
remote sensing  

Article

Investigation of Tightly Combined Single-Frequency
and Single-Epoch Precise Positioning Using
Multi-GNSS Data

Chenlong Deng 1,2 , Qian Liu 3, Xuan Zou 1,*, Weiming Tang 1,2 , Jianhui Cui 1 , Yawei Wang 1

and Chi Guo 1

1 GNSS Research Center, Wuhan University, 129 Luoyu Road, Wuhan 430000, China;
c.deng@whu.edu.cn (C.D.); wmtang@whu.edu.cn (W.T.); jh_cui@whu.edu.cn (J.C.);
grcwongyw2016@whu.edu.cn (Y.W.); guochi@whu.edu.cn (C.G.)

2 Collaborative Innovation Center of Geospatial Technology, 129 Luoyu Road, Wuhan 430000, China
3 Qianxun Spatial Intelligence Inc., Bay Valley Hi-tech Park, North Guoquan Road, Shanghai 200000, China;

qian.liu@wz-inc.com
* Correspondence: zxuan@whu.edu.cn; Tel.: +86-159-9422-0936

Received: 10 December 2019; Accepted: 13 January 2020; Published: 15 January 2020
����������
�������

Abstract: The loose combination (LC) and the tight combination (TC) are two different models in
the combined processing of four global navigation satellite systems (GNSSs). The former is easy to
implement but may be unusable with few satellites, while the latter should cope with the inter-system
bias (ISB) and is applicable for few tracked satellites. Furthermore, in both models, the inter-frequency
bias (IFB) in the GLObal NAvigation Satellite System (GLONASS) system should also be removed.
In this study, we aimed to investigate the performance difference of ambiguity resolution and position
estimation between these two models simultaneously using the single-frequency data of all four
systems (GPS + GLONASS + Galileo + BeiDou Navigation Satellite System (BDS)) in three different
environments, i.e., in an open area, with surrounding high buildings, and under a block of high
buildings. For this purpose, we first provide the definition of ISB and IFB from the perspective
of the hardware delays, and then propose practical algorithms to estimate the IFB rate and ISB.
Thereafter, a comprehensive performance comparison was made between the TC and LC models.
Experiments were conducted to simulate the above three observation environments: the typical
situation and situations suffering from signal obstruction with high elevation angles and limited
azimuths, respectively. The results show that in a typical situation, the TC and LC models achieve a
similar performance. However, when the satellite signals are severely obstructed and few satellites
are tracked, the float solution and ambiguity fixing rates in the LC model are dramatically decreased,
while in the TC model, there are only minor declines and the difference in the ambiguity fixing rates
can be as large as 30%. The correctly fixed ambiguity rates in the TC model also had an improvement
of around 10%. Once the ambiguity was fixed, both models achieved a similar positioning accuracy.

Keywords: tight combination; inter-frequency bias; inter-system bias; multi-GNSS

1. Introduction

The Global Navigation Satellite System (GNSS) has entered into a new era in recent decades
with four different systems operating simultaneously, i.e., American Global Positioning System (GPS),
Russian GLObal NAvigation Satellite System (GLONASS), European Galileo, and Chinese BeiDou
Navigation Satellite System (BDS), forming a joint multi-GNSS system. The increasing number of visible
satellites have been confirmed to improve the satellite availability, convergence time, and reliability [1,2],
and will bring great benefits to urban navigation services. Since satellite signals may be obstructed by
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the surrounding huge buildings or a block of high buildings, the multi-GNSS system can provide the
potential ability to resist the risk of satellite deficiency and retain a satisfactory positioning performance.

How to integrate the observation data of different systems is a crucial issue toward realizing
multi-GNSS precise positioning. In the case of popular relative positioning, such as real-time kinematic
(RTK), there are two different models to realize the integration [3]. The first is to individually choose
pivot satellites for different systems and undertake differencing between satellites within each system;
this method is called the loose combination (LC). The other method is to choose only one pivot satellite
for all systems and undertake differencing across different systems; this method is called the tight
combination (TC) [4].

The data processing for hybrid systems began from the integration of GPS and GLONASS precise
positioning. Due to the frequency division multiple access (FDMA) technique used in the current
GLONASS system, the frequencies in the same frequency band for different satellites are different [5].
Dodson et al. [6], Wang et al. [7], Dai et al. [8], and Al-Shaery et al. [9] discussed the model of this hybrid
system and the ambiguity resolution (AR) issues, and they focused on the techniques used to eliminate
the relative receiver clock errors from GLONASS data. Considering that different hardware biases in
GLONASS receiving channels cannot be removed by between-satellite differencing, the inter-frequency
bias (IFB) was introduced and analyzed [10,11], and lots of attention has been paid to the processing
of IFB. Considering the long-term stability, the IFB can be treated as a constant for a certain pair of
receivers, and there are two ways to manage it. One way is to pre-estimate and calibrate it in the
positioning process [12–14], and the other is to directly estimate it as an unknown parameter in the
processing procedure [15–17]. All these studies for the GPS + GLONASS system used the LC model,
and similar LC models can also be found in other hybrid systems, such as GPS + Galileo [3,18] and
GPS + BDS [19,20].

For the TC model, the difference in hardware delays in different systems leads to the inter-system
bias (ISB) [21]. However, at early stages, the ISB was not considered and this model was only applied
in hybrid systems with overlapping frequencies, such as GPS + Galileo L1/E1 + L5/E5a [4,22]. Odijk
and Teunissen [23] and Paziewski et al. [24] identified that for heterogeneous receivers, the ISB cannot
be ignored even if overlapping frequencies were used. The subsequent studies put emphasis on the
ISB estimation in hybrid systems without overlapping frequencies [25], and the RTK application of TC
models can be found in GPS + BDS [26] and other hybrid systems using the code division multiple
access (CDMA) technique [27,28]. The only contribution for the TC model between CDMA and FDMA
systems was made by Gao et al. [29], where only GPS + GLONASS was used. Following their work,
in this paper we will further make an investigation of tightly combined RTK positioning using the
single-frequency signals of GPS L1 (1575.42 MHz), GLONASS L1 (1602+k·9/16 MHz) (k is the channel
number), BDS B1I (1561.098 MHz), and Galileo E1 (1575.42 MHz). To achieve this goal, we will first
propose algorithms to estimate the IFB in the GLONASS system and ISB between GPS and the other
three systems.

Furthermore, the performance of tight combined single-frequency RTK positioning using
multi-GNSS data should also be comprehensively investigated. Paziewski and Wielgosz [22] discussed
the performance of a tightly combined GPS + Galileo under clear-sky satellite visibility (15◦ elevation
mask) and obstructed satellite visibility (30◦ elevation mask). They also compared the performance
using a TC model and an LC model in a hybrid GPS + Galileo system [30]. The results indicated that
the TC model shows significant improvement in the obstructed environment compared with single
systems, and both TC and LC models gave comparable results regarding the ambiguity resolution
and coordinate domains. Combining these two experiments, in this paper, we will investigate the
performance of the TC model by comparing it with that of LC model under three different environments.
In this way, the advantage of the TC model using multi-GNSS data becomes clearer.

For these two reasons, this paper has launched an investigation of tightly combined
single-frequency and single-epoch precise positioning using all four GNSSs. We first derive the
double differenced mathematical model of tightly combined single-frequency multi-GNSS observations
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and achieve the definition of IFB and ISB from the perspective of hardware biases. In order to eliminate
the IFB and ISB, we propose an easy-to-implement strategy to manage each of them. After the removal
of hardware delays, we give the results of simulating three different measurement scenarios in the
following experiments, and discuss the corresponding AR and positioning performance of tightly
combined single-frequency single epoch multi-GNSS data and its improvements compared with the
loose combined data. In the last section, we make some concluding remarks for users of multi-GNSS
data processing.

2. Mathematical Model

The original single-frequency pseudorange and carrier phase observation equations for a certain
satellite system M, which can be rewritten as G for GPS, R for GLONASS, C for BDS, and E for Galileo,
can be expressed as [31]: Ps,M

r = ρs,M
r + c

(
dtr − dts,M

)
+ Ts,M

r + Is,M
r + Bs,M

r − Bs,M + εP,
φs.M

r = ρs,M
r + c

(
dtr − dts,M

)
+ Ts,M

r − Is,M
r − λs,M

(
Ns,M

r − bs,M
r + bs,M

)
+ εφ,

(1)

where P and φ are the original code and phase observables in meters. The superscript s and the
subscript r are the satellite and the receiver, and ρ is the geometric distance between them. The symbols
c, dtr, and dts,M are the speed of light in a vacuum, the receiver clock bias, and the satellite clock
bias, respectively. T and I are the tropospheric and ionospheric delays, respectively. Bs,M

r and Bs,M

are the receiver and satellite hardware code delays in meters, respectively, and bs,M
r and bs,M are the

combination of the hardware phase delays and the initial phase offsets for the receiver and the satellite
in cycles, respectively. λ is the signal wavelength, and N is the unknown integer ambiguity. εP and εφ.
are the residuals for the code and the phase, respectively.

After differencing between the two receivers r and b, we can obtain the single-differenced (SD)
pseudorange and carrier phase observation equations as follows: ∆Ps,M

rb = ∆ρs,M
rb + c·∆dtrb + ∆Ts,M

rb + ∆Is,M
rb + ∆Bs,M

rb + ∆εP,
∆φs.M

rb = ∆ρs,M
rb + c·∆dtrb + ∆Ts,M

rb − ∆Is,M
rb − λ

s,M
(
∆Ns,M

rb − ∆bs,M
rb

)
+ ∆εφ,

(2)

where the symbol ∆(·) is the single-differencing operator between two receivers. The satellite-dependent
terms, i.e., the satellite clock bias, the satellite code, and phase hardware delays, and the satellite initial
phase offsets, are all removed. The atmospheric delay and the receiver-dependent terms are reduced.
For short baselines, the atmospheric delays can be ignored due to their strong spatial correlation and
Equation (2) can be simplified to: ∆Ps,M

rb = ∆ρs,M
rb + c·∆dtrb + ∆Bs,M

rb + ∆εP,
∆φs.M

rb = ∆ρs,M
rb + c·∆dtrb − λ

s,M
(
∆Ns,M

rb − ∆bs,M
rb

)
+ ∆εφ.

(3)

For medium or long baselines, the residuals of the ionospheric and tropospheric delay after
double-differencing cannot be neglected and should be corrected in advance using external information,
such as regional correction products, or estimated together with the baseline and ambiguity using the
ionosphere and troposphere weighted model [30].

To manage the relative receiver clock bias, a further differencing between two satellites is made.
Here, both LC and TC models can be used to eliminate the relative receiver clock bias. Before this
operation, for a joint multi-GNSS system, the time systems and coordinate systems should be aligned.
Usually, the GPS Time system and World Geodetic System 1984 are adopted as the reference, and the
biases of the time system and the coordinate system from other systems to the GPS should be corrected.

In the loose combined model, the receiver code and phase hardware delays and the receiver initial
phase offsets are also canceled, except those for the GLONASS system because of its IFB. As a result,
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the loose combined double-differenced (DD) pseudorange and carrier phase observation equations for
satellites p and q in a single GPS/BDS/Galileo system can be expressed as: ∆∇Ppq, M

rb = ∆∇ρpq,M
rb + ∆∇εP,

∆∇φpq.M
rb = ∆∇ρpq,M

rb − λM
·∆∇Npq,M

rb + ∆∇εφ,
(4)

where p is the reference satellite. For different observation types, the IFB in the GLONASS system can
be divided into the inter-frequency code bias (IFCB) and inter-frequency phase bias (IFPB), and the
corresponding observation equations can be expressed as: ∆∇Ppq, R

rb = ∆∇ρpq, R
rb + IFCBpq

rb + ∆∇εP,
∆∇φpq.R

rb = ∆∇ρpq, R
rb −

(
λq,R
·∆Nq,R

rb − λ
p,R
·∆Np,R

rb

)
+ IFPBpq

rb + ∆∇εφ,
(5)

where the symbol ∆∇(·) is the double-differencing operator, and: IFCBpq
rb = ∆Bq,R

rb − ∆Bp,R
rb ,

IFPBpq
rb = λq,R

·∆bq,R
rb − λ

p,R
·∆bp,R

rb .
(6)

In the tightly combined model, when we undertake differencing across different systems, neither
the code and phase hardware delays nor the receiver initial phase offsets can be eliminated. For the
code observation equation, the inter-system code bias (ISCB) arises; for the carrier phase observation
equation, the differenced receiver initial phase offsets are absorbed by the inter-system phase bias
(ISPB). On the other hand, if the GLONASS system is involved, the IFCB and IFPB must come out.
Taking GPS and GLONASS systems as example, when a GPS satellite is chosen as the reference satellite,
from Equation (3), the tightly combined observation equations can be derived to produce: ∆∇PGR

rb = ∆∇ρGR
rb + ISCBGR

rb + IFCBR
rb + ∆∇εP,

∆∇φGR
rb = ∆∇ρGR

rb −
(
λR
·∆NR

rb − λ
G
·∆NG

rb

)
+ ISPBGR

rb + IFPBR
rb + ∆∇εφ,

(7)

where 
ISCBGR

rb +IFCBR
rb = ∆BR

rb − ∆BG
rb =

(
∆BR0

rb − ∆BG
rb

)
+

(
∆BR

rb − ∆BR0
rb

)
ISPBGR

rb + IFPBR
rb = λR

·∆bR
rb − λ

G
·∆bG

rb
=

(
λR0
·∆bR0

rb − λ
G
·∆bG

rb

)
+

(
λR
·∆bR

rb − λ
R0
·∆bR0

rb

)
.

(8)

Herein, R0 refers to a virtual signal of the constant central frequency in the GLONASS system
with a channel number of zero, i.e., 1602 MHz for L1 and 1246 MHz for L2. From Equation (8), we can
obtain the definition expressions for ISB and IFB as follows:

ISCBGR
rb = ∆BR0

rb − ∆BG
rb,

ISPBGR
rb = λR0

·∆bR0
rb − λ

G
·∆bG

rb,
IFCBR

rb = ∆BR
rb − ∆BR0

rb ,
IFPBR

rb = λR
·∆bR

rb − λ
R0
·∆bR0

rb .

(9)

This indicates that ISCB and ISPB describe the hardware delay difference between the GLONASS
system with the central frequency and GPS system, and IFCB and IFPB describe the hardware delay
difference of the GLONASS system between the actual frequency and the central frequency.

For a combined system without GLONASS, the terms IFCB and IFPB can be left out and only
ISCB and ISPB need to be considered. As a result, in the tight combination of four systems, we highly
suggest the users select a non-GLONASS satellite as the pivot satellite for easy processing.

Derived from the standard deviation of the original pseudorange and carrier phase, and
taking the correlation into consideration, we can determine the corresponding stochastic model.
For the loose combination, the weight matrix of each system can be determined separately in a
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traditional way [7], and the weight matrix of the combined multi-GNSS system can be expressed as
P = diag(nGPG, nRPR, nCPC, nEPE), where (nG, nR, nC, nE) is the ratio of the weights for different
systems; in this paper, the four systems are equally weighted, i.e., nG = nR = nC = nE = 1.

For the tight combination, given the multi-GNSS original code variance matrix DP, carrier phase
variance matrix Dϕ, and the DD transition matrix H, the final stochastic model can be expressed
as follows:

P = D−1
∆∇ =

[
HDPHT 0

0 HDϕHT

]−1

, (10)

where
DP = diag

(
DG

P , DC
P , DR

P , DE
P

)
, Dϕ = diag

(
DG
ϕ , DC

ϕ, DR
ϕ, DE

ϕ

)
, (11)

and

H =


1 −1 −1 1 · · · 0 0
1 −1 0 0 · · · 0 0
...

...
...

...
. . .

...
...

1 −1 0 0 · · · −1 1

. (12)

Herein, it is assumed that the first two columns denote the reference satellite for the base station
and the rover station. In this way, the definition of ISB and IFB is functionally expressed, and the
weight of the multi-constellation relative positioning is determined.

3. IFB and ISB Processing

The two kinds of relative hardware delays, i.e., IFB and ISB, are mathematically defined in
Equation (9). Considering the temporal stability of IFB [11] and ISB [32], they can be estimated in
the preprocessing step before the determination of the ambiguity and the position. Taking six pairs
of available multi-GNSS data as an example, we propose a IFPB calibration and the subsequent ISB
estimation method. Before the estimation of IFB and ISB using the above algorithms, the satellites
whose elevation angles were lower than 10◦ were excluded, and a further outlier detection step was
also applied.

The used data were all collected on a whole day in 2019 with 30-s intervals. They could be
divided into two categories: the first three baselines were provided by the GNSS Research Centre
of Curtin University in Australia and were all ultra-short baselines, while the other three baselines
were collected from Hong Kong SatRef and were all short baselines. Herein, the ultra-short and short
baselines are defined when their lengths are shorter than 100 m and 15 km, respectively. The detailed
data configuration is listed in Table 1, where the three ultra-short baselines are marked as A, B, and C,
and the three short baselines are marked as D, E, and F.

Table 1. Configuration of used static baselines.

Tag Baseline Name
Receiver Type

Date Length (m)
Base Station Rover Station

A CUT2-CUTB TRIMBLE NETR9 TRIMBLE NETR9 1 January 4.27
B CUT3-CUCC JAVAD TRE_G3T JAVAD TRE_G3T 1 March 7.99
C CUT3-CUTA JAVAD TRE_G3T TRIMBLE NETR9 1 March 8.42

D HKWS-HKSS LEICA GR50 LEICA GR50 1 January 6812.47
E HKQT-HKLM TRIMBLE NETR9 TRIMBLE NETR9 1 January 12,486.21
F HKQT-HKSC TRIMBLE NETR9 LEICA GR50 1 January 8183.52

From Table 1, we can find that baselines A, B, D, and E used the homogeneous receivers on both
the base and rover stations, while baselines C and F used the heterogeneous receivers. The three
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ultra-short baselines were all shorter than 10 m, and the lengths of the three short baselines varied
from 5 to 15 km.

3.1. IFB Calibration

According to Equations (5) and (7), the pseudorange and carrier phase observation equations are
biased by IFCB and IFPB, respectively, and these biases must be removed before the subsequent AR.

For the IFCB, Shi et al. [33] analyzed their characteristics and employed both the linear and
quadratic frequency functions for different receivers. Zhou et al. [34] used data from 132 International
GNSS Service stations, estimated the IFCB for each satellite with a datum constraint, and compared its
performance with linear or quadratic polynomial functions. To simplify the model, in this paper only
the linear function was adopted, i.e., ∆Bs

rb = ks
·c∆Hrb, where c∆Hrb is the IFCB rate in meters. Thus,

the IFCB in Equation (6) can be re-written as:

IFCBpq
rb = kq

·c∆Hrb − kp
·c∆Hrb = kpq

·c∆Hrb. (13)

In this model, the IFCB rate can be easily determined using the DD pseudorange observation
expressions in Equation (5). In the following procedure, the code observables will be significantly
down-weighted, and this will hardly cause noticeable bad effects on the solution [16].

For the IFPB, some researchers used the calibration strategy before the positioning process [12–14],
and others adopted the estimation strategy in the processing procedure [15–17]. Since the IFPB has a
great impact on the AR, it should be precisely estimated. Herein, we will propose an easy-to-implement
method to quickly determine the accurate IFPB value.

As derived from the SD carrier phase observation equation in meters in Equation (3), we can
obtain the DD carrier phase observation equation in cycles for the GLONASS as follows:

∆∇ϕpq
rb =

∆∇ρq
rb

λq −

∆∇ρp
rb

λp − ∆∇Npq
rb + f pq

·∆dtrb + ∆∇bpq
rb + ∆∇εϕ, (14)

where f pq is the frequency difference between two satellites. Furthermore, the frequency can be
expressed as a linear function of ks, i.e.:

f s = f 0 + aks, (15)

where f 0 is the central frequency and a is the constant coefficient. For the L1 signal, they are 1602 MHz
and 9/16 MHz, respectively. f pq is then transformed to akpq. Since we know that ks

∈ [−7, 6], if the
precision of the estimated ∆dtrb can reach 10 ns, the largest bias caused by ∆dtrb will be smaller than
0.08 cycles and the ambiguity rounding can only be affected by the IFPB.

Furthermore, the linear relationship between the IFPB and ks is given as [11]:

λs
·∆bs

rb = ks
·c∆hrb, (16)

where c∆hrb is the IFPB rate in meters. Combining Equations (15) and (16), ∆∇bpq
rb can be derived:

∆∇bpq
rb = kq f q∆hrb − kp f p∆hrb = f 0kpq∆hrb + a((kq)2

− (kp)2)∆hrb. (17)

Benefitting from the previous research by Wanninger [11], an empirical range of c∆hrb that is less
than 6 cm can be assumed as the tolerance, i.e., ∆hrb < 0.2 ns. For the single-frequency case, when the
condition kpq = ±1 is satisfied, the bias ∆∇bpq

rb is smaller than 0.322 cycles, and the bias caused by ∆dtrb
is further reduced to no more than 0.006 cycles. As a result, for baselines with known coordinates
for the base station and rover station, the total bias in Equation (14) will be no more than 0.33 cycles.



Remote Sens. 2020, 12, 285 7 of 18

If we temporarily ignore the effect of the hardware delay, the DD ambiguity can be estimated by
directly rounding:

∆∇Npq
rb = round

∆∇ρq
rb

λq −

∆∇ρp
rb

λp − ∆∇ϕpq
rb + kpqa∆dtrb

, (18)

where round(*) means the rounding off operation. In this way, the DD integer ambiguity is determined,
and the next step is to calculate the IFPB rate.

It should be mentioned that the efficiency of this algorithm is affected by two factors: the precision
of ∆dtrb and the limit of the IFPB rate. If the above limit of 6 cm for IFPB rate is used, the precision of
∆dtrb can be as tolerant as 200 ns. On the other hand, considering there is no guarantee that the above
critical value of the IFPB rate is the absolute limit, the IFPB rate that can be supported by our algorithm
should be no larger than 9 cm, where the precision of ∆dtrb should not exceed 10 ns. Otherwise, the DD
integer ambiguity cannot be fixed to its right value and the algorithm is inapplicable.

According to Equation (16) and the definition of IFPB in Equation (6), the IFPB is expressed
in a similar model as the IFCB in Equation (13), i.e., IFPBpq

rb = kpqc∆hrb. From the DD carrier phase
observation equation in Equation (5), we can obtain the IFPB rate as follows:

c∆hrb =
(
∆∇φpq

rb − ∆∇ρpq
rb + λq∆∇Npq

rb + (λq
− λp)∆Np

rb

)
/kpq, (19)

where the float DD ambiguity is converted to the combination of an integer DD ambiguity ∆∇Npq
rb and

the SD ambiguity for the reference satellite ∆Np
rb. The initial value of ∆Ñp

rb can be easily calculated via

Equation (3) when the hardware delays are ignored. The bias in the calculated ∆Ñp
rb will be dramatically

reduced due to the mm-level’s coefficient (λq
− λp). If no cycle slip occurs, ∆Np

rb remains the same and
the IFPB rate can be determined.

Since there may be only a very few DD observables meeting kpq = ±1 at a single epoch, the obtained
IFPB rates may be very noisy. Therefore, a sufficient duration is required to smooth the noisy IFPB
rates and achieve a relatively accurate initial value. After the initial IFPB rate is calculated, the bias
∆∇bpq

rb in Equation (17) can thereby be calculated, and all DD ambiguity can then be re-estimated using
the corresponding DD carrier phase observables:

∆∇Npq
rb = round

∆∇ρq
rb

λq −

∆∇ρp
rb

λp − ∆∇ϕpq
rb + kpqa∆dtrb + ∆∇bpq

rb

. (20)

Similarly, from Equation (19) we can get the IFPB rate again at each epoch using all DD observables,
and further obtain a much more accurate value through smoothing. In other word, the IFPB rate is
iterated from an initial value to a much more accurate value. The whole procedure is listed in Figure 1.

Before applying the above procedure, some remarks should be made. The first is the inputs,
where only the pair of observation data files with known coordinates can be used in our algorithm.
The second is the condition difference to calculate the initial and the final IFPB rate. When we use DD
observables to determine the DD ambiguity the first time, the condition kpq = ±1 must be satisfied.
However, when we determine the DD ambiguity again after we obtained the initial IFPB rate, all DD
observables were utilized to get more calculated IFPB rates and thus a more precise result.

Taking the data in Figure 2 as examples and using the above-proposed method, we obtained the
epoch-by-epoch IFCB rates and IFPB rates, which are plotted in Figure 2 The final smoothed IFCB rates,
IFPB rates, and corresponding standard deviations (STDs) are listed in Figure 2.
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Figure 2. Estimated inter-frequency bias (IFB) rates in meters: top—inter-frequency code bias (IFCB)
rate, bottom—IFPB rate. In the left panels are the results for the ultra-short baselines, where green
dots, blue dots, and yellow dots are for baselines A, B, and C, respectively. In the right panels are the
results for the short baselines, where green dots, blue dots, and yellow dots are for baselines D, E, and
F, respectively. Heterogeneous receivers were used in baselines C and F.

From Figure 2, we can see that the IFB rates were very stable during one day’s observation session
for all six baselines; thus, we can calibrate this bias using a pre-estimated value. Meanwhile, the IFPB
rates for all baselines with homogeneous receivers were almost normally distributed and the statistical
results were close to zero, while the IFB rates for baselines with heterogeneous receivers were obviously
biased. Table 2 shows that the IFPB rate for baseline F reached up to 0.03 m. If kpq is larger than 3,
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the IFPB for this baseline will exceed half cycle, and severely obstruct the subsequent AR. Furthermore,
the STD values reflected that by adopting the proposed algorithm, we could obtain a 0.3-m-level IFCB
rate and a 0.003-m-level IFPB rate.

Table 2. Estimated IFCB rates, IFPB rates, and the corresponding standard deviations (STDs) for
different baselines.

Baseline A B C D E F

IFCB rate (m) −0.0048 −0.0544 −0.3336 0.0148 −0.0297 0.1576
STD (m) 0.3318 0.2796 0.3202 0.1367 0.1930 0.1764

IFPB rate (m) −0.0001 −0.0001 −0.0040 0.0000 −0.0002 0.0312
STD (m) 0.0018 0.0005 0.0006 0.0017 0.0030 0.0029

After the IFCB and IFPB rates were determined, the IFCB and IFPB can be calculated and
expressed as: {

IFCBR
rb = ∆BR

rb − ∆BR0
rb = kR

·c∆Hrb,
IFPBR

rb = λR
·∆bR

rb − λ
R0
·∆bR0

rb = kR
·c∆hrb.

(21)

The calculated IFBs were then used for calibration in the tightly combined model.

3.2. ISB Estimation

Taking a tight combination between the GPS and GLONASS as an example, after the IFB is
calibrated, the tightly combined observation equations can be re-written as: ∆∇PGR

rb = ∆∇ρGR
rb + ISCBGR

rb + ∆∇εP,
∆∇φGR

rb = ∆∇ρGR
rb −

(
λR
·∆NR

rb − λ
G
·∆NG

rb

)
+ ISPBGR

rb + ∆∇εφ.
(22)

From Equation (9), and considering the consistency of the hardware delays for all satellite pairs,
we can regard both the ISCB and ISPB as short-term constants, which means their values remain
unchanged for at least several hours of continuous operation [23,32]. The ISCB can be easily estimated
using a least-squares adjustment or Kalman filtering. As for the ISPB, from Equation (22), we find
the DD ambiguity has lost its integer nature. Therefore, a transformation similar to Equation (19)
is employed to recover the integer nature, and the tightly combined DD carrier phase observation
equation is re-expressed as follows:

∆∇φGR
rb = ∆∇ρGR

rb − λ
R∆∇NGR

rb −
(
λR
− λG

)
∆NG

rb + ISPBGR
rb + ∆∇εφ. (23)

Similarly, the float DD ambiguity is separated into the terms of ∆∇NGR
rb and ∆NG

rb, and the initial

value of ∆ÑG
rb can be calculated. If no cycle slip occurs, the reduced bias in the calculated ∆ÑG

rb will be
absorbed into the ISPB.

Since the ISPB and the DD ambiguity terms are also very difficult to separate, they will be
regarded as one parameter and estimated together with the coordinates, or directly calculated using
the following formula:

∆NGR
rb − ISPBGR

rb /λR =
(
∆∇ρGR

rb − ∆∇φGR
rb −

(
λR
− λG

)
∆ÑG

rb

)
/λR. (24)

Herein, the geometry can be obtained when we estimate the ISCB. After rounding off, the integer
part of the real ISPB is absorbed into the integer DD ambiguity, and the residual is changed to a constant
value by multiplying the coefficient λR/λR0 and then taken as the ISPB in cycles. Furthermore, if the
determined ISPB is around ±0.5 cycles, one cycle is added to the ISPB around −0.5 cycles to make all
results consistent.
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For a tight combination between GPS and BDS, there may be a 0.5-cycles inter-satellite type bias
in BDS between the geostationary orbit (GEO) satellites and the non-GEO satellites [35], and this bias
is corrected in advance. For a tight combination between GPS and Galileo, the overlapping frequency
is used and the SD ambiguity term is eliminated, thus the model becomes simple.

The determined ISPBs for each pair of satellites are averaged together to one ISPB value at one
epoch. For a short-term observation period, the ISPB can be further smoothed due to its stability to
achieve its final value.

Using data in Table 1 and the above method, we obtained the epoch-by-epoch ISCB and ISPB,
which are plotted in Figure 3. The final smoothed ISCBs, ISPBs, and corresponding STD values are
listed in Table 3.
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Figure 3. Estimated epoch-by-epoch inter-system bias (ISB): left—inter-system code bias (ISCB),
right—inter-system phase bias (ISPB). The up, middle, and bottom panels contain the ISB values
between GPS and GLObal NAvigation Satellite System (GLONASS), between GPS and BeiDou
Navigation Satellite System (BDS), and between GPS and Galileo, respectively. In the figure, the dots
with different colors denote different baselines.
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Table 3. Estimated ISCB, ISPB, and the corresponding STDs between GLONASS/BDS/Galileo and
GPS. The symbols “G-R”, “G-C”, and “G-E” in the table mean operation between GPS and GLONASS,
between GPS and BDS, and between GPS and Galileo, respectively.

Baseline
ISCB (m) ISPB (cycle)

G-R G-C G-E G-R G-C G-E

A −0.1624 −1.2582 −0.0323 −0.0515 0.4706 −0.0013
STD-A 0.5022 0.3825 0.3503 0.0378 0.0201 0.0087

B 0.7834 0.2206 −0.0404 −0.1605 −0.0095 −0.0012
STD-B 0.6134 0.3476 0.5469 0.0233 0.0132 0.0143

C 0.6460 3.4453 0.4662 0.3141 0.5612 −0.0007
STD-C 0.7422 0.3678 0.4579 0.0414 0.0158 0.0143

D 0.2339 0.0017 −0.0181 −0.1089 0.4182 −0.0037
STD-D 0.3655 0.1964 0.2480 0.0266 0.0169 0.0216

E −1.1997 0.4515 0.3265 −0.0354 0.4248 −0.0163
STD-E 0.5001 0.1702 0.1736 0.0365 0.0395 0.0347

F −0.9774 −1.5025 −4.1108 0.1078 0.1831 0.5008
STD-F 0.4391 0.2043 0.2138 0.0483 0.0331 0.0369

From Figure 3 and Table 3, we can see that the ISB had a diurnal stability and could be corrected
in advance. In addition, the ISCB and ISPB differ from one another, whether homogeneous or
heterogeneous receivers are used. The ISCB could be as large as 4 m and the ISPB could reach up to
0.5 cycles. Such large biases will no doubt hamper the subsequent AR and must be removed. In the
meantime, the given STD values show that the precision of the estimated ISCB was almost at the same
level as the code measurement noise, and the ISCB between GPS and GLONASS was slightly larger
than other inter-system pairs. This was reasonable due to the large code noise of GLONASS. As for
ISPB, for ultra-short baselines, the precision could be up to 0.015 cycles, and a general precision of
0.03 cycles was achieved.

What is interesting is that for most baselines, the ISPB values between GPS and Galileo were close
to zero because of their identical frequency, with the only exception being for baseline F. This indicates
that the ISPB may exist even if overlapping frequencies are used in tightly combined systems.

4. Numerical Analysis and Discussion

After the removal of the IFB and ISB, the DD ambiguity can be resolved in both loosely and
tightly combined models. In this part, we will conduct some experiments and set three different
scenarios to investigate and compare the performance of TC with that of LC using multi-GNSS
single-frequency data.

Three different scenarios were set according to the satellite elevation mask and azimuth range
to simulate different observation environments, which are shown in Table 4. Case 1 was the typical
situation in an open area, case 2 simulated the ambient occlusion with surrounding high buildings,
and case 3 simulated the unilateral shade under a block of high buildings.

Table 4. Three scenarios with different elevation and azimuth masks.

Scenario Case 1 Case 2 Case 3

Elevation mask (◦) 10 40 10

Azimuth range (◦) 0–360 0–360 180–360

In the following discussion, we first give the epoch-by-epoch results of baseline A in case 3 as an
example. A final comparison of the float solution and fixed solution between TC and LC in all three
scenarios will be made subsequently.
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Figure 4 gives the usable number of satellites of each system and the position dilution of precision
(PDOP) for all four systems. From the figure, we can see that because of signal obstructions, for most
of the time, fewer than five satellites can be used for each system, which means efficient precise
positioning is difficult to realize if only a single system is used. However, when all satellites are
combined, this problem will be solved. This can be inferred from the corresponding PDOP, whose
average value was only 2.3.
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4.1. Float Solution

In the data processing, we assumed all code precision was 0.3 m, except for GLONASS with
0.45 m, and all carrier phase precision was 0.003 m. Setting the coordinate and ambiguity as unknown
parameters and ignoring the integer nature of the ambiguity, the single-epoch float solution was
first obtained using a standard least-squares adjustment ahead of the ambiguity fix. The horizontal
and vertical positioning biases for the LC model and TC model, along with the corresponding 95%
confidence intervals and standard deviations, are shown in Figure 5. The results indicate that the float
solution for TC model in both the horizontal and vertical directions had a moderate improvement
compared with those for the LC model.Remote Sens. 2020, 12, x FOR PEER REVIEW  12 of 18 
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in (a) and lines in (b) show the bias within the 95% confidence level.
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The position root-mean-square errors (RMSEs) in the TC model and LC model using all six
baselines under three scenarios and the corresponding improvements were calculated and are listed
in Table 5. The results show that in typical situations (case 1), there were few improvements in
the positioning errors in the TC model compared with those in the LC model, but in other two
situations (cases 2 and 3) with obstructed satellites, obvious decreases in positioning errors were found.
The improving percentage is represented as Pi, and the average values for all six baselines exceeded
30% and 15% for cases 2 and 3, respectively.

Table 5. Comparison of RMSEs in the float solution between LC and TC under different scenarios and
the corresponding improvements.

Tag Case 1 Case 2 Case 3

LC (m) TC (m) Pi (%) LC (m) TC (m) Pi (%) LC (m) TC (m) Pi (%)

A 0.898 0.826 8.02 2.487 1.874 24.65 2.317 1.983 14.42
B 1.049 1.018 2.96 2.906 2.533 12.84 2.872 2.323 19.12
C 0.960 0.895 6.77 5.275 2.171 58.84 2.797 2.268 18.91

D 0.444 0.429 3.38 1.260 1.110 11.90 1.125 1.044 7.200
E 0.501 0.474 5.39 1.228 0.975 20.60 1.295 1.095 15.44
F 0.587 0.556 5.28 1.619 1.278 21.06 2.080 1.709 17.84

Mean 0.740 0.700 5.43 2.463 1.657 32.72 2.081 1.737 16.53

The results indicate that the performance of the TC model was similar to that of the LC model in
open areas, but was superior to the LC model when there were signal obstructions around. In these
complex environments, the TC model was a better choice. In the meantime, we also found that cases 2
and 3 had different degrees of influence on the performance of the TC and LC models, where the TC
model could reduce the negative impacts more in situations with a high elevation mask.

4.2. Fixed Solution

For single-epoch precise positioning, the unknown integer ambiguity must be determined to
acquire the centimeter level’s fixed solution. After the float ambiguity and its variance were obtained
in the float solution, the least-squares ambiguity decorrelation adjustment method [36] was employed
to search for the integer ambiguity. During the ambiguity validation procedure, both the data-driven
R-ratio test and the model-driven success rate [37] were considered, whose empirical thresholds were
set as 3.0 and 99%, respectively, in this paper. When both these two values reached or exceeded their
thresholds, the ambiguity was regarded as being fixed. Meanwhile, we realized that the ambiguity
may be incorrectly fixed. Among the epochs with fixed ambiguities, only when the positioning biases
in all three directions were smaller than 0.1 m could the ambiguity be regarded as being correctly fixed.

Based on the above consideration, we defined the ambiguity fixing rate P f ix and ambiguity
correctly-fixed rate Pc as:

P f ix =
N f ix
NAll
× 100%, Pc =

Nc
N f ix
× 100% , (25)

where NAll is the total epoch number, N f ix is the epoch number of the fixed ambiguity, and Nc is the
epoch number of the correctly fixed ambiguity.

The test results with the reciprocal values of the R-ratio are plotted in Figure 6. It is clear that
more ratio values exceeded the threshold in the TC model than those in the LC model. In other words,
in the TC model, more fixed epochs were achieved.
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for LC and TC models.

Combining the ratio-test and the AR success rate, we could calculate P f ix for both the LC and TC
models under different situations; the results for all six baselines are listed in Table 6. The difference in
P f ix between TC and LC is denoted as ∆ f ix, i.e., ∆ f ix = P f ix(TC) − P f ix(LC). It shows that P f ix in the
LC and TC models were nearly the same in case 1, which means they had a similar performance in
normal situations. However, in cases 2 and 3, the TC model outperformed the LC model, where the
difference of P f ix could be more than 30%. It is clear that the TC model increased the performance of
ambiguity fixing.

Table 6. Comparison of the ambiguity fixing rates between LC and TC under different scenarios and
the corresponding differences.

Tag Case 1 Case 2 Case 3

LC (%) TC (%) ∆fix(%) LC (%) TC (%) ∆fix(%) LC (%) TC (%) ∆fix(%)

A 100.00 100.00 0.00 71.08 99.55 28.47 41.91 74.65 32.74
B 99.86 99.86 0.00 48.96 78.92 29.97 21.91 58.65 36.74
C 99.97 99.97 0.00 61.49 83.40 21.91 23.23 69.17 45.94

D 99.58 99.58 0.00 66.35 99.27 32.92 54.34 95.73 41.39
E 74.58 72.26 −2.33 67.85 95.73 27.88 35.66 68.40 32.74
F 89.51 86.04 −3.47 65.28 97.85 32.57 38.47 74.20 35.73

Mean 93.92 92.95 −0.97 63.50 92.45 28.95 35.92 73.47 37.55

Furthermore, by judging whether the ambiguity was correctly fixed, we could calculate Pc for
both LC and TC models under different situations, whose results for all six baselines are listed in
Table 7. The difference in Pc between TC and LC is written as ∆c. From the table, we can see that just
like the results of P f ix, in case 1, we obtained similar correctly fixed ambiguity rates for TC and LC.
In cases 2 and 3, the correctly fixed ambiguity rates in the TC model showed a moderate improvement.
Considering the remarkable improvement of the ambiguity fixing rate, many more ambiguities were
reliably fixed to their correct values. The TC model demonstrated significant advantages in AR in
special situations with signal occlusion.
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Table 7. Comparison of correctly fixed ambiguity rates between LC and TC under different scenarios
and the corresponding differences.

Tag
Case 1 Case 2 Case 3

LC (%) TC (%) ∆c (%) LC (%) TC (%) ∆c (%) LC (%) TC (%) ∆c (%)

A 96.70 96.15 −0.56 82.85 93.41 10.55 73.74 85.44 11.71
B 97.64 98.12 0.49 82.27 86.05 3.78 68.78 79.04 10.26
C 97.78 96.56 −1.22 82.50 90.17 7.68 61.14 79.12 17.98

D 93.93 94.11 0.17 91.99 95.49 3.49 79.81 90.46 10.65
E 78.31 80.54 2.23 84.24 90.71 6.48 61.73 75.63 13.90
F 72.19 68.72 −3.46 79.84 84.32 4.47 42.33 54.28 11.95

Mean 89.42 89.03 −0.39 83.95 90.03 6.08 64.59 77.33 12.74

It should be pointed out that in cases 1, 2, and 3 of baseline F, there were six, five, and six epochs
when the LC model was unavailable because there was only one usable satellite in the GLONASS
and Galileo systems. However, this issue was resolved in the TC model. The only exception was for
three epochs in case 3 when there was only one satellite in each system, thus the formed three-DD
observation equations could not be used for positioning.

The fixed ambiguity could be taken as a known parameter and the fixed solution could thereby
be calculated. Excluding the results with an incorrectly fixed ambiguity, we display the positioning
biases in the horizontal and vertical directions for baseline A in case 3 with both LC and TC models in
Figure 7. The 95% confidence intervals and standard deviations are also plotted in the figures.
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We could hardly find any significant differences between the TC and LC models. Both achieved
nearly 1-cm-level positioning results. The results for other baselines and other situations were almost
the same and are not given in this paper. Therefore, from the perspective of positioning results, the TC
and LC models showed the same level of performance.

4.3. Discussion

The above experimental results indicate an obvious advantage of the TC model in situations with
obstructed satellites. Although the TC and LC models gave comparable results in open sky, this was
usually not the case for urban residents. The pedestrian on the streets must face a situation under
high buildings, where severe signal occlusion inevitably happens and hampers efficient navigation.
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From the functional models of TC and LC, if the ISBs are calibrated ahead of the positioning, the TC
model can provide one more observation equation for each pair of systems, and the degree of freedom
becomes large [30]. When the four systems are used together, the redundancy increases to three.
In situations with limited tracked satellites, the additional equations can make a positive impact on the
AR and positioning performance. That is why better results were achieved in TC model, as shown in
Tables 5 and 6.

Meanwhile, the functional model of TC infers that many more advantages can be acquired if
more systems are involved compared with LC. If the regional satellite systems, such as Japanese QZSS
and Indian IRNSS, are not taken into account, the integration of GPS, GLONASS, Galileo, and BDS
maximizes the performance of a tightly combined solution. Although lots of contributions have been
made using the hybrid systems with CDMA signals, it is a pity that in their work, the GLONASS
signals are abandoned, maybe due to its FDMA signals and the corresponding IFB. This paper provides
a further investigation of precise positioning with all four global navigation satellite systems by
considering both IFB and ISB.

Furthermore, as more and more satellites are available, we do not need to resolve all tracked
satellites since fixing the full set of ambiguities of multiple constellations may possibly decrease the
AR success rate and computational efficiency, and the partial ambiguity resolution (PAR) technique,
which resolves a subset of the ambiguities, was suggested to achieve a high success rate [38]. After the
selection of an ambiguity set based on a certain strategy, the number of remaining satellites may be
not that sufficient. At this moment, the TC model can be applied to ensure the position estimation.
Therefore, the combination of the PAR technique and the tightly combined multi-GNSS system will
bring about a high AR success rate and ambiguity fixing rate, along with time-saving data processing,
regardless of whether the observation environment is in clear-sky or suffers from signal occlusion.
This is expected to become a more efficient work pattern in the coming multi-GNSS era.

5. Conclusions

In this paper, we provided a rigorous functional model for tightly combined single-frequency
multi-GNSS data. The virtual signal of the constant central frequency in the GLONASS system with
a channel number of zero was introduced, and the IFPB and ISPB in GLONASS involving a tightly
combined system were re-defined from the hardware delays.

Based on this functional model, we proposed a practical algorithm to estimate the IFB rate and the
ISB, and their characteristics were analyzed using six pairs of available single-frequency multi-GNSS
data of ultra-short and short baselines. Numerical results confirmed that the IFPB rates for baselines
with homogeneous receivers were negligible, while those with heterogeneous receivers should be
calibrated. Results also indicated that there may be considerable ISPB even if overlapping frequencies
are used in tightly combined systems.

After the removal of the IFB and ISB, a comprehensive performance comparison was made from
the float solution to the fixed solution between the TC and LC models. Experiments were conducted
to simulate three different observation environments: one is the typical situation and the other two
suffer from signal obstruction with high elevation angles or limited azimuths, respectively. From the
results, we found that in typical situations, the TC model and LC model had a similar performance
in the float solution and AR. However, when the satellite signals were severely obstructed and few
satellites could be tracked in a single system, the float solution and ambiguity fixing rates in the LC
model were dramatically decreased, while those in the TC model had relatively smaller declines,
where the difference in ambiguity fixing rates could be as large as 30%. The correctly fixed ambiguity
rates in the TC model also had a moderate improvement of around 10%. Once the ambiguity was
fixed, both models achieved a similar positioning accuracy. Summarily, the TC model significantly
outperformed the LC model in terms of AR in cases of signal obstruction, though in other cases,
they had a similar performance.
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