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Abstract: Snow cover is a key parameter of the climate system and its significant seasonal and
annual variability have significant impacts on the surface energy balance and global water circulation.
However, current snow depth datasets show large inconsistencies and uncertainties, which limit
their applications in climate change projections and hydrological processes simulations. In this
study, a comprehensive assessment of five hemispheric snow depth datasets was carried out against
ground observations from 43,391 stations. The five snow depth datasets included three remote
sensing datasets, i.e., Advanced Microwave Scanning Radiometer for the Earth Observing System
(AMSR-E), Advanced Microwave Scanning Radiometer-2 (AMSR2), Global Snow Monitoring for
Climate Research (GlobSnow), and two reanalysis datasets, i.e., ERA-Interim and the Modern-Era
Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Assessment results
imply that the spatial distribution of GlobSnow and ERA-Interim exhibit overall better agreements
with ground observations than other datasets. GlobSnow and ERA-Interim exhibit less uncertainty
during the snow accumulation and ablation periods, respectively. In plain and forested regions,
GlobSnow, ERA-Interim and MERRA-2 show better performances, while in mountain and forested
mountain areas, GlobSnow exhibits the best performance. AMSR-E and AMSR2 agree better with
ground observations in shallow snow condition (0–10 cm), while MERRA-2 shows more satisfying
performance when snow depth exceeds 50 cm. These systematic and integrated understanding of the
five representative snow depth datasets provides information on data selection and data refinement,
as well as data fusion, which is our next work of interest.
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1. Introduction

Snow cover is the most widely distributed and most dynamic component of the cryosphere, and
its significant seasonal and annual variability have notable influences on the global water circulation
and surface energy balance [1–3]. Snow melt supplies water for approximately one sixth of the world’s
population, and is a valuable water resource in arid and semi-arid regions [4–6]. Snow cover is not only
a sensitive indicator that responds to the climate system, but is also an important feedback variable that

Remote Sens. 2020, 12, 3253; doi:10.3390/rs12193253 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-6848-7271
http://dx.doi.org/10.3390/rs12193253
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/19/3253?type=check_update&version=2


Remote Sens. 2020, 12, 3253 2 of 31

amplifies global warming [7–9]. Therefore, under the goal of constraining the global mean temperature
rise to 1.5 ◦C by 2100 according to the Paris Agreement [10], more attention should be paid to studies
on snow cover change and its influence on global warming [11,12].

Reliable snow cover and snow depth datasets are, therefore, essential for global climate monitoring
and water circulation research [13–16]. However, the data accuracy of snow depth is less satisfactory
than that of snow cover extent. According to the fifth assessment report (AR5) of the Intergovernmental
Panel on Climate Change (IPCC), there is very high confidence that the spring snow cover extent over
the Northern Hemisphere has decreased since the mid-20th century, but only a lower data accuracy
of snow depth than that of snow cover extent was noted [17]. In the Special Report “The Ocean and
Cryosphere in a Changing Climate” of IPCC AR6, change in snow depth over the Northern Hemisphere
during the 20th century had still not been clarified [18].

Ground observations represent the most direct and reliable snow depth data source, and mainly
include observations from meteorological stations, snow surveys, and hydrological stations [19].
However, they are generally not used directly to monitor snow depth at hemispheric scales, in
consideration of the inadequate amount of measurements and the uneven availability that is distributed
very rarely in remote regions, mountains, and high elevation areas [20,21]. Snow water equivalent
(SWE) is also an important snow cover parameter, it directly measures the total water amount of snow
and is a function of snow depth and snow density. Nevertheless, when compared with snow depth
measurements, field SWE and snow density measurements are more time consuming, and need more
specialized instrumentations both in the fields and at the stations [22]. Thus, SWE or snow density
measurements are much fewer than those of snow depth worldwide [23]. As a consequence, in this
study we selected snow depth, rather than SWE, as the assessment metric.

Apart from ground observations, the available hemispheric/global snow depth datasets are mainly
derived from microwave remote sensing, model simulations and reanalysis. The snow depth from
microwave remote sensing datasets is usually retrieved based on its linear relationship with the
brightness temperature gradient at different microwave frequencies (e.g., at 18 GHz and 36.5 GHz) [24].
Representative microwave remote sensing snow depth datasets include the Advanced Microwave
Scanning Radiometer for the Earth Observing System (AMSR-E) snow depth dataset, its follow-on,
the Advanced Microwave Scanning Radiometer-2 (AMSR2) snow depth dataset, the Global Snow
Monitoring for Climate Research (GlobSnow) SWE dataset, etc. Snow models are a series of formulations
constructed based on the physical properties of snow cover and related parameters, through which they
can simulate spatial-temporal continuous snow evolution processes with certain forcing data [25,26].
Typical snow models include snowpack models (e.g., Crocus) and snow modules in land surface
models (e.g., Global Land Data Assimilation System (GLDAS)). Atmospheric reanalyses generally
consist of global atmospheric data assimilation systems that assimilate historical data spanning over an
extended period, providing various land surface and atmospheric parameters in near real time [27,28].
Representative reanalyses include the ERA-Interim and Modern-Era Retrospective Analysis for Research
and Applications, version-2 (MERRA-2), as well as their series datasets.

Snow depth datasets are characterized by significant differences regardless of data sources [29–31].
AMSR-E and GlobSnow show different spatial patterns and values, which is particularly obvious in
Siberia [32]. Peak SWE from 18 global atmospheric general circulation models (AGCMs) that participate
in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2) varies for more than
three times over North America [33]. The annual average peak SWE from remote sensing datasets,
reanalyses, and model outputs over the Northern Hemisphere for the period 1981–2010 varies by as
much as 50% [34].

Traditional remote sensing datasets, e.g., AMSR-E and AMSR2, show general limitations in deep
snowpacks [35,36]. Model and reanalysis derived snow depth datasets show large uncertainties in
forests, mountain areas, and during the snow ablation period [37–39], for which microwave remote
sensing snow depth datasets also perform poorly [40–42]. General uncertainties of snow depth datasets
were characterized through these evaluations, but more details are needed to fully understand the
advantages and limitations of these datasets.
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Several studies suggest that GlobSnow generally performed better against AMSR-E and AMSR2
in forested areas, such as in Finland and Russia [43,44], Northeast China [40], Eastern Canada [45], etc.
However, the results from Eastern Canada indicate that the uncertainty of AMSR-E and AMSR2 data
was significantly greater than that of GlobSnow only when SWE is larger than 150 mm and when forest
cover is larger than 70%. Therefore, the performance of AMSR-E and AMSR2 in relatively shallow
snow and non-forested conditions has probably been neglected and thereby needs further assessment.

Four reanalysis snow depth datasets (ERA-Interim, ERA-Interim/Land, MERRA, MERRA-Land),
two models (GLDAS1, GLDAS2), and two observation-based snow depth datasets (GlobSnow, Canadian
Meteorological center daily snow depth analysis (CMC)) were evaluated over mountainous areas in
British Columbia, Canada, and the results suggest that MERRA performs generally better than GlobSnow
and ERA-Interim [46]. A similar evaluation study that was conducted over the Saint-Maurice river
basin region of Southern Québec, however, found that ERA-Interim and GlobSnow perform better than
MERRA and MERRA-2 [47]. Regional evaluations provide detailed information on different datasets,
but different study areas, reference data and different study periods may all lead to contradictory
results, thus hemispheric evaluations of longtime series are essential to comprehensively understand
these datasets.

Recently, several remote sensing, model outputs and reanalysis snow depth datasets, including
AMSR-E, GlobSnow, Crocus, ERA-land, GLDAS-2, and MERRA were compared to snow survey data
from Canadian, Finnish, and Russian sources as reference data. As a result, notable differences and
larger uncertainties were found in AMSR-E when compared with other datasets, while Crocus and
MERRA showed quite a good performance [48]. This work provides valuable insight into the relative
performance of multiple datasets, but the study area only covers part of high latitudes of the Northern
Hemisphere, and the evaluation period only lasts for winter months of 2002–2010, which is insufficient
compared to the almost 40 years duration of reanalyses and model outputs.

Interestingly, quite a few evaluation studies noted that there is no universally best dataset, and
that a combined dataset, or simply the ensemble mean would perform better than the individual
datasets [33,39,49,50]. Therefore, combining multiple sources of datasets is a promising approach for
obtaining more reliable snow depth estimates, and it will be our next work. However, data fusion
should build on a solid and comprehensive recognition of the strengths and limitations of multiple
snow depth datasets, which is apparently inadequate at present. To fill this gap, evaluations containing
more types of datasets, broader study area, longer evaluation duration, and more systematic evaluation
schemes are needed.

To improve the understanding of the uncertainties of snow depth datasets and prepare for future
data fusion, this study provides a comprehensive evaluation on multiple hemispheric snow depth
datasets. By examining their spatial and temporal characteristics, performances under different land
cover types and at different snow depth ranges, the assessment focuses on investigating the uncertainties
of individual dataset, differences of uncertainties among datasets, as well as the reasons behind. The
paper is arranged as follows. Data and evaluation index are described in Section 2. The results were
introduced in Section 3 with two subsections, the intercomparison about the spatial and temporal
consistencies among different datasets, and assessment against ground observations. Discussion and
conclusion follow by in Sections 4 and 5, respectively.

2. Data and Methods

In this Section, we introduce five hemispheric snow depth datasets being evaluated, four reference
data and two ancillary data, as well as the evaluation scheme. Specifically, brief information and basic
algorithms of the five snow depth datasets, including AMSR-E, AMSR2, GlobSnow, ERA-Interim, and
MERRA-2, are described in Section 2.1. Ground reference data, including meteorological station data
from China and Russia, snow survey data from Russia and the Global Historical Climatology Network
(GHCN)-Daily dataset are described in Section 2.2. A digital elevation model (DEM) data and a land
cover data which were imported to extract mountain and forested areas are introduced in Section 2.3.
The evaluation scheme is described in Section 2.4.
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2.1. Hemispheric Snow Depth Datasets

2.1.1. AMSR-E and AMSR2 Daily Snow Depth Datasets

Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is a passive
microwave sensor onboard the Aqua satellite, it was launched in 2002 and stopped working in 2011.
Then, the Advanced Microwave Scanning Radiometer-2 (AMSR2), a successor of AMSR-E, was launched
in 2012 onboard the Global Change Observation Mission 1st–Water (GCOM-W1) satellite [51]. Global
SWE and snow depth datasets of AMSR-E and AMSR2 are provided by the National Aeronautics and
Space Administration (NASA), and the Japanese Aerospace Exploration Agency (JAXA), respectively.
In this study, we used the AMSR-E and AMSR2 snow depth datasets of from JAXA.

AMSR-E and AMSR2 daily snow depth datasets from JAXA use the retrieval algorithm from
Kelly [52]. Before the snow depth retrieval, the “snow-free” area was identified and masked out by a
hemispheric snow cover dataset [53] and MODQ11, a land cover dataset from Moderate Resolution
Imaging Spectroradiometer (MODIS) [54]. Then, if the snow was considered shallow snow by the
brightness temperature threshold detection, snow depth was set constant to 5 cm. For moderate or
deep snow, an improved Chang algorithm that takes the forest cover fraction into consideration was
implemented, and different coefficients were applied [55]. The most significant improvements of
AMSR2 against AMSR-E are the smaller footprint and the optimization of the calibration system [56].
Although there is no temporal overlap between the two datasets, they are both cross calibrated against
the Special Sensor Microwave Imager/Sounder (SSMI/S) to balance systematic errors.

AMSR-E and AMSR2 daily snow depth data were extracted for the periods 2003–2011 and
2013–2016, respectively (https://suzaku.eorc.jaxa.jp/). Note that in our study, a snow year is defined
from September 1st of the previous year to August 31st of the current year. A spatial resolution of
0.25◦ × 0.25◦ was adopted for both AMSR-E and AMSR2 datasets, although AMSR2 also offers a finer
spatial resolution of 0.10◦ × 0.10◦. In addition, as daily detections of AMSR-E and AMSR2 do not fully
cover the extent of the Northern Hemisphere, stripe gaps southward of 55 ◦N can be found in the
daily images. Specifications of AMSR-E and AMSR2 (as well as other datasets introduced below) are
displayed in Table 1.

Table 1. Specifications of the five selected snow depth datasets.

Dataset AMSR-E AMSR2 GlobSnow ERA-Interim MERRA-2

Organization NASA/JAXA NASA/JAXA ESA ECMWF NASA
Spatial coverage 0–90 ◦N 0–90 ◦N 35–85 ◦N 0–90 ◦N 0–90 ◦N

Spatial resolution 0.25◦ × 0.25◦ 0.25◦ × 0.25◦ 25× 25 km 0.25◦ × 0.25◦ 0.5◦ × 0.625◦

Time duration 2003–2011 2013–2016 1980–2013 1980–2016 1981–2016
Projection/Datum WGS-84 WGS-84 EASE-GRID WGS-84 WGS-84

Temporal resolution Daily Daily Daily 6 h Daily
Parameter

transformation SD SD SWE/ρ SWE/ρ SD*×fsc

Algorithm/Model
Improved

Chang
algorithm

Improved
Chang

algorithm

HUT, model
assimilation TESSEL NSIPP

Note that “ρ” denotes snow density, “SD*” stands for the average snow depth in snow covered area of a pixel, while
“fsc” represents the fraction of snow cover in a pixel.

2.1.2. GlobSnow Daily SWE Dataset

Global Snow Monitoring for Climate Research (GlobSnow) is a hemispheric SWE dataset from
European Space Agency (ESA), and is produced from the data assimilation of microwave radiometer
data and meteorological station data [57]. Specifically, microwave brightness temperature data from
the Scanning Multichannel Microwave Radiometer (SMMR) for the period 1980–1987, the Satellite
Program’s Special Sensor Microwave Imager (SSM/I) and the Special Sensor Microwave Imager/Sounder

https://suzaku.eorc.jaxa.jp/
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(SSMI/S) since 1988 were applied. Ground snow depth observations of GlobSnow were derived from
European Centre for Medium-Range Weather Forecasts (ECMWF). The model used was the Helsinki
University of Technology (HUT) snow microwave emission model, which is a radiative transfer-based
semi-empirical model [58].

Two major steps were included in production of GlobSnow SWE datasets. First, brightness
temperature was simulated at the location of every station by the HUT model, with input of observed
snow depth, optimal effective grain size, bulk density and forest canopy parameters. Then, the model
was fit to satellite observed brightness temperature by optimizing the effective snow grain size [58]. After
interpolating the observed snow depth and the optimized effective snow grain size over the Northern
Hemisphere, gridded brightness temperatures were simulated by running the HUT model again,
and finally, the SWE was adjusted after comparing satellite observations and model simulations [57].
In addition, a time-series melt-detection algorithm was applied to determine the onset of snowmelt
season [59], and once the snow was defined as wet snow, SWE was set to 0.001 mm. Although the
brightness temperature data from multiple sensors were employed in GlobSnow, cross-validation was not
undertaken as the assimilation process is believed to be capable of decreasing part of the inconsistencies
among different sensors. It should also be noted that in the data processing of GlobSnow, snow depth
was calculated first, and then converted to SWE, thus, the universal snow density (0.24 g/cm3) [60] would
not add uncertainty to the snow depth dataset.

In the standard GlobSnow datasets, mountain areas were masked out, whereas the dataset used
in this study is based on version 2.0, but mountain area are retained (http://www.globsnow.info/swe/).
Nevertheless, snow depth from mountain areas was not assimilated as ground observations in mountain
areas were removed in the data assimilation process. GlobSnow offers daily SWE data for the area
of 35 ◦N–85 ◦N during the period 1980–2013 at the spatial resolution of 0.25◦ × 0.25◦. SWE was
transformed into snow depth by the universal snow density of 0.24 g/cm3. Serious data gaps are present
during June to September, representing 63.63%, 99.05%, 100%, and 68.53% in June, July, August, and
September, respectively. The data was provided every other day, with occasional data gaps of longer
duration for the period 1980–1988, when SMMR offered brightness temperature at that frequency.

2.1.3. ERA-Interim Daily Snow Depth Dataset

ERA-Interim is the 4th generation reanalysis datasets from European Centre for Medium-Range
Weather Forecasts (ECMWF, [61]). A large variety of surface parameters, as well as upper-air parameters
and atmospheric fluxes are provided at the global scale since January of 1979 [62].

The snow scheme of ERA-Interim is the hydrology tiled ECMWF schemes for surface exchange
over land (TESSEL). A single layer energy and mass balance model was applied to describe the snow
evolution process at a six-hour time step [63]. The forcing data was from the atmospheric reanalysis of
ECMWF, and the precipitation data was corrected with the Global Precipitation Climatology Project’s
(GPCP) dataset that merges satellite and rain gauge data [64]. An important change of ERA-Interim
is the revise of the Operational Analysis (OA) in 2004 [65]. Before 2004, the snow depth pattern was
mainly driven by a gridded hemispheric snow depth climatology that was constructed by synoptic
stations, literature searches, and climatological records. In the Revised Operational Analysis (ROA)
since 2004, the National Environmental Satellite Data and Information Service (NESDIS) Interactive
Multisensor Snow and Ice Mapping System (IMS) snow extent, a satellite derived dataset from National
Oceanic and Atmospheric Administration (NOAA), was imported in addition to the ground-based
observations [63].

In this study, SWE and snow density of ERA-Interim was extracted for the period 1980–2016
(https://apps.ecmwf.int/datasets/data/interim-full-daily/), and average snow depth of a pixel was
calculated as the ratio between SWE and snow density. The original resolution of ERA-Interim is
0.75◦ × 0.75◦ every six hours. Because multiple interpolated spatial and temporal resolutions are
offered, the variables we extracted had a spatial resolution of 0.25◦ × 0.25◦ and a frequency of six hours.

http://www.globsnow.info/swe/
https://apps.ecmwf.int/datasets/data/interim-full-daily/
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2.1.4. MERRA-2 Daily Snow Depth Dataset

The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) is
the latest global atmospheric reanalysis produced by NASA’s Global Modeling and Assimilation Office
(GMAO). MERRA-2 offers a variety of atmospheric and surface key variables at the global scale since
January, 1980 [66].

The land surface model of MERRA-2 is Catchment, in which the basic computation unit is
the hydrological basin instead of uniform grids. National Aeronautics and Space Administration’s
Seasonal to interannual Prediction Project (NSIPP), a three-layer catchment-based snow model, was
used to diagnose snow properties [67,68]. The model-generated precipitation was derived from hourly
hydrological datasets, and was corrected with precipitation gauge observations before being used as
the forcing data [69]. After the correction, greatest improvements of precipitation were in the tropics,
while no adjustments were applied poleward of 62.58 ◦N, due to the sparse distribution and poor
quality of the gauge observations.

Average snow depth of the snow-covered area in a pixel and snow cover fraction were extracted
for the period 1980–2016 (https://disc.gsfc.nasa.gov/datasets/). Mean snow depth of the pixel was
calculated as the product between them. The original spatial resolution of MERRA-2 is 0.5◦ × 0.625◦,
and the data was resampled to 0.25◦ × 0.25◦ by nearest interpolation. Several temporal resolutions are
offered and the average daily values were chosen.

2.2. Ground Observations

Four sources of ground observations, including meteorological station data from China and Russia,
snow survey data from Russia and the Global Historical Climatology Network (GHCN)-Daily dataset,
were collected and considered as the “ground reference” in the assessment. Basic information, data
processing and the spatial distribution of the selected ground observations for spatial and temporal
evaluation were introduced in this section.

2.2.1. Basic Information of the Ground Observations

Daily snow depth from China’s meteorological stations during 1980–2013 was obtained from
national meteorological information center (http://data.cma.cn/). The assembled dataset includes 945
meteorological stations, offering information on daily snow depth, station elevation, etc. Daily snow
depth was measured manually with a ruler at 8:00 a.m. Data was calibrated and quality checked before
importing to the national meteorological data platform, thus, no outlier or suspicious data was found
in this dataset. Brief information about the dataset (as well as other ground observations introduced
below) are listed in Table 2.

Table 2. Specifications of the four ground observations.

Dataset Spatial Extent Duration Number of Stations

Meteorological station data from China China 1980–2013 945
Meteorological station data from Russia The former Soviet Union 1980–2016 620

Snow survey data from Russia The former Soviet Union 1980–2016 514
GHCN The Northern Hemisphere 1980–2016 41,312

Daily snow depth from Russian meteorological stations during 1980–2016 was collected through
the Russian meteorological center (http://aisori.meteo.ru/ClimateR). Snow depth, elevation of the station
and the quality control field were obtained from the dataset. Doubtful records, which were flagged in
the quality control field were removed. After data filtration, a total of 620 stations were included in
the dataset.

Snow survey data from Russia for the period 1980–2016 was also obtained via the Russian
meteorological center (http://aisori.meteo.ru/ClimateR), including elevation of the measurement, the
deepest, average, and shallowest snow depth, snow density, snow age, etc. This information was

https://disc.gsfc.nasa.gov/datasets/
http://data.cma.cn/
http://aisori.meteo.ru/ClimateR
http://aisori.meteo.ru/ClimateR
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recorded in the dataset at every five to ten days interval from September to May. The measurement
was carried out at every 1 km or 2 km in open areas, and every 500 m in forested regions [70]. Data was
filtered based on the criteria that the average snow depth should be within the range of the deepest and
shallowest snow depth. After quality check, observations from 514 stations remained in the dataset.

The Global Historical Climatology Network (GHCN)-Daily dataset is a database that addresses
the critical need for historical daily temperature, precipitation, and snow records over global land
areas (https://www.ncdc.noaa.gov). Nearly 30 affiliations, including meteorological stations from
several countries, SNOwpack TELemtry (SNOTEL), snow survey data, etc., provided records from
over 75,000 stations in 179 countries and territories, but approximately two thirds of the data are for
precipitation measurements only [71]. In our study, snow depth, elevation and quality control field
were collected for the period 1980–2016 over the Northern Hemisphere. Data that failed the quality
check (e.g., internal consistency check, climatological outlier check, spatial or temporal check, etc.)
were removed. Finally, there were 41,312 stations offering snow depth information in the dataset.

2.2.2. Data Processing of Ground Observations

A total of 43,391 stations were left after quality check, located in 16,446 0.25◦ × 0.25◦ pixels.
For pixels with multiple observations, mean values were adopted. To obtain more reasonable evaluation
results, ground observations for spatial and temporal evaluation were further selected, and the filtering
criteria and the distribution of ground observations for spatial and temporal evaluation are described in
this section.

Data filtering of stations for spatial evaluation focused on examining the validity of stations
in mountain areas (Figure 1), as complex topography often leads to low representativity of these
stations [6,72,73]. The filtering checked both the number of stations in a pixel and altitude representativity
of ground observations. For pixels with three or more stations, all stations were retained as more data
would generally increase the representativity. For pixels with one or two stations, if the elevation of the
station was out of the range of the mean elevation plus and minus three times the standard deviation of
the pixel, the station was removed because it was probably not representative enough for the average
snow depth of the pixel. After the filtering, 233 stations which were located in 230 pixels were removed,
and 43,148 stations were left for spatial evaluation.

The left stations were further selected for temporal evaluation based on the following criteria (see
flowchart in Figure 1): (1) the station should be located between 35 ◦N–85 ◦N, to be consistent with the
spatial coverage of GlobSnow; (2) missing data of the station should be less than 40% during the study
period, which is in consideration of the seasonal variation in snow depth; (3) annual mean snow cover
days (snow depth deeper than 5 cm was defined as a snow cover day) of the station should be more
than 60 days, with the purpose of obtaining more valid information and highlight the differences. As a
result, 1984 stations in 1793 pixels were selected for temporal evaluation.

The spatial distribution of the stations for spatial and temporal evaluations is presented in Figure 2.
China’s stations are densely distributed in the eastern part, and relatively sparse in the west. Russian
stations and survey data cover most regions of the former Soviet Union. GHCN stations are most
densely distributed in the U.S. and can be found in most part of the Northern Hemisphere. With regard
to stations for temporal evaluation, 1237 of them are located in North America, and most of them
are distributed around the Rocky Mountains, the national boundary between Canada and the U.S.,
as well as in most of Canada. In the meanwhile, 747 stations are located in Eurasia, and are densely
distributed in Scandinavia, and the rest are almost evenly distributed in mid-north Eurasia.

https://www.ncdc.noaa.gov
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Figure 2. The spatial distribution of different sources of ground observations for spatial distribution
and stations for temporal evaluation. Data for spatial evaluation, namely the ground observations from
China, Russian meteorological stations, Russian snow survey and GHCN, were represented by orange,
purple, green, and blue dots, respectively. Data selected for temporal evaluation are represented by
black crosses.

2.3. Ancillary Data

To examine the performance under different land cover types (i.e., plain, forest, mountain, and
forest-mountain), a land cover data and a DEM data were obtained to extract mountain and forested
areas. Brief information and the data processing of the two data are introduced in this Section.

2.3.1. GlobCover 2009 Global Land Cover Map

Forested and non-forested regions were identified using GlobCover 2009, which is a global land
cover data that produced by ESA and the Université Catholique de Louvain (http://due.esrin.esa.int/

http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
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page_globcover.php, [74]). The land cover map was derived from an automatic and regionally-tuned
classification of a time series of global Medium Resolution Imaging Spectrometer (MERIS) fine
resolution mosaics for the year 2009, and 22 types of global land cover classes were defined according
to the United Nations Land Cover Classification System.

The spatial resolution of GlobCover is approximately 300 m × 300 m. First, the 22 land cover
types were reclassified as forest and non-forest at the original resolution; When resampling them to the
spatial resolution of 0.25◦ × 0.25◦, if more than half of the pixels at the 0.25◦ × 0.25◦ pixel extent was
defined as forest, the pixel was classified as forest, otherwise it was defined as non-forest.

2.3.2. Global Multi-Resolution Terrain Elevation Data 2010

Mountains were separated from plain areas using Global Multi-resolution Terrain Elevation
Data 2010 (GMTED2010, https://topotools.cr.usgs.gov/gmted_viewer/, [75]). It is an update data of
GTOPO30, and both are produced by the United States Geological Survey (USGS).

GMTED2010 offers multiple spatial resolution at 30, 15, and 7.5 arc seconds, which is approximately
one kilometer, 450 m, and 225 m, respectively [75]. Mountains were defined partly referring to
GlobSnow [57] to maintain consistency. Therefore, both mean and standard deviation of the elevation
within a pixel was obtained at the spatial resolution of 30 arc seconds, and a threshold of 150 m in
standard deviation was set to determine the mountain areas. When resampling to the spatial resolution
of 0.25◦ × 0.25◦, a pixel was classified as mountain if these represented more than half of the pixels,
otherwise it was defined as plain.

2.3.3. Reclassified Land Cover Types of the Northern Hemisphere

The land cover of the Northern Hemisphere was divided into forest and non-forest by GlobCover
2009, plain and mountain by GMTED2010. Hence, by data union, land areas were reclassified into
plain, forest, mountain and forest-mountain (Figure 3), each occupying 60.69%, 30.31%, 6.98%, and
2.02% of the total land area, respectively.
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Figure 3. The distribution of plain, forest, mountain, and forest-mountain regions over the Northern
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Forest is densely distributed in mid-high latitudes of Eurasia, east coast of North America and
the southern part of Canada. The largest two mountain regions are the Rocky Mountains and the
Himalaya, while the two smaller ones are the Scandinavian Mountains and the Alps. Forest-mountain
area are mainly located in the Rocky Mountains and the southeastern part of the Himalaya.

2.4. Evaluation Scheme

Average uncertainties of the five datasets were verified spatially at the pixel scale, temporally
at annual and monthly average scales, under different land cover types and at different snow depth
ranges. Evaluation metrics mainly included BIAS, root mean square error (RMSE), relative error (RE),
and correlation coefficient (only calculated in spatial uncertainty analysis). Greenland was excluded in
all evaluations due to the severe data gaps in all five datasets. Additionally, June, July, August, and

http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
https://topotools.cr.usgs.gov/gmted_viewer/
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September were not included in annual average calculations in consideration of the severe data gaps in
the GlobSnow dataset. For ground observations with snow depth less than 1 cm, the RE value was set
to invalid to avoid spurious large values. In addition, the difference between AMSR-E and AMSR2 was
not compared, because only three years of data from AMSR2 were used and there was no overlap with
AMSR-E, thus, their differences are likely to be influenced by interannual fluctuations in snow depth.

3. Results

The spatial and temporal characteristics of the five snow depth datasets were first intercompared,
and then evaluated against ground observations through multiple metrics (BIAS, RMSE, RE, R), and
the results are described in this section, respectively.

3.1. Intercomparison of the Datasets

The five datasets were intercompared by investigating their spatial and temporal consistencies, as
well as pair-wise correlations.

3.1.1. Spatial Distribution of Average Snow Depth

Average snow depth of the five datasets from October to May during the study period over the
Northern Hemisphere is shown in Figure 4. Consistencies among the five datasets are that snow cover
is mainly distributed in mid-high latitudes over the Northern Hemisphere, and deep snow is generally
distributed in Alaska, Northern Canada, and Northern Eurasia. However, apparent differences exist in
the regional spatial patterns and snow depth.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 33 
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In North America, the spatial patterns are similar, with snow cover densely distributed in Alaska,
the Rocky Mountains and Northern Canada. However, the average snow depth of AMSR-E and
AMSR2 is approximately 40 cm in the dense snow-covered area, and it is generally thinner than that of
other datasets, especially in the Rocky Mountains and in the northeastern part of Canada. The average
snow depth of GlobSnow and ERA-Interim is about 50 cm, which represents a moderate level among
the five datasets. MERRA-2 shows extremely thick snow in the northern part of the Rocky Mountains,
with the largest snow depths of more than 4 m.

In Eurasia, both the spatial pattern and snow depth values are inconsistent. The deepest snow
depth of AMSR-E and AMSR2 appears in the Central Siberian Plateau and East Siberian Mountain,
while the snow is shallower in the West Siberian Plain and the East European Plain; a similar spatial
pattern is also found in the SMM/I estimates [76]. For the remaining datasets, deeper snow depth
appears from the West Siberian Plain to Scandinavia, which is in the middle and western part of North
Eurasia. In addition, MERRA-2 exhibits the deepest snow depth in the Arctic among the five datasets.

3.1.2. Temporal Variability of Average Snow Depth

Annual average snow depth during October to May during 1980–2016 among the five datasets
over North America, Eurasia and the Northern Hemisphere is illustrated in Figure 5. Regional averages
between 35 ◦N–85 ◦N land areas were calculated to maintain consistency with the spatial coverage
of GlobSnow.

The largest inconsistency in average snow depth occurs in North America, where the average
snow depth of MERRA-2 is approximately three times that of AMSR-E and AMSR2. Specifically,
average snow depth of AMSR-E and AMSR2 is about 10 cm during the study period, GlobSnow and
ERA-Interim show similar average snow depth between 15 and 20 cm, while the average snow depth
of MERRA-2 is approximately 30 cm.

Better consistency was found among the five datasets over Eurasia but the relative snow depths
between North America and Eurasia were different. Average snow depth of AMSR-E and AMSR2 over
Eurasia is approximately 10–15 cm, which is a little deeper than that over North America. GlobSnow
and ERA-Interim show similar average snow depths of about 15–20 cm over both continents. Average
snow depth of MERRA-2 is approximately 25 cm, which is smaller than that over Northern America.

At the hemispheric scale, differences in average snow depth among the datasets are still apparent.
AMSR-E and AMSR2 show the smallest average snow depth around 10–15 cm. GlobSnow and
ERA-Interim exhibit a moderate snow depth of about 15–20 cm. MERRA-2 shows the largest average
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snow depth of about 25 cm. Other studies also suggest a larger average snow depth from MERRA-2 when
compared with ERA-Interim at the global scale [77] and GlobSnow over the Northern Hemisphere [78].Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 33 
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Figure 5. Annual variability of average snow depth from October to May during 1980–2016 among the
five datasets over (a) North America, (b) Eurasia, and (c) the Northern Hemisphere. The five dash
lines that are colored in blue, purple, yellow, red, and green denote the annual average snow depth of
AMSR-E, AMSR2, GlobSnow, ERA-Interim, and MERRA-2, respectively.

The average monthly variability of the five datasets is displayed in Figure 6. Both the peak snow
depth and monthly variation patterns are different over North America, Eurasia, and the Northern
Hemisphere. AMSR-E and AMSR2 show the smallest snow depth, GlobSnow and ERA-Interim moderate
depths, while MERRA-2 exhibits the largest peak snow depth. Additionally, the peak snow depth of
AMSR-E and AMSR2 appears in February, implying a small snow accumulation process from January to
February, and a strong melt since March. GlobSnow and ERA-Interim exhibit almost equal snow depths
in February and March, indicating balanced accumulation and ablation processes. The peak snow depth
of MERRA-2 appears in March, which suggests a continuously accumulation from January to March.
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Figure 6. Monthly variability of average snow depth during 1980–2016 among the five datasets over (a)
North America, (b) Eurasia, and (c) the Northern Hemisphere. The five dash lines which are colored in
blue, purple, yellow, red, and green represent the average monthly snow depth of AMSR-E, AMSR2,
GlobSnow, ERA-Interim, and MERRA-2, respectively.

3.1.3. Pair-Wise Correlations among Datasets

The pair-wise correlations from October to May during 1980–2016 between 35 ◦N–85 ◦N among
the five datasets were calculated over North America, Eurasia and the Northern Hemisphere (displayed
in Figure 7). Datasets generally present better correlations over Eurasia than that over North America.

In both North America and Eurasia, the best correlation occurs between ERA-Interim and
MERRA-2, probably as both of them are reanalysis, and their forcing data are in overall good agreement.
GlobSnow presents closer relationships with ERA-Interim and MERRA-2, rather than AMSR-E and
AMSR2, and particularly fine correlations are found between GlobSnow and ERA-Interim over North
America. Lower correlations with other datasets are observed between AMSR-E/AMSR2 and other
datasets, and the lowest correlation occurs between AMSR-E and ERA-Interim.
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Figure 7. Correlation matrix among the five datasets from October to May during 1980–2016 over (a)
North America, (b) Eurasia, and (c) the Northern Hemisphere. Each cube represents the correlation
between datasets labeled in corresponding column and row. Each column from up to down and each
row from left to right represents AMSR-E, AMSR2, GlobSnow, ERA-Interim and MERRA-2, respectively.
The color of the cube represents the value of correlation coefficient, which is shown in the color bar.

3.2. Evaluation of the Datasets against Ground Observations

In this Section, performances of the five datasets were evaluated against ground observations. First,
we present the spatial distribution of the reference data. Then, we describe the spatial and temporal
uncertainties (including BIAS, RMSE, RE and R) of each dataset. Finally, we demonstrate the
uncertainties under different land cover types and snow depth ranges.

3.2.1. Average Snow Depth of Ground Observations

Average snow depth during October to May from ground observations over the Northern
Hemisphere is shown in Figure 8. An overall good correspondence is shown between snow depth and
latitude. At lower latitudes, e.g., most of the U.S. and China, the average snow depth is less than 5 cm.
Stations around the border between Canada and the U.S., as well as in the southern part of Europe,
Kazakhstan and southern part of Russia show average snow depths around 5–20 cm. In Northern
Canada, most parts of the Rocky Mountains and the mid-northern parts of Eurasia, the average snow
depth is approximately 20–50 cm. Average snow depths greater than 50 cm are rare and most of them
are located in mountain areas, e.g., in the Rocky Mountains and Scandinavian Mountains.
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Figure 8. Spatial distribution of average snow depth of ground observations from October to May
during 1980–2016 over the Northern Hemisphere. Average snow depth of each station was divided
into four groups, i.e., 0–5 cm, 5–20 cm, 20–50 cm, and deeper than 50 cm, each group is colored in pink,
orange, green, and blue, respectively.

3.2.2. Spatial Uncertainties of the Five Datasets

The results of spatial uncertainties, including BIAS, RMSE, RE, and R of the five datasets were
described in this Section. RMSE from October to May during 1980–2016 among the five datasets was
displayed in Figure 9, while result of BIAS, RE, and R was displayed in Figures A1–A3, respectively.
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Figure 9. Average RMSE from October to May during 1980–2016 among the five datasets over the
Northern Hemisphere. RMSE was divided into five groups, i.e., less than 2 cm, 2–10 cm, 10–20 cm,
20–30 cm and larger than 30 cm, each are colored in yellow, orange, peach, purple, and blue, respectively.

In general, small BIAS and RMSE appear in conditions where snow is shallow, e.g., most parts of the
U.S. and China. Correspondingly, in Alaska, the Rocky Mountains, North Canada, as well as Northern
Eurasia where snow depth is greater, the BIAS, RMSE, and the discrepancies of the uncertainties are
larger. R, however, generally gets finer as latitude gets northward. AMSR-E and AMSR2 exhibit overall
weaker correlations than other datasets.

The general uncertainty patterns are similar among the datasets over North America. Almost all
datasets show large BIAS (underestimation larger than 20 cm), RMSE (greater than 40 cm) and RE
(larger than 175%) around the Rocky Mountains. MERRA-2, however, shows significant overestimation
(larger than 20 cm) in the northern part of the Rocky Mountains, and relatively smaller RE (about
75–125%) in the southern part. In most part of Canada, AMSR-E and AMSR2 show larger uncertainties.
In most parts of the U.S., ERA-Interim and MERRA-2 exhibit the finest RE and R.
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In Eurasia, AMSR-E and AMSR2 exhibit overestimations (5–20 cm) in the East Siberian Plateau
and obvious underestimations (5–20 cm on average, some stations larger than 20 cm) from the Middle
Siberia Plain to Scandinavia. The RMSE of some stations in this area can be larger than 20 cm, which
implies a poor performance of AMSR-E and AMSR2 in North Eurasia. GlobSnow, ERA-Interim and
MERRA-2, which show different spatial patterns of snow depth with AMSR-E and AMSR2 in Siberia,
perform quite well over North Eurasia, except for MERRA-2 in the East European Plain, where a
general overestimation (5–20 cm on average) was found. MERRA-2 also shows the overall lowest RE
and finest R in China.

3.2.3. Temporal Uncertainties of the Five Datasets

To detect the temporal uncertainties of the five datasets, annual and monthly BIAS, RMSE, and
RE were investigated over North America, Eurasia, and the Northern Hemisphere, respectively, and
results are described in this Section. The average annual and monthly snow depths from ground
observations selected for temporal evaluation are also attached for reference.

Annual average snow depth from the selected observations, and the corresponding BIAS, RMSE
and RE among the five datasets during October to May between 35 ◦N–85 ◦N over North America,
Eurasia and the Northern Hemisphere are shown in Figure 10. Large interannual fluctuations are seen
in observed snow depth over North America, and particularly in years when snow depth was larger,
e.g., in 1981, 2008, 2011, and 2014, when the snow depth of some stations in the Rocky Mountains
was always deep. In other words, the particularly large snow depths, found in a few stations in the
Rocky Mountains are likely to be attributed to the large average snow depth of certain years over
North America. Meanwhile, the interannual fluctuation of snow depth in Eurasia is more stable.
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Figure 10. Average snow depth from selected ground observations and the corresponding uncertainties
among the five datasets from October to May during 1980–2016 over (a) North America, (b) Eurasia,
and (c) the Northern Hemisphere, which are placed in each column. The first row represents average
snow depth from ground observations, while the second, third and the fourth row stands for BIAS,
RMSE and RE results of the five datasets, respectively. The dashed line in dark red from the first row
represents snow depth from the selected stations for temporal evaluation, dashed lines from other
rows, which are colored in blue, purple, yellow, red, and green, denote snow depth from AMSR-E,
AMSR2, GlobSnow, ERA-Interim, and MERRA-2, respectively.
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General underestimations were found in North America among the five datasets. AMSR-E and
AMSR2 show the largest negative bias, followed by GlobSnow and ERA-Interim, while MERRA-2 is
closest to the reference data. In Eurasia, MERRA-2 generally overestimates against ground observations,
while GlobSnow and ERA-Interim are relatively closer to the reference data. At the hemispheric scale,
a general overestimation is detected by MERRA-2, while AMSR-E and AMSR2 exhibit the largest
underestimation, followed by GlobSnow and ERA-Interim.

The interannual fluctuations of RMSE among the five datasets are similar to those of the snow
depth from ground observations in North America, and the RMSE is larger in years when the observed
snow depth is also large, e.g., 2008 and 2011. ERA-Interim and GlobSnow exhibit smaller RMSE than
other datasets before 2004, while the RMSE of ERA-Interim increased since 2004. In Eurasia, the RMSE
of ERA-Interim is even smaller than that of GlobSnow before 2004, while it abruptly increases from
2004. This abrupt increase of RMSE in Eurasia is different from other datasets, and partly caused by its
revision of the operational analysis, which changes the spatial distribution of the snow depth. In both
continents, the RMSE of AMSR-E and AMSR2 is slightly larger than in other datasets.

AMSR-E, AMSR2 and GlobSnow show smaller RE than ERA-Interim and MERRA-2 in both
continents, and MERRA-2 generally shows the largest. ERA-Interim exhibits apparently larger RE
during 2004–2014, while other datasets show generally a stable trend.

Average monthly snow depth from ground observations, and uncertainties (including BIAS, RMSE
and RE) of the five datasets over North America, Eurasia, and the Northern Hemisphere are displayed
in Figure 11. The peak snow depth from observations appears in February over North America, and
in March over Eurasia. This inconsistency possibly originates from the different latitudes where the
stations are located (Figure 2): compared with Eurasia, in North America more stations are located at
lower latitudes, which may result in the earlier start of snow ablation.
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Figure 11. Average monthly snow depth from selected ground observations and uncertainty during
1980–2016 among the five datasets over (a) North America, (b) Eurasia, and (c) the Northern Hemisphere,
which were placed in each column. Each row represents snow depth from ground observations, BIAS,
RMSE, and RE of the five datasets, respectively. Snow depth of ground observations, AMSR-E, AMSR2,
GlobSnow, ERA-Interim, and MERRA-2 are colored in dark red, blue, purple, yellow, red, and green,
respectively.
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In general, AMSR-E and AMSR2 exhibit apparently larger underestimations in both continents,
followed by GlobSnow and ERA-Interim. MERRA-2 shows a general overestimation, except in January,
February, and March over North America.

From October to December, which is the snow accumulation period, ERA-Interim exhibits the
smallest RMSE. In January, very similar RMSE was observed between ERA-Interim and GlobSnow.
From February to April, GlobSnow shows the smallest RMSE. During May to August, the discrepancies
among datasets are small. AMSR-E and AMSR2 exhibit overall largest RMSE during December to
April, MERRA-2 shows a slightly larger RMSE than GlobSnow and ERA-Interim in almost all months.

The RE of MERRA-2 is apparently larger than for other datasets, particularly in September, October,
April, May, and June, which correspond to the beginning of the snow accumulation and the end of the
snow ablation period.

3.2.4. Uncertainties under Different Land Cover Types

Uncertainties (including BIAS, RMSE, and RE) of the five datasets under different land cover
types (plain, forest, mountain and forest-mountain) during October to May between 35 ◦N and 85 ◦N
over the Northern Hemisphere were calculated and illustrated in Figure 12. Results show that the five
datasets perform best in plains and worse in mountain and forested areas.

According to the results from all the selected 1984 stations from all land cover types, AMSR-E
and AMSR2 show the largest underestimation, largest RMSE, and smallest RE among all datasets.
ERA-Interim exhibits a slightly smaller underestimation than in GlobSnow, and both datasets show
smaller RMSE and RE than others. MERRA-2 exhibits the smallest underestimation, second smallest
RMSE and largest RE.

In plain areas, AMSR-E and AMSR2 exhibit the largest BIAS and RMSE. GlobSnow, ERA-Interim
and MERRA-2 show similar RMSE. ERA-Interim and MERRA-2 show the smallest and largest RE,
respectively.Remote Sens. 2020, 12, x FOR PEER REVIEW 21 of 33 
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Figure 12. Average uncertainty of the five datasets from October to May during 1980–2016 under
different land cover types. Each sub-figure shows the results of (a) BIAS, (b) RMSE, and (c) RE. The light
blue, purple, orange, grey, and blue bars denote results from AMSR-E, AMSR2, GlobSnow, ERA-Interim,
and MERRA-2, respectively.

In forested areas, the smallest BIAS was observed from ERA-Interim, smallest RMSE was found
from MERRA-2, and all datasets show almost equal amounts of RE.

In mountain areas, MERRA-2 is the only dataset that overestimates against station data. Additionally,
the RMSE and RE of MERRA-2 are the largest. GlobSnow exhibits the smallest RMSE. AMSR-E and
AMSR2 show the largest underestimation, second largest RMSE, and smallest RE.

In forest-mountain areas, much larger underestimations and RMSE were found in AMSR-E and
AMSR2; the largest RE was found in MERRA-2, while the smallest RMSE was found in GlobSnow.

3.2.5. Uncertainties at Different Snow Depth Ranges

Average BIAS, RMSE, and RE at different snow depth ranges were calculated and results are
displayed in Figure 13. Snow depth was divided into eight groups according to the average snow
depth from ground observations, i.e., 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm, 40–50 cm, 50–100 cm,
100–200 cm, and deeper than 200 cm.

When observational snow depth is thinner than 10 cm, AMSR-E and AMSR2 exhibit a very slight
underestimation, whereas other datasets show slight overestimations. The RMSE are similar among the
five datasets, while the smallest and largest RE is found in AMSR-E/AMSR2 and MERRA-2, respectively.

When snow depth ranges from 10–30 cm, overestimations are found in MERRA-2, when snow
depth ranges from 10–20 cm, ERA-Interim also exhibits a slight overestimation, while underestimations
are observed in other datasets. GlobSnow, ERA-Interim and MERRA-2 have similar RMSE, which is
smaller than that of AMSR-E and AMSR2. GlobSnow and ERA-Interim exhibit the smallest RE when
snow depth ranges from 20–30 cm.

When snow depth ranges from 30–50 cm, AMSR-E and AMSR2 exhibit the largest underestimation,
RMSE and RE. GlobSnow, ERA-Interim and MERRA-2 show similar RMSE, while the RE of MERRA-2
is slightly larger than GlobSnow and ERA-Interim. GlobSnow and ERA-Interim show similar smallest
RE, followed by MERRA-2, AMSR-E, and AMSR2.

When snow depth is deeper than 50 cm, the five datasets perform similarly. ERA-Interim exhibits
a slightly better performance than GlobSnow. MERRA-2 have the smallest BIAS, RMSE, and RE,
AMSR-E, and AMSR2 have the largest. In particular, when snow depth exceeds 200 cm, the RE of
AMSR-E and AMSR2 is very close to 100%, implying a failure in estimating snow depth at this range.
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Figure 13. Average uncertainty at different snow depth ranges from October to May during 1980–2016
among five datasets. Each sub-figure stands for the result of (a) BIAS (b) RMSE (c) RE, respectively.
The light blue, purple, orange, grey, and blue bars denote the results from AMSR-E, AMSR2, GlobSnow,
ERA-Interim, and MERRA-2, respectively.

4. Discussion

4.1. The Representativeness of Ground Observations

The representativeness of ground observations is an inevitable topic in dataset assessment studies,
as remarkable differences occur when comparing ground observations with gridded snow depth
datasets [79–81]. These inconsistencies are particularly obvious when measurements are sparsely
distributed, or the underlying surface is complex or inhomogeneous, such as in mountain areas [20,82,83].
Nevertheless, accounting for the fact that ground observations are far from adequate, the direct upscaling
is still the most commonly used approach in data assessment studies at present [81,84].
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In our study, while point-wise observational data was directly regarded as the reference “truth” at
the 0.25◦ × 0.25◦ pixel scale, efforts were made to increase the representativity and reliability of ground
observations at the pixel scale.

First, by importing multiple sources of ground observations, both the total amount of observations
and the number of observations in a pixel were increased. Specifically, in addition to ground observations
from meteorological stations, snow survey data and SNOTEL data, etc., were also collected as ground
reference. These multiple sources of ground observations largely expanded the total number of ground
observations. In addition, because snow surveys are usually carried out over relatively short distance,
these data were likely to increase the number of stations in the 0.25◦ × 0.25◦ pixel range.

The representativity and reliability of observations in mountain areas were further validated in
mountain areas (detail in Figure 1). Two aspects were considered in the validation process, namely the
number of stations required for a reliable reference at the pixel scale and the filtering criteria if the
number of stations did not reach the threshold. As more observations in a pixel typically suggest larger
reliability, the number of observations needed for a reliable reference was determined first. Chang [85]
mentioned that ten measurements are needed to obtain an error of less than 5 cm in a 1◦ × 1◦ grid cell.
According to an experiment conducted in mountain areas of California, neither individual snow course
measurements nor the snow pillow could represent well the regional mean on a scale of 1–16 km2 [86].
In consideration of these studies, we determined that a reliable reference in mountain areas needs at
least three observations. Then, for pixels with one or two station, the representativeness of the stations
was further checked. The representativeness of ground observations was validated by its elevation
representativity, as different elevation leads to different solar radiation, temperature, precipitation,
etc., consequently different snow depth distribution. As a result, 233 stations in mountain areas were
removed due to their low representativity (described in Section 2.2.2). Compared to the evaluation
result with all stations, the general BIAS, RMSE and RE decreased for 3.19%, 2.66%, 1.47% in mountain
areas, and 4.07%, 2.36%, and 0.19% in forest-mountain areas, respectively. It should be also noted that
apart from elevation, solar radiation, wind deposition, latitude, slope, aspect, etc., are also impacting
factors of snow depth variation, thus, careful investigation on these factors are expected to consider in
future work.

4.2. Advantages and Limitations of the Five Datasets

AMSR-E and AMSR2 are standalone passive microwave remote sensing datasets, thus, their
retrieved snow depth reflects the properties of microwave signals. Based on the linear relationship
between brightness temperature gradient and snow depth, AMSR-E and AMSR2 perform quite well
in shallow snow, e.g., at snow depths less than 20 cm (Figure 13). The fine performance of AMSR-E
was also reported when SWE is less than 30 mm [32], and when annual peak SWE values are less than
80 mm [36]. However, if the study area is located at high latitudes where snow depth is generally thick,
the fine performance of AMSR-E in shallow snow condition is likely to be neglected [48]. Additionally,
the spatial resolution of AMSR-E and AMSR2 (0.25◦ for AMSR-E, 0.25◦ and 0.1◦ for AMSR2) is two or
three times finer than that of the reanalyses, thus they can pick up more variability and offer valuable
information on snow depth at both regional and hemispheric scales (Figure 4). However, apparent
limitations also exist in AMSR-E and AMSR2. First, microwave signals saturate at a certain threshold
(usually at 100–200 mm, depending on local conditions), after which the slope of the snow depth and
the brightness temperature gradient reverse [77,87]. Consequently, AMSR-E and AMSR2 perform
poorly in deep snowpacks, e.g., Alaska and the East European Plain (Figure A1, Figure 13). In addition,
the spatial pattern of AMSR-E and AMSR2 that show underestimation in the East Siberian Plain and
East European Plain, and overestimation in the East Siberian Mountain (Figure A1) may also be an
intrinsic weakness of microwave remote sensing datasets, as it was also found in other remote sensing
datasets, e.g., SMM/I [76]. The overestimation in Eastern Siberia is possibly due to the low winter-season
precipitation with very cold surface temperature, both of which contribute to large faceted grains and
causes exaggerated scattering relative to the overestimation of snow depth and SWE [88–90].
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GlobSnow performed better overall against AMSR-E and AMSR2, largely owing to the import
of station data and the assimilation process. Additionally, the time-series melt-detection algorithm
possibly attributed to the good performance during the ablation period (Figure 11). In addition, despite
the relatively low representativeness of ground observations in mountain areas, GlobSnow exhibits the
finest performance in mountain areas (Figure 13). This is the first systematic assessment of GlobSnow
over mountainous areas, because, in almost all intercomparison and evaluation studies, the standard
version of GlobSnow was obtained, the mountain of which was masked [34,48,91]. A significant
disadvantage of GlobSnow is that its spatial coverage is limited to 35 ◦N–85 ◦N, and serious data gaps
occur during June to September, which makes daily snow depth monitoring over the whole Northern
Hemisphere impossible.

ERA-Interim reveals generally satisfactory performance in the assessment. Apart from the model
design and the assimilation scheme, snow depth estimates from reanalysis critically depend on the
accuracy of precipitation forcing [92]. The precipitation data of ERA-Interim, which was corrected by
GPCP, has been proved to be quite reliable [47,93,94]. This greatly contributes to the fine performance
of ERA-Interim snow depth estimates. However, the revision of the operational analysis, which started
in 2004, significantly changed the spatial patterns of snow depth (see Figure 1 of [65]), likely results in
the abrupt increase in uncertainties of ERA-Interim in the following few years (Figure 10). Therefore,
the inconsistencies between these two periods must be taken into consideration in ERA-Interim studies.
This finding is, however, difficult to be realized if the evaluation was conducted in short time series, or
variation of annual uncertainty was not examined [46,95].

MERRA-2 performs quite well at lower latitudes, e.g., most part of the U.S. and China, while an
obvious overestimation was detected in polar regions and the northern part of the Rocky Mountains
(Figure A1). This uncertainty pattern is quite similar to that of its precipitation forcing, which was only
corrected by rain gauges southward of 62.58 ◦N. Consequently, the precipitation of MERRA-2 performs
quite well at mid-low latitudes, while largely overestimates at higher latitudes [69,96]. Additionally,
MERRA-2 correlates quite well with ground observations, even in the East European Plain, where the
RMSE is large (Figure A3, Figure 9). The fluctuations in annual uncertainties are quite small, which
implies that MERRA-2 captures the temporal variability of snow depth quite well. Therefore, MERRA-2
is probably a good data source for long-term temporal analysis, since a stable temporal uncertainty is
the foundation of reliable long-term variation analysis and trend detection.

Finally, despite different sources, these datasets are faced with some general weaknesses, particularly
in mountains and forests. In mountain areas, the complex terrain and forest cover affect the scattering
signals, thus, adding noise to the snow depth retrieval [97]. In the meanwhile, the forcing data (e.g.,
precipitation data) of the reanalyses is less accurate in mountain areas, resulting in poor snow depth
simulations [98]. Different forest types show different transmissivities and radiation properties, which
cause inaccuracies in snow depth retrieval [40]. For reanalyses, the inaccuracy of model parameterization
and the description of the snow process in forested areas leads to inaccurate estimations [39]. These
general limitations arouse the necessity for fusing multiple sources of snow depth datasets, instead of
focusing on selecting a single “best” one, to provide better estimates [2,99].

5. Conclusions

Aiming at improving the understanding of inconsistences and uncertainties among multiple snow
depth datasets and to prepare for data fusion, this study carried out an intercomparison and integrated
evaluation on five hemispheric/global snow depth datasets. Spatial and temporal uncertainties,
performance under different land cover types, and snow depth ranges were intercompared and
examined by 43,391 stations during 1980–2016, and the major conclusions are:

(1) Different spatial performances were observed among the five datasets, particularly in the North
Eurasia and the Rocky Mountains. AMSR-E and AMSR2, which show different spatial patterns
from other datasets in Siberia and the East European Plain, exhibit slight overestimation in the
East Siberian Plateau and significant underestimation in the East Eurasian Plain and the Rocky
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Mountains. The spatial patterns of GlobSnow and ERA-Interim are similar and agree quite
well with observations in most areas. MERRA-2 overestimates against ground observations in
northwestern parts of Eurasia and the northern part of the Rocky Mountains.

(2) Temporal discrepancies are significant that both annual average snow depth and peak snow
depth of MERRA-2 are three times deeper than those of AMSR-E and AMSR2 in North America.
The evaluation implies that AMSR-E and AMSR2 exhibit the largest annual and monthly
uncertainties, followed by MERRA-2, and ERA-Interim and GlobSnow the finest. At seasonal
scales, ERA-Interim and GlobSnow perform best during the snow accumulation and melting
periods, respectively.

(3) The five datasets generally perform best in plain areas, and worst in forest-mountain areas.
Specifically, GlobSnow, ERA-Interim and MERRA-2 perform best in plain and forested areas,
while GlobSnow shows the smallest RMSE and RE in mountain and forest-mountain areas.

(4) When snow depth is thinner than 10 cm, AMSR-E and AMSR2 correspond better with ground
observations than with other datasets. Similar performances were observed in all five datasets
when snow depth ranges between 10 and 20 cm. When snow depth is in the range of 30–50 cm,
GlobSnow and ERA-Interim exhibit fewer uncertainties. For snow depth thicker than 50 cm,
MERRA-2 performs relatively better.

Based on this evaluation, we suggest that future work should focus on the refinement of algorithms
and the improvement of the spatial resolution of different data sources to decrease the uncertainty
of individual datasets. An effective approach to decrease the general uncertainty of the snow depth
datasets is the fusion of different sources to combine their strengths, and this will be our next focus.
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Figure A1. The spatial distribution of average BIAS of the five datasets from October to May during
1980–2016 over the Northern Hemisphere. Results were grouped into five groups, underestimation
larger than 20 cm, between 5 and 20 cm, BIAS less than ±5 cm, overestimation between 5 and 20 cm,
and larger than 20 cm, and each group was colored in red, orange, green, blue, and purple, respectively.
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Figure A2. Average RE of the five datasets from October to May during 1980–2016 over the Northern 
Hemisphere. RE was classified into four groups, i.e., smaller than 75%, between 75% and 125%, 
between 125% and 175%, and larger than 175%, and each class was colored in light green, dark green, 
pink, and blue, respectively (note that in case of misleading results, stations were masked out 
from the images if the number of valid results was less than one sixth of the total study 
period). 

Figure A2. Average RE of the five datasets from October to May during 1980–2016 over the Northern
Hemisphere. RE was classified into four groups, i.e., smaller than 75%, between 75% and 125%, between
125% and 175%, and larger than 175%, and each class was colored in light green, dark green, pink, and
blue, respectively (note that in case of misleading results, stations were masked out from the images if
the number of valid results was less than one sixth of the total study period).
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