-1 proved to perform well in land cover mapping in
heterogeneous landscapes, such as the South African savanna [44].

This study aims at deriving forest cover structures in the study sites in Germany and South Africa
while using optical (Sentinel-2) and SAR (Sentinel-1) data in independent and joint approaches while
using an innovative CV procedure that takes spatial autocorrelation of the data into consideration.

2. Materials

2.1. Study Sites

The first study site is located in the federal state of Thuringia and is visualized in Figure 1. Located
in the center of Germany, it has an area of approximately 16,200 km?. Land cover predominantly
consists of homogeneous coniferous and deciduous forests, as well as agricultural land. The area
is characterized by regional climates that can be described as temperate oceanic, exhibiting warm
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summers with dry periods and cold winters. While the northern part of Thuringia, the “Thuringian
Basin’, is one of the driest areas of Germany, rainfall accumulates up to 1500 mm per year in the
Thuringian Forest, a mountain range located in the south-east of Thuringia. Precipitation is evenly
distributed throughout the year [45].

The second study region, visualized in Figure 2, comprises an area ranging from forest plantations
in the Mpumalanga province to the southern parts of Kruger National Park (KNP), covering an area of
approximately 19,800 km?. In contrast to the Thuringian study site, this site is highly heterogeneous
with regard to land cover, the amount of intra- and interannual rainfall, as well as climatic conditions.
While KNP is predominantly characterized by patchy patterns of loose aggregations of vegetation and
large portions being covered by bare soil (vegetation growth is heavily dependent on seasonal effects),
the elevated plateau in the west of the study area features dense forest structures. According to this,
rainfall varies between 500 mm and more than 1000 mm for KNP and the outer areas, respectively [46].
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Figure 1. Study site in central Germany (Thuringia).
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Figure 2. Study site in South Africa (southern KNP and forest plantations).
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2.2. Data

2.2.1. Satellite Data

Data from Sentinel-1 and -2 were acquired for the study sites that are shown in Figures 1 and 2.
Both data sources were collected in Level 1 format, which required several preprocessing steps prior
to image analysis (see Section 3.1). Dual-polarized (VV + VH) Sentinel-1 backscatter intensity and
Sentinel-2 data excluding the 60 m bands (B1, B9 + B10) were used in this study. Table 1 provides an
overview of the used predictor variables. Data for both study sites were collected multi-temporally.
Sentinel-1A data from 2015 to 2017 were used to calculate multi-temporal metrics for both study
sites to capture the temporal dynamics of varying land cover types and, thus, compensating for the
noticeable noise effects in the C-Band signal [47]. By using temporal features contrary to the application
of individual time steps, it is possible to utilize the information of intra-annual trends within the data.
To further analyze the impact of seasonality on the classification, these statistics were separated into
winter and summer seasons for the SAR time series. As summer period, we selected the months June
to September for Thuringia and November to March for the South African study site (predictor suffix
= ‘sum’). Winter was defined as the duration from December to March and May to September for
Thuringia and South Africa, respectively (predictor suffix = ‘win’). Only Sentinel-2A scenes with less
than 5% cloud coverage were considered for a mosaic for each study site of the dry season 2016. In total,
127 Sentinel-1A, as well as three Sentinel-2A scenes, and 92 Sentinel-1A as well as four Sentinel-2A
scenes, were collected for the Thuringia and the South African study site, respectively.

Table 1. List of predictor variables from Sentinel-1 and Sentinel-2.

Sentinel-1 (per Polarization & Season)  Sentinel-2

minimum B2
maximum B3
midhinge B4
standard deviation B5
range (95th, 5th percentile) B6
5th percentile B7
25th percentile B8

75th percentile B8A
95th percentile B11
B12

LAI

FAPAR

2.2.2. Reference Data

Data provided by the State Office for Surveying and Geoinformation of Thuringia served as
reference information for the extent of forests in Thuringia. The data originate from a digital land cover
model (DLM) and comprise detailed information regarding the extent of forests as well as tree species
on a Sentinel sub-pixel level (<10 m). Located south-east of the city of Jena, the “‘Roda’ reference site
(visualized in Figure 3a), which was selected as training and validation subset for the classification
algorithm, extends over an area of 261 km?, of which approximately 50% is covered by coniferous
(85%) and deciduous (15%) forest. The forest patch size in the Thuringian training and validation site
varies between 0.1 ha and 4173 ha with a median of 1.4 ha.

As in any other protected landscape, freely available in situ data are scarce and difficult to acquire.
Therefore, for the South African study site, two sets of reference data were combined to characterize the
savanna ecosystem of KNP, as well as dense forest plantations west/north-west of the southern KNP
(indicated in Figure 3b). Firstly, forest compartment data from York Timbers forestry company were
used to define training areas for homogenous forests, as they can also be found within the German
study site. For this reference data set, an age and NDVI threshold was applied to filter compartments
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that were covered by mature forests, and that were not logged during the Sentinel-2 acquisition
dates and were also not altered throughout the Sentinel-1 time series period. Secondly, vegetation
height metrics that were based on airborne Light Detection and Ranging (LIDAR) measurements were
obtained from a canopy height model (CHM), which was made publicly available by Smit et al. [48].
Acquisition dates of this data set were April/May 2010, 2012 and 2014, respectively. For this study,
exclusively, the vegetation structure from the last mission date was used to minimize the time gap to
the Sentinel-1 acquisitions. The available LIDAR coverage is located on the southern boundary of KNP
near Malelane Gate and it comprises an area of 1.8 km by 26 km with a spatial resolution of 2 m. In a
next step, the vegetation height was limited to a value of more than 5 m according to FAO’s forest
definitions [49]. Additionally, we followed FAQO's forest cover definition with a tree canopy cover of
more than 10 percent and an area of more than 0.5 ha. The size of forest patches in the South African
varies significantly from the distribution that can be found in the German study site. While forest
patches with an area less than 0.01 ha could be found in the KNP, the forest plantations exhibited patch
sizes of up to 9350 ha. The median value for the whole study site is less than 0.1 ha. For both reference
sites, we extracted 500,000 data points in a stratified sampling approach to be used for hyperparameter
tuning, training, and CV, which were carried out after a spatial partitioning.

50°50'N

I Forest Non-Forest [___| Reference site [ | National border [__] Study site

(a)

30°40°E

25°0's

I Forest Non-Forest [___] Reference site [___] National border [__] Study area

Figure 3. Reference data sets for both study sites. (a) Thuringia and (b) South Africa.
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3. Methods

The presented methodology comprises the preprocessing of microwave and optical Sentinel-2
data, acquisition of suitable reference information to characterize strongly different ecosystems as
well as the introduction of the concept of spatial autocorrelation to perform tuning and validation
procedures while taking spatial dependences in remotely sensed data sets into account. Based on this,
forest extents were estimated for Sentinel-1, Sentinel-2, and a fused product, including both sensors.
Figure 4 provides the overall workflow.
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Preprocessing Preprocessing

S-1 Variables: * * S-2 Variables:
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Figure 4. Workflow of the forest cover derivation using Sentinel-1 and Sentinel-2.
3.1. Preprocessing

Data from both satellites were gathered from ESA’s Copernicus Open Access Hub archive.
Preprocessing of Sentinel-1 data included multi-looking, geocoding, radiometric calibration, as well
as topographic normalization, and it was solely carried out using Gamma routines. Dual-polarized
multi-temporal microwave data sets were created at 10 m spatial resolution. Next, Sentinel-2 images
were atmospherically, cirrus, and terrain corrected using the Sen2Cor algorithm [50] and Shuttle
Radar Topography Mission (SRTM) with a spatial resolution of 1 arc-second (=30 m). During
atmospheric correction, look-up-tables (LUT) for parameters, such as aerosol type and mid-latitude,
were automatically chosen based on metadata information. For analysis, Sentinel-2 bands with a
resolution of 60 m (channels 1, 9 & 10) were excluded, as their main purpose can be seen within
the preprocessing to detect cloud coverage. After preprocessing, multi-temporal Sentinel-1 metrics
and biophysical Sentinel-2 indices were calculated and grouped into seasons while using SNAP and
R. The latter included the vegetation parameters LAI and FAPAR, which were calculated using the
biophysical processor implemented in ESA’s SNAP v6.0.0 [51]. As mentioned earlier, the data was
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split into seasons, with April and October serving as transition months. This split allowed for a more
detailed analysis of the importance of predictor variables with respect to seasonality and the related
environmental conditions. Finally, predictor variables from both sensors were stacked and subsetted
to the respective study areas in R.

3.2. Forest Cover Derivation Using Random Forest

3.2.1. Classifier Algorithm Description and Parameter Tuning

For this study, the decision tree classifier random forest (RF) was utilized while using the
ranger implementation within the mlr package [52] of the statistical software R [53]. This non-linear,
hierarchical ensemble classifier predicts class memberships that are based on the concept of recursive
partitioning to create increasingly homogeneous subsets to retrieve a branched network of data
splits [54,55]. Out of all possible splits, the predictor variables are selected (randomly by mtry) that
minimize the Gini impurity (also referred to as ‘splitrule’). Throughout the process, the decision tree is
produced independently while being controlled by two main parameters, mtry and ntree. While mtry
describes the number of predictor variables that are used to split each node, ntree defines the number
of trees, which are generally characterized by high variance at relatively low bias [56]. The tuning of
these two hyperparameters is crucial, as they control not only the accuracy, but also the computation
time of the process [57].

By default, most RF implementations define the square root of the number of predictor variables
(limited by number of predictor variables) as the mtry value and 500 as the sufficient number of trees
(ntree). Few studies have investigated the impact of mtry towards computation time and the resulting
model performance [58,59].

As a first step, the hyperparameters that control the performance of the model needed to be
adjusted to retrieve the desired results while maintaining a certain computational effort. We used
a repeated CV while using 25 repetitions with five folds to ensure the derivation of stable results,
leading to consistent accuracies. Further, the procedure was conducted, including the correction of
biases possibly introduced by spatial autocorrelation. For the previously mentioned hyperparameters,
mtry and ntree separate feature spaces, retrieved from literature review, were defined, in which best
parameter sets were then estimated [38,59]. Tuning of the variables is crucial for allowing the user the
investigation of best performing parameter setups and their related computational costs. Feature spaces
were limited a priori to keep the amount of processing within bounds that meet existent computation
resources. Nevertheless, it should be noted that the hyperparameter tuning, theoretically, should
optimally not be restricted to fixed value ranges, since this does require expert knowledge of the
process as well as the applied training data. While ntree was tuned between 50 and 750, the limits
of mtry were set between 1 and 5. According to Belgiu and Dragut [29], numerous studies revealed
that 500 trees are leading to stable accuracies, which implies that the upper boundary is likely to be
found in this value range. Additionally, it was found that the number of trees did not tend to be very
sensitive to the prediction outcome when applying high-dimensional Sentinel-1/-2 data in combination
to derive forest cover [27]. The mtry parameter was limited to only a narrow portion of the value
domain, which represents the number of predictor variables within the data set. By default, the RF
algorithm sets the mtry parameter to the square root of the number of input variables [30]. However,
studies have shown that the optimal mtry value can be found below this value [60]. Therefore, we set
the upper boundary of the search space for this hyperparameter lower than the proposed square root
of the number of predictors.

3.2.2. Training and Prediction

Once optimal sets of hyperparameters have been defined for both study sites and the individual
sensor setups ((i) Sentinel-1 (5-1), (ii) Sentinel-2 (S-2), (iii) Sentinel-1 + Sentinel-2 (S-12)), these were used
to perform the training of the model while using the training data for the study site subsets. The trained
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models were then transferred to the respective study regions described earlier. The derived tuning
parameters were also applied for tree cover estimation over the complete study site while assuming
that the training data was sufficiently representing the regional landscape diversity. The results were
further processed while using a sieving algorithm to meet the selected forest definition, which limits
the tree aggregations to a minimum size of 0.5 ha and ten percent tree canopy coverage [49].

3.2.3. Importance of Predictor Variables

The analysis of the variable importance was carried out based on all datasets to identify which
variables were found to be most useful for the distinction between forest and non-forest in each study
site. Several filter methods were tested to assess each predictor variable’s value for the classification, in
order to find most distinctive input variables for the classification. The gain ratio (GR), which was
selected to evaluate variable importance, is an entropy-based algorithm that identifies the weights of
discrete attributes based on their correlation with a continuous target attribute. GR was utilized to
visualize the contribution of each predictor variable and it represents an extension of information gain
G, which calculates the average entropy of a single predictor entity A when a set of observations S is
split into subsets of S;. The entropy for data sets with C classes is calculated, as follows:

C
E= Z p; log, py, 1)
i

where p, is defined as the probability of the random selection of an element of class i. Consequently,
the resulting information exhibits the decrease in entropy of each attribute [61]. The information gain
G is then calculated, as given below:

G(S,A) = E(S) —E(S, A) @)

G is calculated for every attribute A and the sum of the entropy E with regard to the original set S
is then compared to every subset. The predictor entity that maximizes the difference most is selected
upon others, being defined as the variable importance within the predictor variable set. However,
information gain G is biased whenever the features are branching more complex, as it does not take
into account the size of branches as well as their quantity. By using an extension of the previously
explained algorithm, the intrinsive information I of each split can be included [61]. The equation of I is

given as:
_ ISil, (ISl
I(S, A) = - Z = log(ﬁ) 3)
1
The gain ratio GR then equals:
G(S A
GR(S, A) = ﬁ 4)

The results of the calculation of the variable importance are displayed separately for both
study sites, respectively, and split up into each specific sensor setup in Section 4.2. Only the seven
most important variables were considered and displayed in a combined plot to limit the number of
selected predictors.

3.2.4. Cross-Validation and Statistical Comparison

A repeated CV was performed using approaches similar to the previously explained tuning
algorithm to assess not only the expected classification accuracy, but also to account for spatial
dependence in the validation. Within k-fold CV the reference information is spatially subdivided into k
equally sized partitions of which a single subsample is used for testing and the remaining k — 1 portions
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are used as training information. This process was then repeated k times to make use of all available
training data and estimated as an average to estimate a single prediction. Validation in this study
was accomplished while using a five-fold approach using 25 repetitions. Following, the average error
among all k runs is computed, adding up to 125 RF trials for each sensor setup and study site. A spatial
partitioning of the reference data was carried out to account for the existence of spatial autocorrelation,
which is omnipresent in remotely sensed data. The term ‘spatial portioning’ implies the creation
of spatially disjoint training and testing partitions while using a k-means clustering approach [62].
Typically, CV approaches are performed using random or stratified sampling methods [34,63,64].
However, these do not take the spatial dependence of observations in spatial data sets into account
and therefore ignore the bias introduced by non-spatial sampling [65,66]. Thus, commonly adapted
CV lacks in consistently generating training and test folds that are independent from each other [64].

A comparison with other FNF products was carried out to identify the quality of our forest
classifications. Thus, our results could be compared to completely independent data sets. For this,
10,000 randomly stratified samples were extracted and then used to compute the Jaccard Similarity
coefficient (J) between each other and with respect to the reference data sets for each study site [67]. ] is
commonly used in data science as a tool to measure similarity/dissimilarity in vectors containing binary
values and it was found to provide reliable estimates while preventing overoptimistic results [68].
The Jaccard coefficient ranges between 0 and 1, with 0 representing the lowest possible similarity
between quantities. This coefficient measures the similarity between two sets of data by dividing the
size of the intersection between data set A and B by the size of the union of both sets.

] _ |A N B|
AB 1A+ B[ - [ANB]

©)

For comparison, three different common FNF products with similar spatial resolution were chosen.
Table 2 provides an overview of these data sets.

Table 2. Data sets used for similarity analysis.

Author  Pixel Size Period Data Study Region
Landsat FNF [10] 30 m 2000-2018 Landsat both
ALOS FNF [69] 25m 2017 PALSAR-2 both
Copernicus HRL * [70] 20m 2015 Sentinel-2, Landsat, SPOT-5, ResourceSat-2 Thu
CCI** [71] 20 m 2015-2016 Sentinel-2 SA

Notes: * Copernicus High Resolution Layer (HRL)—Forest Type. ** ESA Climate Change Initiative (CCI) 52
Prototype Land Cover Map of Africa.

4. Results

4.1. Forest Cover Derivation

The final classification of forest cover was carried out using the hyperparameters ntree = 500 and
mtry = 1, which were found to produce reliable results with high accuracy while maintaining a certain
computational effort. Table 3, as well as Figure 5, display the accuracies for the CV of the RF based
classifications of forested areas in both study sites using Sentinel-1, Sentinel-2 and a fused data product.
The overall accuracy was calculated using the median value of all runs of the spatial CV, since this
provides a more realistic representation of the actual classification quality, as outliers tended to appear
especially in the South African study site.

Table 3. Averaged results (median) for each sensor setup from all CV repetitions.

Sentinel-1  Sentinel-2  Sentinel-1/-2

South Africa 84.3 90.4 92.3 90.9
Thuringia 90.6 93.3 93.7 93.2
87.5 91.9 93 9]
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Figure 5. Results of CV for both study sites comparing all sensor setups.

Classification accuracies were found to be consistently higher in the German (93.2%) as compared to
the South African study site (90.9%) when being averaged over all available sensor setups. Considerably
strong variations between these configurations could be observed in both study sites. As visualized in
Figure 5, the standard deviation, which was calculated over all CV runs, was significantly larger in
the South African study site (0.33), while the results in Thuringia did not differentiate between all CV
runs as much (0.012). The difference in the variance visible in the boxplot range can be attributed to
the existence of more sufficient training data in the German study site, as well as the appearance of
forests in this area, which is much more homogeneous when compared to the South African study site,
making it easier for the algorithm to reliably detect forest based sites. It should be noted that the plot is
cropped to a lower boundary of 0.75 for visualization reasons as very few values of the Sentinel-1 based
classification in South Africa ranged around 0.2. In both study sites, Sentinel-2 tended to outperform
Sentinel-1 in the single-sensor approach leading to higher classification accuracies. While the fusion of
Sentinel-1 and Sentinel-2 led to the highest classification accuracy in the German site, the potentially
lower overall classification accuracy in South Africa also impacted the fused approach.

Figure 6 displays the results of the classifications using all available combinations of sensor setups
for the South African study site. Here, Sentinel-1 predicted a greater amount of forest extent in parts
of the KNP as well as the area just outside the park (brown) when compared to setups utilizing
optical data. It can also be seen that Sentinel-2 only classified few forests/tree aggregations in the
reserve area while capturing forest plantations in the west of the KNP very well (dark green). The
optical sensor also misclassified agricultural fields that were located south of the Kruger National Park.
This was not visible in the multi-temporal SAR classification. Combining both classifications, this
was found to positively impact the optical classification. The forest prediction using Sentinel-1 and
Sentinel-2 showed a good fit with homogenous forests in the western part of the study area and an
underestimation of forest in the Kruger National Park.

In the Thuringian study site, the algorithm achieved higher overall accuracies compared to the
South African study area. Results are visualized in Figure 7. Here, it was found that the optical,
microwave and the fused FNF classification produced quite similar results, which was also reflected in
the accuracies (see Table 3). While the SAR based forest cover map (brown) showed a larger number of
noisy and, thus, misclassified pixels, gaps in the optical data caused by cloud cover could be filled by
applying data fusion prior to the classification.
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Figure 6. FNF map of the South African study site showing pixels being classified by Sentinel-1,
Sentinel-2, a fused product (512) and combinations of these setups; ‘F’ represents pixels classified as
‘forest’ by all sensor setups; ‘NF’ represents the pixels classified as ‘non-forest’ by all sensor setups.
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Figure 7. FNF map of Thuringia showing pixels being classified by Sentinel-1, Sentinel-2, a fused
product (512) and combinations of these setups; ‘F’ represents pixels classified as ‘forest’ by all sensor
setups; ‘NF’ represents the pixels classified as ‘non-forest’ by all sensor setups.

The discrepancy between varying single sensor setups (microwave vs. optical) was found to
be much stronger in the more heterogeneous landscape of the South African study site comprising
savanna and forest ecosystems. Here, a sub-classification was performed dividing the study site
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into two parts, a) the forested areas spreading over from Mpumalanga to the province of Limpopo
and b) the savannas of the southern KNP. The results suggested that both sensors produced reliable
classifications in the western part of the study site while the savanna part and its vegetation was
strongly underestimated by the Sentinel-2 predictors. In contrast, Sentinel-1 C-Band data were able to
capture greater portions of tree aggregations in this part of the site. However, the Sentinel-1 setup
might led to misclassifications in open savanna, due to limitations of the savanna LIDAR training
data set to represent especially lower vegetation (<2 m) and the strong impact of soil moisture, as
well as surface roughness. Forest sites with denser canopies were found to be underestimated by
the RF classifier when applying SAR data only in both study sites. Here, closed tree canopies force a
limited penetration of the C-Band signal. This corresponds to findings of other studies working in this
area [39]. Nevertheless, Sentinel-2 outperformed Sentinel-1 only classifications in all study sites in
terms of accuracy. This can partly be attributed to the internal variable selection of the RF algorithm
that was based on the underlying training data. Consequently, the distinction of FNF in both study
sites relied stronger on optical predictor variables, despite the information content stored in the SAR
time series.

4.2. Analysis of Variable Importance in Varying Sensor Setups

4.2.1. Thuringia

Variable importance in both study areas was calculated based on the equations that are given in
Section 3.2.3. As visualized in Figure 8, variables that represent the lower range of the SAR time series,
such as the minimum or the 25th percentile of the summer season, were found to be the most distinctive
predictors for the Sentinel-1 time series in this study site. Here, GR does not vary significantly between
the seven most important variables, leading to comparable contributions to the classification result.
As the minimum backscatter values throughout the summer months tend to occur towards the end of
the growing season for C-Band similar to L-Band SAR data when the signal received from ground
surfaces is increased, a better distinction can be found during this period of the year [72]. It was also
found that polarization and orientation of the signal being received and emitted do strongly influence
the detection of plant structure. Predictors with VH polarization showed to be the most relevant SAR
variables for the classification in the German study site. This corresponds to findings of Olesk [22],
who found that cross-polarized SAR data from Sentinel-1 is more suitable in most cases when detecting
forests as compared to like-polarized microwave radiation.

The analysis of variable importance of the Sentinel-2 classification revealed that the biophysical
parameters FAPAR and LAI, which are directly relatable to photosynthetic primary production and
activity, exhibited the best differentiation for Thuringian temperate forests [73]. The latter proved to
be the most important predictor for forest cover in this study site, which is due to the homogenous
tree canopies that can be found in this study site with GR of above 0.3. SWIR (B11, B12), RGB (B2,
B3, B4), as well as the shortest red edge band (B5) were also of great importance for the classification
performance in the optical setup. Recent studies confirm our findings, which consider the SWIR
bands to be among the most important Sentinel-2 channels for vegetation cover mapping [18,74]. The
near-infrared (NIR) channels B8 and BSA were found to be only partly capable for a FNF distinction
when being compared to the remaining channels of Sentinel-2, which does not correspond with other
studies, as these wavelengths tend to be most representative for photosynthetic active vegetation [75].

Analysis of the combined predictor variables from Sentinel-1 and -2 showed that the GR of optical
predictors clearly outperformed Sentinel-1 features in terms of variable importance, which was also
visible in the final classification. Besides two SAR features (min_VH_sum and p25_VH_sum), optical
variables or their derivatives were found to be the most dominant in the classification process and
hence the prediction. As Sentinel-2 was favored over the SAR variables in the classification process, this
effect could also be seen in the variable importance of the S12 sensor setup (Sentinel-1 and Sentinel-2).
Here, no significant differences between the Sentinel-2 variables (SWIR and RGB) with the highest
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importance were observed, while LAI and FAPAR remained as the most important variables in the
optical sensor setup. In general, the variables that were most distinctive in the single-sensor approach
of the optical data were also found to be the most important ones for the fused approach.

std VV _sum- Sq
B si12
p5_VV_sum- B s2

midhinge_VH_sum-
min_VV_sum-
min_VH_sum-
p5_VH_sum-
q25_VH_sum-=-

B4-

Predictor

———
B2- m——————
B ————
B - ———
B ———
B12- I ———
AP R - —
1
]

LAI-

Gain Ratio

Figure 8. Variable importance in the Thuringian study site (seven best predictors).

4.2.2. South Africa

Variable importance was separately analyzed for the KNP and the remaining areas of this study
area to account for the substantial differences in the appearance of these landscapes due to the great
heterogeneity of the South African study site. Figures 9 and 10 display the feature importance for each
of the three applied sensor setups in the South African sub study sites.

Similar to the Thuringian study site, the Sentinel-1 features exhibited higher GR values when
they were derived from VH-polarized variables in both sub sites. As VH-polarized C-Band data is
more sensitive to volume scattering and, therefore, able to monitor vegetation structure it was more
important during the classification when compared to co-polarized data. Due to the interaction of
cross-polarized predictor variables with shrubs covering large portions of the Kruger National Park,
these were found to be more important in the model predictions within the protected savanna ecosystem
as compared to their optical counterparts. Between the multi-temporal SAR metrics, differences in
GR were relatively small, while variables representing the dry season (winter) ranked higher. This
might be due to differences in the vegetation status during the dry season between tree aggregations
and their surroundings, thus making it more feasible for the algorithm to detect forests with higher
accuracy. Several studies confirm the findings stating that the ‘leaf-off” season should be favored
for monitoring vegetation structure in savanna ecosystems with SAR information [76-78]. This can
be attributed to the increased transparency of deciduous tree canopies and the associated increased
penetration depth of the C-Band signal, as well as the decrease of the impact of soil moisture change in
this period [75,79]. Consequently, Sentinel-1 was also seen to be more important in the fused approach
while using both sensors in combination in the sub site of the open savanna. These results indicate the
potential of multi-temporal microwave remote sensing instruments to improve vegetation monitoring
in savanna ecosystems.
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Figure 9. Variable importance within the KNP (seven best predictors).
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Figure 10. Variable importance outside of the KNP (seven best predictors).

Outside the KNP (west), variable importance shifted strongly towards the use of Sentinel-2
predictors by the RF algorithm, as visualized in Figure 10. Similar to the Thuringian study site, the
results indicated that the SWIR bands 11 and 12, as well as the channels in the visible bandwidth,
are the most important bands for the optical and the fused classification. In contrast, the biophysical
parameters were not as distinctive for the classification, as it was observed in Thuringia. This could
possibly be explained with the highly heterogeneous composition of land use and land cover in this
area. While, dense forest plantations in the west can be represented well by using these indices that
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can be directly related to vegetation structure, extensive transition regions towards the savanna flora
are often characterized by scarcity in terms of plant size and covered area. Information from NIR
wavelength were found to be of small importance for the distinction between forest and non-forested
areas, which is consistent with the analysis in temperate German forests that was conducted in this
and other studies [18]. As this effect could be observed in both study sites, this suggests that the
near-infrared channels of Sentinel-2 are only of limited significance for the derivation process of tree
cover or tree species mapping when SWIR channels are being implemented in the classification.

Sentinel-1 predictors representing the lower ranges of the SAR time series in VH polarization
were also found to be superior to the co-polarized data in terms of variable importance. In contrast,
to the protected park area in the east of the South African study site, dry and wet season were found to
equally contribute to the model performance. This might also be related to the stability in the forest
plantations and their surroundings originating from the weaker seasonal changes of vegetation in
this area.

4.3. Comparison with Existing FNF Products

In comparison with the chosen reference products, the FNF classifications using Sentinel-1 and
Sentinel-2 produced higher J values (J = 0.87 vs. J = 0.77) in both of the study areas. As given
in Figure 11, the similarity of a given set of samples of reference with the data sets reveal a distinct
relationship between the composition of the study sites and used sensors. While ] of classifications
based on mostly optical data (5-2, CCI, Landsat) exhibited generally higher values in the Thuringian
study site than SAR based (& = 0.9 vs J = 0.8), this trend was found to be reversed in the South
African study site (J = 0.68 vs @ = 0.88), which exhibits a much higher degree of homogeneity. This
indicates the ability of multi-temporal SAR data to detect vegetation in savanna ecosystems adequately
representing the intra-annual variability of this complex ecosystem better and, thus, showing that
optical data might not be sufficient in this area, at least when few time steps are utilized.
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South Africa

S1

S2 S2
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CHRL CCl

ALOS ALOS

Landsat Landsat

0 0.1 02 03 04 05 06 07 08 089 1 0 01 02 03 04 05 06 07 08 09 1

Figure 11. ] for classifications of all sensor setups (Sentinel-1, Sentinel-2, and Sentinel-1/-2) in the
Thuringian and South African site compared with reference data and independent FNF products.

4.4. Test of Homogeneity between Classification Distributions

To assess whether the results of the classifications vary significantly from each other, we performed
McNemar’s test to each individual sensor setup. This non-parametric statistical test is suited to
compare the performance of machine-learning-based classifications [80]. The results of McNemar’s
test indicate that, except for the comparison of classification S-2 vs. S-12 in Thuringia, all of the
classifications were considered to significantly differ from each other.
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5. Discussion

This study investigated the use of multi-source and multi-temporal remote sensing data in varying
ecosystems. Firstly, the results revealed that the overall accuracy of the machine-learning based
classification while using the RF algorithm increased from using single sensor setups as compared to
using Sentinel-1 and Sentinel-2 in a joint approach in both study sites. Combining optical and SAR
data led to very high classification accuracies, as illustrated in Table 3. Comparing all available sensor
setups, the Sentinel-1 classifications provided the lowest accuracy while still performing reasonably
(84.3% to 90.6%) in both study sites. While Thuringia is characterized by relatively homogenous forests,
the South African study site comprises forest plantations and savanna ecosystems, thus exhibiting a
gradient of increasing heterogeneity from East to West, which also led to great differences in the variable
importance for the RF model. In both study sites, the SWIR bands 11 and 12 of Sentinel-2 ranged the
highest among the most distinctive optical variables, which other studies also confirmed [18,26]. From
Sentinel-1, VH polarized variables were selected as the most important variables in the single sensor
and fused data set.

The savanna is a highly variable ecosystem in terms of vegetation composition, as reflected in a
non-trivial spectral and spatial appearance, as well as phenology, which drastically changes between
dry and wet season [81]. Subsequently, classification results of this study site featured the highest
variability in CV-runs over all sensor setups, as visualized in Figure 5.

Further, it could be observed that the SAR data was capable of detecting smaller aggregations of
trees in the scarce South African savanna than its optical counterpart, while overestimating tree cover
in this area. This can be mainly attributed to the impact of surface roughness to which the C-Band
radar is very sensitive, especially in sparsely vegetated areas. This effect was also shown in a study
that was conducted in savanna ecosystems using Sentinel-1/-2 data [82]. Due to the heterogeneous
training data, which may not represent the complete study area adequately, the accuracy does not fully
reflect the positive impact of Sentinel-1 on the savanna classification. Here, the quality of the training
and validation data is a major key in obtaining satisfactory and reliable classification results [83]. Thus,
a separated variable importance analysis for the South African study site proved the significant role that
SAR data plays in the detection of vegetation in open savannas. It should be noted that a separation of
the South African study site into two internally more homogenous study areas would potentially lead
to an increase in classification accuracy and a strong decrease of the root mean square error.

The high-resolution optical Sentinel-2 data proved to be capable of detecting forests with high
accuracy in both study sites, especially in areas with homogenous forest sites. It is important to
highlight that Sentinel-2 tends to underestimate savanna vegetation during dry season with the
exception of larger tree aggregations, which are often located along river streams. Switching from
single time steps to deploying the fully available cloud-free time series of Sentinel-2 data might lead to
an improvement to further increase classification accuracy in this ecosystem and, thus, improve the
ability to take the strong seasonality of South African savannas into account.

This study further analyzed the impact of sensor fusion of Sentinel-1 and Sentinel-2 to improve
forest monitoring in highly variable ecosystems. Similarly to findings of forest monitoring related
studies while using optical and radar satellites, the addition of Sentinel-1 data did not significantly
improve the overall classification accuracy [26,28]. In both studies, differences between the accuracy
of a Sentinel-2 only and fused classification (Sentinel-1 and Sentinel-2) ranged between 1 to 3 %.
These results are comparable with our findings. By joining optical and SAR data, the dense Sentinel-1
time series could capture vegetation dynamics in open savanna while being prevented from possible
overestimation by Sentinel-2 when vegetation is scarce. The results also indicated that sensor fusion
increases the classification accuracy in both study sites averaged over multiple runs of CV. The
accuracies show that the individual classifications of sensor setups S-2 and S-12 did not differ as much
when compared to the S-1 classification in both study sites. A statistical McNemar test was conducted
to check the homogeneity of the distribution of the classifications. The results show that all of the
distributions differ (given a significance level of p = 0.05 and one degree of freedom) significantly from
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each other (except for S-2 vs. S-12 in Thuringia), as given in Table 4, with S-1 classifications exhibiting
the greatest differences. This indicates the different perception and potential that is provided from the
sensors for the varying ecosystems.

Table 4. McNemar's test results for varying sensor setups in both study sites. A p-value greater than
0.05 defines a difference between two distributions that is not significant and vice versa.

Thuringia South Africa
X2  p-Value X?>  p-Value

S-1vs. S-2 48.3 <0.05 61.6 <0.05
S-1vs. S5-12 669 <0.05 57.2 <0.05
S-2vs S-12 1.4 0.23 4.8 <0.05

Product

The results of this study demonstrate the ability of machine-learning techniques to produce
reliable results from a large number of variables given a relatively low quantity of reference information.
Our findings suggest that the RF algorithm favored optical data over multi-temporal SAR data for
the detection of forests in the different ecosystems of both study sites. Further, C-Band was found
to be a promising data source for the detection of vegetation in dry savanna ecosystems. However,
due to the internal variable selection of the RF classifier, this was not acknowledged strong enough
within the classification itself. Using in situ data that provides a better representation of the study
area might increase the impact of applying a dense Sentinel-1 time series, so that more of the pixels
showing strong intra-annual dynamics are being used for training of the model.

6. Conclusions

In this study, we investigated the ability of high resolution optical and microwave Sentinel data
to derive forest cover in substantially different ecosystems while using machine-learning techniques
accounting for the impact of spatial autocorrelation during cross-validation. As study sites, we selected
the state of Thuringia in Germany, which is characterized by homogenous dense temperate forests,
and an area in South Africa including the southern Kruger National Park, as well as neighboring forest
plantations, featuring both homogenous tree aggregations and scarce open savanna vegetation. The
results indicated that optical sensors are capable of detecting homogenous tree aggregations with
high accuracies while failing at locating large portions of tree cover in open savannas. The addition
of multi-temporal microwave information to this data set showed multiple advantages. These are
the correction of falsely classified cloud pixels, as well as an improved delineation of small forests
in the savanna ecosystem. Thus, our results show that the fusion across wavelengths can lead to
classifications with a minimized quantity of misclassifications, while the magnitude is rather small,
especially when comparing optical and fused classification. This finding is also reflected in considerably
high accuracies of classifications using the joint data sets, which were all cross-validated with multiple
repetitions to avoid spatial redundancy and account for outliers. The analysis of variable importance
revealed that SWIR and RGB channels range among the most important predictors from Sentinel-2,
which corresponds to the findings of other recent publications. The biophysical parameters used in
this study (LAI and FAPAR) were found to be useful in detecting forest cover mainly in homogenous
temperate environments. As most important multi-temporal Sentinel-1 features, the classifier identified
VH-polarized predictors and those representing the lower value range of the time series, such as
minimum and the lower percentiles in both study sites. Sentinel-1 variables were not favored strong
enough to reveal their full predictive power in some parts of our study sites due to a certain level of
‘black box’ behavior of the RF algorithm. We further split the South African study site into two parts
to reveal their potential impact on the classification, so that the microwave predictors proved their
capability to predict tree cover in open savanna ecosystems.

This study demonstrated the beneficial effects of synergistically combining Sentinel-1 and
Sentinel-2 to detect forest cover at fine spatial scale. Using CV procedures that account for the existence



Remote Sens. 2020, 12, 302 18 of 22

of spatial dependence within remote sensing data sets our methodology could potentially contribute
to improve reliability of activity data (AD) under REDD+ Measurement, Reporting, and Verification.
We also applied the robust RF classifier to highly variable ecosystems to examine the robustness of the
approach. Future studies could potentially focus on extending from Sentinel-2 time steps to proper time
series information to obtain an even better understanding of intra- and inter-annual alterations in the
vegetation status. Furthermore, it would be essential to gain more control over how predictor variables
are used in machine-learning approaches and, thus, fully reflect their importance in the individual
classifications (single sensor) to increase the beneficial effect on the fused models (multi-sensor).
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