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Abstract: Precise stand species classification and volume estimation are key research topics for
automated forest inventory. This study aims to explore the feasibility of light detection and ranging
(lidar) height, intensity, and ratio parameters for discriminating dominant species (Pinus densiflora,
Larix kaempferi, and Quercus spp.) and estimating volume at plot scale. To achieve these objectives,
multiple linear discriminant and regression analyses were utilized after a separate selection of
explanatory variables from extracted 38 lidar height, intensity, and ratio parameters. A kappa
accuracy of 0.75 was achieved in discriminating the plot-dominant species from three different species
by adopting a combination of nine selected explanatory variables. Further investigation found that
dispersion and mean of lidar intensity within a plot are key classifiers of identifying three species.
Species-specific optimal plot volume models for Pinus densiflora, Larix kaempferi, and Quercus spp. were
evaluated by coefficients of determination of 0.71, 0.74, and 0.56, respectively. Compared to species
classification, height-related lidar variables play a key role in modeling forest plot volume. Several
explanatory variables for each modeling practice were correlated to canopy vertical and horizontal
structures and were enough to represent species-specific characteristics in both approaches for species
classification and plot volume estimation. Additionally, observed different variable combinations for
two important applications imply that future studies should use proper variable combinations for
each purpose.
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1. Introduction

Precise and quantitative information of forests is essential for forest management and
planning [1–3]. Forest stand volume is one of the most important structural variables characterizing
economic and environmental value of the forest stand. As it can estimate stand biomass and carbon
content, accurate stand volume estimation is critical for understanding forest carbon dynamics. Field
surveying can provide accurate and extensive forest inventories nationwide; however, it is not only
labor-intensive and time-consuming, but also difficult to seamlessly cover large forested area. Together
with increasing needs of high quality and large-scale forest information, in this context, remote sensing
has become a more powerful tool in forest management [4–7].
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Laser surveying techniques known as light detection and ranging (lidar) have been widely used
to characterize a large-scale three-dimensional forest structure and its dynamics [1,7–9]. Studies have
proven the potential of lidar for estimating forest stand volume [10–12]. Approaches for estimating stand
volume using lidar data can be categorized into (a) individual tree detection-based approaches [1,9,13]
and (b) height distributional approaches at the stand or plot level [13,14]. The individual tree detection
based approaches for estimating forest stand volume, tree height, and diameter at breast height (DBH)
are required for calculating volume using an allometric function [1]. However, direct estimation of
DBH is problematic due to stem concealment by obstructive upper canopy structures. To obtain more
accurate DBH estimates, several studies have suggested ways to apply the statistical relationship
between measured DBH and crown width derived from lidar data [13]. Although stand volume
could be estimated by using height and DBH derived from lidar data, modeling procedures for DBH
estimates and the necessity of accurately isolating individual trees tend to increase the uncertainty of
stand volume estimates.

To avoid the complications and limitations of approaches based on individual tree detection, stand
volume has been estimated directly using height distribution parameters of large- and small-footprint
lidar systems at the stand or plot level [10,15,16]. This approach assumes that stand volume is
closely related to actual vertical and horizontal forest structures and that lidar height distributions can
represent the forest structures [15]. In other words, the forest structure from tree top to ground can be
explained by structurally arranged large- and small-footprint lidar data [17]. In practice, large-footprint
full-waveform lidar can provide height distribution data depending on the time-varying intensity of
the returned energy within the laser pulse; however, this system is not appropriate for demonstrating
finer scale forest attributes, including volume and biomass [18]. Small-footprint discrete lidar can
produce a height distribution of forest vertical structures by accumulating all returns per sampling unit.
This distribution then can be employed to estimate fine-scale and stand-level forest volume [15,19].

Tree species information is also critical for correctly valuing forests in terms of economic, ecological,
and technical perspectives. Inaccurate species identification can result in prominent bias in the estimates
of stem volume and biomass as allometric dependencies are species-specific [1,20]. The approach
using height distribution data for volume estimation has been used to discriminate tree species at
the individual tree and plot or stand level [21–23]. These species discrimination analyses have been
successfully used to differentiate forest species between coniferous and broadleaf forests [24]. Both
height and intensity data from lidar clearly show the potential to classify individual or stand dominant
species by characterizing spectral, vertical, and horizontal profiles of canopy structure.

Reviewing the literature for related research reveals an opportunity to develop a sequential
analytic framework that identify stand-dominant species and estimate stand volume. This study
thus aims to achieve these two main objectives using height, intensity, and ratio parameters derived
from airborne lidar data. Both objectives focused on the relationship between forest attributes and
various lidar distributional characteristics at the plot scale, thus this study can provide insight of how
different sets of lidar height, intensity, and ratio variables play a role in species classification and
plot volume estimation. The detailed first objective is to identify explanatory parameters and their
combination for classifying plot-dominant species between homogeneously distributed Korean red
pine (Pinus densiflora), Japanese Larch (Larix kaempferi), and oaks (Quercus spp.) with determining
statistical criteria. The second objective is to examine the appropriate parameters for estimating
species-specific plot volume based on classification results under critical statistical criteria and select
an optimal volume model for each plot-dominant species. Following results and possible limitations
are compared and discussed.
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2. Materials

2.1. Study Area

The study sites are located in Obin-ri (Coordinates: upper left 127◦27′04.08′′E, 37◦31′15.80”N and
lower right 127◦29′22.89”E, 37◦30′15.45”N) and at the Korea University Yangpyeong Experimental
Forest (upper left 127◦40′45.77′′E, 37◦30′56.22”N and lower right 127◦43′19.11”E, 37◦29′36.76”N),
Yangpyeong-gun, central South Korea (Figure 1). The forests of the study region range from 21 m to
220 m above sea level. The main tree species in these sites are Pinus densiflora, Larix kaempferi, and
Quercus spp. For this study, a total of 90 plots (30 plots for each species) were surveyed and investigated.
Each 30 plots for each species were split into 20 training and 10 testing sites. The training sites were
used for developing stand dominant species classification and volume estimation model, then the
testing sites were used for verifying the developed models.
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Figure 1. Geographical location of study area with digital aerial photographs. (a) Obin-ri; (b) Korea
University Yangpyeong Experimental Forest.

2.2. Lidar Data Acquisition

A small-footprint lidar system (ALTM 3070 developed by Optech, Inc.) was used to acquire the
lidar data. The flight took place on 4 May 2009, and LiDAR data acquisition was performed at an
altitude of 1400 m and with a point density of 5–8 points per square meter. Each point return provides
the x, y, z position and intensity information derived from a near-infrared (1064 nm) laser pulse. The
radiometric resolution, scan frequency, and scan width of the recorded lidar data were 12 bits, 70 Hz,
and ±20◦, respectively. This study only used lidar data within a ±10◦ scanning angle to reduce the scan
angle effect on tree height and volume estimation [25]. Prior to extracting parameters from the lidar
data, every lidar return was classified by the automatic procedure of the TerraScam Program [26]. The
lidar returns were first classified into two groups, ground returns and above-ground returns. Ground
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returns were determined to be reflected from the ground within the plots, and above-ground returns
included all returns other than ground returns. Then, every return of the lidar data recorded as height
above sea level was converted to local height measure using a digital terrain model (DTM) generated
from ground returns.

2.3. Ground Data Acquisition

A field survey was performed on 25–27 September 2010 across two study regions, i.e., the Obin-ri
and the Korea University Yangpyeong Experimental Forest. Training and testing plots are 20 and
10 square plots (0.04 ha or 400 m2, 20 m sides) of each plot-dominant species, respectively [27]. For
the survey, species, DBH, height, and age of every individual trees > 5 cm DBH were measured and
tree density within each plot was recorded (Table S1). The dominant tree species, which accounts for
more than 75% of the total tree species within the plot, was determined by counting every individual
tree species [28]. The volume of each individual tree was calculated using species-specific allometric
equations from the field-measured DBH and tree height; thereafter, plot volume was summed from
every individual trees within each plot [28]. The species-specific allometric equations for volume
estimation were developed by Korea Forest Research Institute [29]. The survey followed a standard
procedure guided by the 5th National Forest Inventory [28].

The position of the center of each sample and test plot was acquired using the GPS Pathfinder
Pro XR, which is manufactured by Trimble. This position information was used to spatially join and
geo-match field surveying data with lidar data. The acquired GPS data were processed by a differential
correction method using supplementary information received from a continuous GPS station near the
study area. The corrected positions of the geo-referenced plots were obtained with position errors of
less than 1 m. This process aimed to correct some errors that could be related to differences between
the satellites and receivers, the atmosphere, satellite orbits, and reflective surfaces near the receiver
when surveying with a single GPS receiver [30].

3. Methods

This study utilized multiple linear discriminant and regression analysis for plot-level species
classification and volume estimation, respectively. Each process used the LiDAR height, intensity,
ratio parameters, and field measurements of the plot-dominant species and volume as independent
and dependent variables, respectively (Figure 2). Multiple linear discriminant analysis was adopted
to classify plot-dominant species using the independent dataset, and the results were then verified
by a cross-validation procedure with separate testing data. Thereafter, multiple linear regression
analysis was performed on the LiDAR dataset, with the results of each plot-dominant species then
evaluated using a corrected Akaike’s Information Criterion (AICc) [31] for selecting the optimal
equation candidates. The candidate models showing the best performance were then verified and
selected as an optimal volume model using testing datasets.
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Figure 2. Flowchart of plot dominant species classification and plot volume estimation.

3.1. Extraction of Lidar Height, Intensity, and Ratio Parameters

I extracted lidar height, intensity, and ratio parameters for constructing independent variables
from two separate LiDAR return types, i.e., canopy and total returns. Canopy LiDAR returns are
defined as returns that are higher than 1.0 m normalized height from DTM, while total returns include
every return falling in the target plot [8,16]. According to Chen et al. [13], the height threshold for
discriminating canopy returns from total returns might vary due to various forest stand conditions.
This study set the threshold at 1.0 m as it effectively differentiates canopy crowns (i.e., lower than
minimum crown base heights) and ground (Table S1). Then, 38 variables for the modeling process
were extracted based on a dataset classified into canopy and total returns.

The lidar variables include percentile, mean, maximum, minimum, median, mode, standard
deviation, coefficient of variation, kurtosis, skewness, and range of height and intensity data as those
are closely related to volume and species information [32] (Table 1). These height and intensity variables
were extracted from only canopy returns. The intensity variables can be significant descriptors of tree
specifications, however, the intensity values might be affected by variations in laser path length and
target reflectivity [33]. Thus, for intensity variables, I calibrated and normalized it by following an
approach suggested by Kwak et al. [34].
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Table 1. Definition of lidar height, intensity, and ratio metrics.

Independent Variables

Height Parameters Based on Canopy
Returns

Intensity Parameters Based on Canopy
Returns

Ratio Parameters Based on Integrated
Canopy and Ground Returns

HEI,i, I = 10, 20, . . . , 100
percentile height INT,mean, mean of intensity NumT, number of total returns

HEI,mean, mean of height INT,max, maximum of intensity NumC, number of canopy returns
HEI,max, maximum of height INT,min, minimum of intensity CRR, canopy return ratio
HEI,min, minimum of height INT,med, median of intensity INT,TSum, sum of total intensity

HEI,med, median of height INT,mode, mode of intensity INT,CSum, sum of canopy intensity
HEI,mode, mode of height INT,std, standard deviation of intensity CIR, canopy intensity ratio

HEI,std, standard deviation of height INT,cv, coefficient of variation of intensity
HEI,cv, coefficient of variation of height INT,se, standard error of mean of intensity
HEI,se, standard error of mean of height INT,kurt, kurtosis of intensity distribution

HEI,kurt, kurtosis of height distribution INT,skew, skewness of intensity
distribution

HEI,skew, skewness of height distribution INT,range, range of intensity
HEI,range, range of height

To consider return transmission from the canopy to ground, this study added not only the number
of returns from the canopy and total, but also the canopy return ratio (CRR, Equation (1)) and canopy
intensity ratio (CIR, Equation (2)) (Table 1).

Canopy Return Ratio =
number o f canopy returns

number o f total returns
(1)

Canopy Intensity Ratio =
sum o f intensities o f canopy returns

um o f intensities o f total returns
(2)

3.2. Plot-Dominant Species Classification

3.2.1. Selection of Explanatory Variables

Multiple linear discriminant analysis is a multivariate technique for separating distinct sets of
observations and allocating new observations into predefined classes, i.e., plot-dominant species in
this study [35]. This analysis is fundamentally based on minimizing the expected misclassification cost.
Fisher’s linear discriminant analysis, a widely used discriminant analysis function [35], was used to
classify three plot-dominant species (Pinus densiflora, Larix kaempferi, and Quercus spp.) in this study.

Thirty-eight independent variables were first extracted to discriminate plot-dominant species.
However, the use of all of the candidate variables to separate plot-dominant species would be inefficient
due to the need for intensive, time-consuming collection and management of all of the data. In addition,
the use of too many variables is referred to as overfitting, a condition in which the results are dependent
on sampling errors [35]. Therefore, a reduced discriminant analysis, with essential explanatory
variables, need to be performed using a stepwise selection method based on the Wilks’ λ criteria
approach (0.05 significance level used in this study). The Wilks’ λ, also known as the ratio of generalized
variance, is a test statistic used in multivariate analysis of variance to test whether differences exist
between the means of specified groups, i.e., plot-dominant-species groups in this study [35]. Further,
reduced parameters from the stepwise technique were also evaluated for their discriminant ability by
using both box-whisker plots and Tukey’s honestly significant difference (HSD) test. From the 38 lidar
height, intensity, and ratio parameters, several parameters were selected as explanatory variables for
plot-dominant species discrimination by stepwise selection. The discriminating power of each variable
was then evaluated.
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3.2.2. Development and Assessment of Linear Discriminant Analysis

Fisher’s linear discriminant analysis is a linear dimensionality reduction technique using canonical
discriminant functions [36]. The procedure constructs a discriminant function by maximizing the ratio
between the groups’ and within the groups’ variances [35]. Fisher’s method yields a linear function
that divides the variable space into two dimensions by developing a canonical discriminant function.
This canonical discriminant function is commonly written as Equation (3):

D = b1X1 + b2X2 + · · ·+ bnXn (3)

where D is the discriminant score, bi is the discriminant coefficient of the ith independent variable,
and Xi is the ith independent variable. Canonical discriminant functions can be used to calculate
the discriminant score of each plot for determining the centroid of scores related with species group
separation. The centroid of each species group was calculated by averaging discriminant scores
derived from these functions. These canonical functions might be evaluated by explanation degree
for discriminant score variations referred from canonical correlation coefficients [35]. In addition,
standardized canonical discriminant function coefficients are used to evaluate which variable has
higher discriminating power in each developed canonical discriminant function [35].

A cross-validation approach (leave-one-out method) was used to assess the accuracy of the
discriminant analysis [37]. The classification result was evaluated based on an originally grouped—and
cross-validated—accuracy assessment process by hit ratio explaining the correctly corresponding
discrimination performance. Additionally, Cohen’s kappa coefficients were calculated to measure
the agreement between the classifications of the best performance combination case. The Kappa
class value was used to rate the agreement as poor (0.40), fair (0.40–0.55), good (0.55–0.70), very
good (0.70–0.85), and excellent (>0.85) [38]. Among manifold variable combinations, the variable
combination showing the best performance was applied to determine plot-dominant species and this
information was sequentially used to develop the species-specific volume model. In addition to such
evaluation procedures, this study verified the variable combinations showing the best performance in
the training plots by applying these to the 30 separate testing plots.

3.3. Plot Volume Estimation

3.3.1. Selection of Explanatory Variables

To estimate the plot volume dominated by different species, multiple linear regression modeling
was separately performed. The 38 independent variables from the lidar height, intensity, and ratio
metrics were first utilized for regression modeling of the plot volume. The use of the fully developed
model using all candidate variables would be inefficient due to the same reason as in the discriminant
analysis; thus, this study reduced the model using stepwise selection methods at the 0.05 significance
level [13]. However, such selected variables under stepwise selection might have linear dependency
relationships, i.e., a problem referred to as multicollinearity. The multicollinearity can disturb the
estimation of a least square estimator in the regression procedure, so that the estimated value may be
unreliable due to increased variation. O’Brien [39] suggested a variance inflation factor (VIF) that can
evaluate the multicollinearity between selected independent variables. Moreover, Kutner et al. [40]
mentioned that a VIF below 10 is suitable for selecting independent variables, but values above 10
indicate a multicollinearity problem. Therefore, I only selected independent variables that have VIF
lower than 10. Then, highly correlated independent variables were further eliminated (Pearson’s
correlation coefficients over 0.5) [18].
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3.3.2. Development and Assessment of Linear Volume Models

In this study, multiple linear regression analysis was performed using combinations of selected
variables for each species with 10 or fewer regressed functions selected, as shown in Equation (4):

y = α+ β1x1 + β2x2 + β3x3 + . . .+ βnxn + ε (4)

where y is the plot volume measured in the field survey; x1, x2, x3, . . . , xn are the selected variables
derived from lidar height, intensity, and ratio parameters; α, β1, β2, β3, . . . , βn are the estimated
regression parameters; and ε is its residuals.

This study utilized Akaike’s information criterion (AIC) to select an optimal plot volume model for
each dominant species. To remedy potential bias introduced by the size of sample, AIC was substituted
into the corrected AIC (AICc) in this study (Equation (5)),

AICc = n
[
ln

(∑
(y− ŷ)2

n

)]
+ 2k +

2k(k + 1)
n− k− 1

(5)

where k is the number of parameters in the model and n the number of observations. y and ŷ stand
for the plot volume and its estimate from the model. The smaller AICc is, the more closely the model
approaches reality. When comparing different regression models, the estimated AICc values are
generally normalized by subtracting the minimum AICc values, according to Equation (6):

∆i = AICci −AICcmin (6)

where AICci is the AICc value of the ith model and AICcmin is the minimum AICci value. The results
of this transformation allow the following criteria. Regression models with ∆i ≥ 2 were rejected and
models with ∆i ≤ 2 were selected because only models with ∆i ≤ 2 are accepted as providing substantial
support. With these AIC criteria, other supplementary statistics including R2, adjusted R2, RMSE, and
SSE of the models were also considered and compared when selecting the optimal plot volume model.

4. Results

4.1. Plot-Dominant Species

4.1.1. Explanatory Variables for Plot-Dominant Species Classification

Explanatory variables of the LiDAR height, intensity, and ratio parameters for plot-dominant
species classification were chosen through the stepwise selection method based on Wilks’ λ criteria at a
significance level of 0.05. The selected metrics were the 80th and 90th percentiles and the standard
deviation of height (HEI,80, HEI,90, and HEI,std), the mean, mode, standard deviation, coefficient of
variation, and skewness of intensity (INT,mean, INT,mode, INT,std, INT,cv, and INT,skew), and the canopy
return ratio (CRR). In order to determine the statistical significance of the differences in the three
plot-dominant species, the Wilks’ λ statistic, F-value, and Tukey’s HSD test were examined (Table 2).

The Wilks’ λ and F-value are generalized tests for determining the probability level of equality
of population centroids, assuming equality of dispersion. The variables including lower λ statistics
and higher F statistics at a high level of significance indicated high discrimination ability in
plot-dominant-species classification. According to these statistics, HEI,80, HEI,90, and INT,std were the
most effective discrimination parameters among the nine selected explanatory variables. The results
of multiple species comparisons by Tukey’s HSD test showed which parameter was the distinctively
meaningful factor for differentiating between two particular species. Tukey’s HSD tests revealed
significant differences between Larix kaempferi and other species for three variables (HEI,80, HEI,90, and
INT,mode). In the case of Pinus densiflora and Quercus spp., four (HEI,80, HEI,90, INT,mode, and INT,cv)
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and two (HEI,80 and HEI,90) variables showed differences with other species under critical statistical
criteria (p < 0.001). Similar patterns can be found in the box–whisker plots (Figure S1).

Table 2. Results of stepwise selection and Tukey’s HSD test for plot dominant species discrimination
(both under 0.05 significant level).

Significantly Different Species by Tukey’s HSD Test

Selected
Variable

Larix kaempferi
(LK)

Pinus densiflors
(PD)

Quercus spp.
(Qs) Wilks λ F p-Value

HEI,80 PD, Qs LK, Qs LK, PD 0.467 32.56 <0.001
HEI,90 PD, Qs LK, Qs LK, PD 0.409 41.10 <0.001
HEI,std Qs · LK 0.893 3.42 <0.039

INT,mean Qs LK LK 0.892 3.46 <0.038
INT,mode PD, Qs LK LK 0.715 11.34 <0.001
INT,std PD LK, Qs PD 0.534 24.87 <0.001
INT,cv PD LK, Qs PD 0.665 14.34 <0.001

INT,skew PD LK · 0.724 10.86 <0.001
CRR Qs · · 0.836 5.58 <0.006

4.1.2. Evaluation of Plot-Dominant-Species Discrimination

A set of explanatory variables was used to differentiate three plot-dominant species using the
linear discriminant analysis. The 9 selected lidar height, intensity, and ratio parameters generated 511
combinations (29

− 1) of independent variables for discriminant analysis. Every possible combination
classified plot-dominant species of the 60 sampled plots and was evaluated by original grouped and
cross-validated accuracy assessments. The best performance in species discrimination was obtained
from a combination of all explanatory variables, including HEI,80, HEI,90, HEI,std, INT,mean, INT,mode,
INT,std, INT,cv, INT,skew, and CRR. Original grouped and cross-validated accuracy of this model were
95.0 and 93.3%, respectively. On the other hand, using only one variable, INT,mean, produced the
lowest classification accuracies of 46.7% (original grouped accuracy) and 45.0% (cross-validated
accuracy). Among the 511 possible combinations, Table 3 shows 10 variable combinations in order of
cross-validated results. The cross-validated results of the 10 combinations range from 88.3 to 93.3%
and most combinations have more than six variables showing that a general tendency between number
of variables and model accuracy (Figure S2).

The all of the combinations generated canonical discriminant functions to calculate discriminant
scores and classify plot-dominant species. In particular, the highest accuracy was achieved by the
combination with all variables (93.3%). This combination had first and second canonical discriminant
functions that could explain 86.3 and 67.4% of the discriminant score variance, respectively, refers from
canonical correlation coefficient. According to the result of the x2 test, both functions had a p-value
that was lower than 0.05, which meant that this function significantly discriminated Pinus densiflora,
Larix kaempferi, and Quercus spp. groups. The discriminant score centroid and distribution calculated
by canonical discriminant functions is shown in Figure S3. The classification agreement was excellent
as indicated by a kappa value greater than 0.90 [38] (Table S3).
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Table 3. Accuracy assessment results of multiple linear discriminant analysis by various combinations (upper ranked 10 combinations).

Accuracy (%)

No.
(AE1, AE2)

Variable Combination
(RD1, RD2)

Number of
Variables

Original
Grouped

Cross
Validated

1
(86.3, 67.4)

HEI,80
(4, 4)

HEI,90
(3, 7)

HEI,std
(6, 8)

INT,mean
(2, 2)

INT,mode
(9, 6)

INT,std
(5, 3)

INT,cv
(1, 1)

INT,skew
(7, 5)

CRR
(8, 9) 9 95.0 93.3

2
(81.7, 53.3)

HEI,80
(4, 3)

HEI,90
(1, 6)

HEI,std
(5, 7)

INT,mean
(3, 5)

INT,mode
(6, 4)

INT,cv
(2, 1)

INT,skew
(7, 2) 7 93.3 90.0

3
(85.4, 60.1)

HEI,80
(5, 5)

HEI,90
(3, 7)

HEI,std
(4, 8)

INT,mean
(1, 2)

INT,mode
(8, 4)

INT,std
(6, 3)

INT,cv
(2, 1)

CRR
(7, 6) 8 93.3 90.0

4
(84.8, 64.2)

HEI,90
(3, 5)

HEI,std
(4, 8)

INT,mean
(1, 2)

INT,mode
(7, 6)

INT,std
(5, 3)

INT,cv
(2, 1)

INT,skew
(8, 4)

CRR
(6, 7) 8 93.3 90.0

5
(76.2, 50.8)

HEI,90
(1, 4)

INT,mode
(4, 3)

INT,std
(2, 6)

INT,cv
(3, 1)

INT,skew
(6, 2)

CRR
(5, 5) 6 91.7 90.0

6
(81.7, 66.7)

HEI,80
(3, 5)

HEI,std
(4, 7)

INT,mean
(1, 2)

INT,mode
(6, 6)

INT,std
(7, 3)

INT,cv
(2, 1)

INT,skew
(8, 4)

CRR
(5, 8) 8 91.7 90.0

7
(84.8, 59.6)

HEI,90
(3, 5)

HEI,std
(4, 7)

INT,mean
(1, 2)

INT,mode
(7, 4)

INT,std
(5, 3)

INT,cv
(2, 1)

CRR
(6, 6) 7 90.0 90.0

8
(83.2, 67.1)

HEI,80
(4, 4)

HEI,90
(3, 6)

HEI,std
(6, 8)

INT,mean
(2, 2)

INT,mode
(8, 7)

INT,std
(5, 3)

INT,cv
(1, 1)

INT,skew
(7, 5) 8 96.7 88.3

9
(81.2, 62.4)

HEI,90
(3, 5)

HEI,std
(4, 7)

INT,mean
(1, 2)

INT,mode
(5, 6)

INT,std
(6, 3)

INT,cv
(2, 1)

INT,skew
(7, 4) 7 93.3 88.3

10
(80.8, 51.8)

HEI,90
(3, 4)

HEI,std
(4, 6)

INT,mean
(1, 3)

INT,mode
(5, 5)

INT,cv
(2, 1)

INT, skew
(6, 2) 6 91.7 88.3

AE1 & 2 (%): Ability of explainable variation by developed canonical discriminant function 1 and 2, respectively. RD1 & 2 (%): Rank of discriminant power in developed canonical
discriminant function 1and 2, respectively.
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4.2. Plot Volume

4.2.1. Explanatory Variables for Plot Volume

In the case of the plots dominated by Larix kaempferi, five variables were selected using the stepwise
selection method at a significance level of 0.05: 90th percentile height (HEI,90), standard deviation of
height (HEI,std), mode of the intensity (INT,mode), standard error of the mean of the intensity (INT,se),
and the sum of the intensity (INT,TSum). These variables were shown to have low multicollinearity
by a VIF of approximately 1 (Table 4). Then, the selected variables were examined by comparing
Pearson’s correlation coefficients derived from correlation analysis between candidate variables. From
the results, HEI,std was highly correlated with HEI,90 with a coefficient higher than 0.5, so this variable
was eliminated to reduce multicollinearity (Table 5). Therefore, the explanatory variables to regress the
plot volume model for Larix kaempferi were HEI,90, INT,mode, INT,se, and INT,TSum.

Table 4. Results of variable selection to each species by variance inflation.

Species Variable DF Parameter
Estimate

Standard
Error t Value pr > |t| Variance

Inflation

Larix
kaempferi

Intercept 1 −11.2321 1.91114 −5.88 <0.0001 0.0000
HEI,90 1 1.44559 0.28551 5.06 0.0002 4.07915
HEI,std 1 −2.24028 0.62636 −3.58 0.0030 4.03682

INT,mode 1 −0.65035 0.19885 −3.27 0.0056 1.00719
INT,se 1 63.19259 20.10955 3.14 0.0072 1.48727

INT,TSum 1 0.00112 0.000192 5.83 <0.0001 1.37517

P. densiflora

Intercept 1 1.19921 2.42319 0.49 0.6279 0.00000
HEI,mean 1 0.38271 0.11826 3.24 0.0055 1.48927
HEI,mode 1 0.07408 0.04048 1.83 0.0872 1.20480
INT,std 1 2.54207 1.37647 1.85 0.0846 1.52052

INT,range 1 −0.85953 0.24021 −3.58 0.0027 1.86565

Quercus
spp.

Intercept 1 −0.55562 1.09140 −0.51 0.6181 0.00000
HEI,80 1 −0.47026 0.19574 −2.40 0.0297 8.50554
HEI,90 1 0.72066 0.18835 3.83 0.0017 8.57314

INT,mode 1 0.06646 0.02167 3.07 0.0078 1.24328
INT,kurt 1 0.84446 0.42291 2.00 0.0643 1.22767

Table 5. Results of variable selection to each species by correlation coefficient.

Species Variables HEI,90 HEI,std INT,mode INT,se INT,TSum

Larix
kaempferi

HEI,90 1.00000 0.98055 −0.0341 0.18118 −0.15654
HEI,std 0.98055 1.00000 −0.03256 0.26466 −0.07958

INT,mode −0.0341 −0.03256 1.00000 −0.04156 −0.03433
INT,se 0.18118 0.26466 −0.04156 1.00000 −0.14369

INT,TSum −0.15654 −0.07958 −0.03433 −0.14369 1.00000

Pinus
densiflora

Variables HEI,mean HEI,mode INT,std INT,range

HEI,mean 1.00000 0.20974 −0.47106 −0.43012
HEI,mode 0.20974 1.00000 −0.20509 −0.41167
INT,std −0.47106 −0.20509 1.00000 0.44358

INT,range −0.43012 −0.41167 0.44358 1.00000

Quercus spp.

Variables HEI,80 HEI,90 INT,mode INT,kurt

HEI,80 1.00000 0.93215 0.15998 −0.07099
HEI,90 0.93215 1.00000 0.25939 0.14843

INT,mode 0.15998 0.25939 1.00000 0.45776
INT,kurt −0.07099 0.14843 0.45776 1.00000
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In the case of Pinus densiflora, the mean of the height (HEI,mean), the mode of the height (HEI,mode),
the standard deviation of intensity (INT,std), and the range of intensity (INT,range) were selected. The
multicollinearity between the selected variables was low compared to their VIFs (below 10), as shown
in Table 4. An assessment of the one-to-one correlations between candidate variables was completed;
however, all four variables were included in the regression analysis due their relatively low correlation
coefficients (below 0.5) (Table 5).

To extract explanatory variables, acquired LiDAR parameters for Quercus spp. plots were reduced
by the same procedure. Consequently, the candidate independent variables, shown in Table 4, are
the 80th percentile of height (HEI,80), the 90th percentile of height (HEI,90), the mode of the intensity
(INT,mode), and the kurtosis of the intensity distribution (INT,kurt). The multicollinearity between the
selected variables was weak, as each VIF had a value below 10 (Table 4). Furthermore, as a result of the
correlation analysis between the selected variables, HEI,80 and HEI,90 were highly correlated (r > 0.5)
(Table 5). Therefore, HEI,90 was rejected as an explanatory independent variable for regressing the
plot volume model because both the probability value from a t-test and the VIF of HEI,80 were lower
than those for HEI,90. Eventually, HEI,80, INT,mode, and INT,kurt were adopted for the multiple linear
regression analysis for predicting the plot volume.

4.2.2. Evaluation of Plot-Volume Models

The four independent variables selected for Larix kaempferi were used in developing regression
models. The predictable equation was estimated by adopting the optimal regression model for
estimating the plot volume represented by ∆AICc less than 2 (Table S4). The two optimal regression
models found with ∆AICc ≤ 2 were model no. 1, which estimates the plot volume using HEI,90, INT,mode,
and IT, and model no. 2, in which the explanatory variables were HEI,90, INT,mode, INT,se, and INT,
when AICc was employed as the first criterion for selecting the best model. In addition, models 3 to 7
were rejected because their ∆AICc values were higher than 2, and the significance of their statistics was
reduced with increasing ∆AICc. Among these two models, I chose the model no. 2 as it shows a better
performance in RMSE, SEE, R2, and adjusted R2.

For Pinus densiflora plots, the combinable regression model was estimated with optimal regression
models having ∆AICc less than 2 (Table S5). However, the best model and the only one with
∆AICc ≤ 2 was model no. 1, by which the plot volume could be estimated using HEI,mean, HEI,mode,
INT,std, and INT,range. Models 2 to 7 were eliminated as candidate regression models because their
∆AICc was higher than 2 and because they lacked statistical significance with increasing ∆AICc.

In the case of Quercus spp. plots, three explanatory variables (HEI,80, HEI,mode, and INT,kurt) were
selected and applied to the regression analysis. As a result of the regression procedure, one regression
model, no. 1, with ∆AICc ≤ 2 was recommended. Models 2 to 7 were eliminated as candidate regression
models for estimating plot volume of Quercus spp. stands because their ∆AICc was greater than 2 and
because they lacked statistical significance with increasing ∆AICc (Table S6).

The developed plot volume models for each species were evaluated by implementing the models
to independent 30 testing plots (10 plots for each dominant species) (Table 6; Figure S4). The model for
Larix kaempferi shows high performance (R2 = 0.71, RMSE = 2.8 m3). In the case of Pinus densiflora,
validation results showed that R2 and RMSE values of the model were 0.74 and 2.59 m3, respectively.
When compared with plot volume predictions for Larix kaempferi, the best model of Pinus densiflora
showed slightly better validation performance. Prediction by the model for Pinus densiflora was slightly
overestimated, while estimation by the model for Larix kaempferi was underestimated. For Quercus spp.,
the developed model predicted plot volume with relatively a lower accuracy of R2 (0.56) and RMSE
(3.01 m3) than those of other species (Figure S4d). The best plot-volume model of Quercus spp.
produced overestimated plot volume predictions. The significance of the t-test for the developed and
selected optimal plot volume models for each dominant species was statistically satisfactory.
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Table 6. Selected optimal regression models for each species.

Species Optimal Plot Volume
Equation R2 RMSE (m3)

t-test (α = 0.05)

Pr > | t |

Larix kaempferi

PV = 0.43730·HEI,90 −

0.68725·INT,mode + 24.2152 ·
INT,se − 0.000782 · INT,TSum

− 5.85002

0.7075 2.772 0.966

Pinus densiflora

PV = 0.38271·HEI,mean +
0.07408·HEI,mode + 2.54207 ·

INT,std − 0.85953 · INT,range +
1.19921

0.7368 2.590 0.852

Quercus.
spp.

PV = 0.28685·HEI,80 +
0.07623 · INT,mode + 0.31517 ·

INT,kurt − 0.71001
0.5641 3.010 0.925

5. Discussion

5.1. Plot-Dominant Species Classification

The stepwise technique selected nine explanatory variables: the 80th and 90th percentiles and
standard deviation of height (HEI,80, HEI,90, and HEI,std), the mean, mode, standard deviation,
coefficient of variation, skewness of intensity (INT,mean, INT,mode, INT,std, INT,cv, and INT,skew), and
the canopy return ratio (CRR) (Table 2). For the three plot-dominant species, each species showed
significant differences in height percentile parameters (such as HEI,80 and HEI,90) (Figure S5). Næsset
and Bjerknes [41] and Holmgren and Persson [23] showed that the 90 percentile statistic could be used
as a determining factor for species identification according to the close relationship between the height
of the dominant trees in the plot and crown shape. This study determined that the HEI,80 and HEI,90
parameters could represent the dominant height of trees within a plot and showed high potential for
being powerful discriminant variables. The height standard deviation of lidar returns which shows
how much variation or dispersion exists from the average of returns was closely related with crown
depth and corresponded to crown base height. The standard deviation of height was usually higher
for Larix kaempferi than Quercus spp. and Pinus densiflora because Larix kaempferi usually has deeper
tree crowns than those of the other species. This distinct aspect of standard deviation of height could
be a potential indicator for differentiating plot-dominant species [23].

Descriptive statistics of lidar near infrared intensity returns provide useful discriminators for
species identification through recording the different characteristics of the near-infrared radiation
reflected from forest canopies (Figure S6). In this study, five intensity statistics were effectively used
to classify plot-dominant species. The mean of intensity showed the highest value among the three
dominant species for Quercus spp. because reflectivity characteristics of broadleaf and dense foliage
produce higher intensity values than needle-like leaves and sparse foliage [42]. Coniferous trees
generally show significantly lower reflection values than broadleaf trees [43], so our result supports
his finding of species-specific intensity differences (Figure S6). In addition, due to densely covered
leaves or other components, this study also found that the mean of intensity of Pinus densiflora was
higher than that of Larix kaempferi. This is likely due to higher reflectivity of Pinus densiflora and denser
canopy structure (Figure S1) [44].

The statistics related to dispersion of lidar intensity, such as standard deviation and coefficient of
variation, were considered to be explanatory variables for identifying individual trees or dominant
species in previous studies [20,24,42]. The coefficient of variation of intensity, a normalized measure
of dispersion, was closely related to the standard deviation of intensity. Generally, intensity was
affected not only by canopy closure, but also by specific reflectivity characteristics that depend on
species. Consequently, dense forest canopies were associated with low lidar penetration rates and
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therefore such forests had low coefficients of variation and standard deviation [33]. When this study
examined intensity dispersion and the influences of canopy closure, Pinus densiflora showed the lowest
standard deviation and coefficient of variation. These lowest values originated from its permeability,
which is determined by the densely covered canopy. The intensity dispersion of Quercus spp. showed
higher standard deviation and higher variability of normalized standard deviation. Considering the
variability of field measured tree density, the intensity dispersions of Quercus spp. might be crucially
influenced by the intermingled effects of tree density and degree of canopy closure.

The mode of intensity might be expected to describe the concentrativeness of the returned
intensity distribution. The mode could be strongly influenced by the shape and structure of the
canopy and the degree of canopy closure. Species-specific reflective characteristics were shown in
three plot-dominant species; however, the dense canopy closure of Pinus densiflora and variability of
tree density of Quercus spp. affected those distributions. Highly dense needle-like leaves increased the
returned intensity value, and the severe variation of tree density in Quercus spp. dispersed its mode
of the intensity distribution. The skewness of intensity is related to the asymmetry of the recorded
intensity distribution. Positive skewness of intensity would be associated with a minimally skewed
distribution and negative skewness would be relevant to a highly skewed distribution. INT,skew
shown in box-whisker plots indicated that larger laser pulses were reflected from branches or bark in
plots of Larix kaempferi, while highly recorded intensities were from leaves in plots of Pinus densiflora
considering the structural and canopy closure characteristics of each species. Because Roberts et al. [45]
found that intensities from branch and bark had lower spectral reflectance than that of leaves, this
skewness of intensity suggested that the asymmetry of intensity might be an explainable indicator of
reflective objects.

The canopy return ratio was generally used to measure the degree of laser penetration (i.e., gap
probability) against canopy components such as leaves, branches, and stem. The canopy return ratio
showed a different pattern compared to other lidar height and intensity parameters revealing its
potential for describing canopy structures (Figures S5 and S6). This is because the canopy return ratio
was derived from calculating the ratio between the number of total returns and the number canopy
returns while the other parameters were calculated from only canopy returns. Higher ratio value
means that laser pulses are dominantly interrupted by dense canopy components. To the contrary,
lower canopy return ratios can be considered as open canopy forests. Comparing these ratios between
species, Quecus spp. showed the densest canopy cover with the highest canopy return ratio. This ratio
based variable can be an important explanatory indicator for differentiating stand species.

5.2. Plot-Volume Estimation

For the plot volume model, this study identified different sets of explanatory variables for different
plot-dominant species. This is likely because of different canopy structural conditions such as canopy
cover ratio, crown depth, tree density, and others of the plot-dominant species. Across all cases, HEI,90,
HEI,80, HEI,mean, HEI,mode, and HEI,kurt variables were chosen for plot volume estimation. These key
structural parameters were corroborated by findings of previous studies that were able to estimate plot
or stand volume using only canopy height distributional parameters [13,14]. The characteristics of
these parameters were closely related to volumetric canopy structures [14,19]. The higher percentiles of
height (80th and 90th) and mean of height were highly correlated with actual canopy height which has
been used to calculate volume based on allometric relationships. In addition, the mode of height and
kurtosis of the height distribution might help explain crown geometric volume [9,13]. Because crown
geometric volume correlated with stem volume and was derived from 3-dimensional crown structures,
these crown structures might be represented by variables based on their meanings. Therefore, these two
variables also have a meaningful explanatory ability for plot volume estimation through expanding
the linear relationship [9,13].

Intensity data were also included in plot volume estimation. The intensity parameters used here
were INT,mode, INT,se, INT,TSum, INT,std, INT,range, INT,mode, and INT,kurt. According to van Aardt et al. [18],
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various statistics of lidar intensity data, such as median, standard deviation, minimum, and others,
were adopted to predict stand volume under specified species information. As described in Section 5.1,
lidar intensity at the near-infrared region contains canopy structure and reflectivity information which
may improve the volume estimation model [46].

In multiple linear regression analysis, this study could distinguish the explanatory ability of each
variable for plot volume estimation. For the case of Larix kaempferi, HEI,90 and INT,TSum acted as key
explanatory variables at the highest significance. The plot volume dominated by Pinus densiflora took
HEI,mean and INT,range as highly significant variables among the selected four variables. In the case
of the Quercus spp., INT,mode largely explained plot volume of this species along with the HEI,80 and
INT,kurt parameters. Different key explanatory variables could be attributed by the characteristics of
canopy structures of each species. In general, Larix kaempferi showed a fat corn shape crown with
deeper crown depth, whereas the other two species had a horizontally flattened and rounded shape
in the study area. Particularly, the canopy depth of Quercus spp. was relatively deeper than that of
Pinus densiflora.

Canopy structural characteristics of each species may determine performance of lidar based
volume estimation model. Several studies have reported that plot- or stand-volume estimation
using lidar data is highly feasible but most of them examined over coniferous forests. For instance,
Næsset noted a range of the coefficient of determination of 0.80–0.93 for stand volume estimation in
coniferous forest and age and site-quality classes. Means et al. [16] conducted volume modeling for
coniferous forest with R2 values of 0.95 (including mature plots) and 0.97 (not including mature plots).
By including coniferous, mixed and broadleaf forests, van Aardt et al. [18] attempted to develop a
species-specific stand volume model and showed a limited performance ranging from R2 of 0.40–0.70.
The performance of this study is relatively better, at 0.71, 0.74, and 0.56 for Pinus densiflora, L. kaempferi,
and Quercus spp., respectively. Most studies including this study confirms that lidar based volume
estimation performs better in coniferous forest than broadleaf or mixed forests. In this study, the plots
dominated by Quercus spp. had especially large variability from the forest condition, so its plot volume
model suffered. These accuracy shortcomings can be also attributed to unexplainable variability in the
forest condition, such as stand density, species mixed ratio, etc. Therefore, further study is required to
consider various forest conditions (age, density, ratio of mixture, site quality, etc.) and to precisely
survey unbiased samples.

6. Conclusions

This study shows that lidar height, intensity, and ratio parameters are applicable for discriminating
plot-dominant species (Pinus densiflora, Larix kaempferi, and Quercus spp.) and for estimating plot
volume sequentially. A kappa accuracy of 0.75 was achieved in plot-dominant species classification,
and species-specific optimal plot volume models were developed and evaluated by coefficients of
determination of 0.71, 0.74, and 0.56, respectively. Further investigation found that dispersion and
mean of lidar intensity within a plot are key classifiers of identifying three species while height related
lidar variables play a key role in modeling forest plot volume. Selected explanatory variables are closely
correlated to vertical and horizontal canopy structures and are enough to represent species-specific
characteristics in both discriminative analysis and volume estimation. Additionally, observed different
variable combinations for two important applications imply that future studies should use proper
variable combinations for each purpose. This study only investigated over homogeneous forest
stands without considering characteristics of mixed forest stands, such as species mixture, age class
mixture, etc. Considering the characteristics of mixed forest stands can help provide an unbiased
implementation for discriminating species and estimating volume.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/19/3266/s1,
Figure S1. Box-whisker plots for visualizing the distributional characteristics of selected parameters by three
plot dominant species. Figure S2. Original grouped- and Cross validated-accuracy of discriminant analysis by
number of selected variables in combinations. Figure S3. Distribution of discriminant score and its centroid by

http://www.mdpi.com/2072-4292/12/19/3266/s1
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first and second canonical discriminant function. Figure S4. Evaluation of the developed plot volume models
using independent testing data. Figure S5. Three dimensional view of the lidar height distribution of each
species. X and Y axes are a spatial coordinate of the plot (meter scale). Figure S6. Three dimensional view of
the lidar intensity distribution of each species. X and Y axes are a spatial coordinate of the plot (meter scale).
Table S1. Descriptive statistics of the field measurements. Table S2. Sorted the highest accuracy results of linear
discriminant analysis by number of variables. Table S3. Error matrix of plot dominant species classification results
by discriminant analysis (case on the highest performance of 93.3%). Table S4. Result of plot volume parameters
estimated multiple regression analysis to Larix kaempferi. Table S5. Result of plot volume parameters estimated
multiple regression analysis to Pinus densiflora. Table S6. Result of plot volume parameters estimated multiple
regression analysis to Quercus spp.
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