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Abstract: Feature matching is to detect and match corresponding feature points in stereo pairs, which is
one of the key techniques in accurate camera orientations. However, several factors limit the feature
matching accuracy, e.g., image textures, viewing angles of stereo cameras, and resolutions of stereo
pairs. To improve the feature matching accuracy against these limiting factors, this paper imposes
spatial smoothness constraints over the whole feature point sets with the underlying assumption that
feature points should have similar matching results with their surrounding high-confidence points
and proposes a robust feature matching method with the spatial smoothness constraints (RMSS).
The core algorithm constructs a graph structure from the feature point sets and then formulates the
feature matching problem as the optimization of a global energy function with first-order, spatial
smoothness constraints based on the graph. For computational purposes, the global optimization of
the energy function is then broken into sub-optimizations of each feature point, and an approximate
solution of the energy function is iteratively derived as the matching results of the whole feature point
sets. Experiments on close-range datasets with some above limiting factors show that the proposed
method was capable of greatly improving the matching robustness and matching accuracy of some
feature descriptors (e.g., scale-invariant feature transform (SIFT) and Speeded Up Robust Features
(SURF)). After the optimization of the proposed method, the inlier number of SIFT and SURF was
increased by average 131.9% and 113.5%, the inlier percentages between the inlier number and the
total matches number of SIFT and SURF were increased by average 259.0% and 307.2%, and the
absolute matching accuracy of SIFT and SURF was improved by average 80.6% and 70.2%.

Keywords: feature matching; SIFT; SURF; Delaunay triangulation; global energy function; spatial
smoothness constraint

1. Introduction

Feature matching is to detect and find corresponding feature points in stereo pairs, which is an
important prerequisite in camera orientation with the basic knowledge that the optical rays from the
corresponding feature points should intersect at the same object point [1,2]. Though being studied for
decades, feature matching is still one of the most popular topics in photogrammetry and computer
vision communities. Its great contributions in camera orientation have fueled many photogrammetric
and computer vision applications, e.g., 3D reconstruction [3–5], motion capture [6,7], virtual reality [8,9],
image registration [10,11], change detection [12,13] and large-scale mapping [14,15].
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Most feature matching algorithms firstly detect feature points with obvious intensity variations,
then describe the intensity features of these points in the local matching windows, and finally, find the
corresponding points with the most similar feature descriptors [16,17]. However, some factors may
limit the feature matching accuracy, e.g., large viewing angles of stereo cameras, and resolution
differences of stereo pairs. These limiting factors will cause serious geometric distortions in the
matching windows of the feature points, thus may bring uncertainties in their descriptors. To address
this issue, most work either rectifies stereo pairs/matching windows to reduce the geometric distortions
or designs a certain geometric-distortion-invariant feature descriptor in stereo matching.

In the former case, either stereo images or matching windows are firstly rectified with the given
initial orientation parameters so that some geometric distortions (e.g., scale and rotation) can be
corrected, and feature points are then matched in the rectified pairs or matching windows. Therefore,
such rectification-based methods can be categorized into 1) the image rectification-based methods and 2)
the matching window rectification-based methods. The image rectification-based methods normally
project both stereo images onto a common height plane with the given initial orientation parameters
(e.g., Rational Polynomial Coefficient (RPC) parameters in the satellite dataset [18–20], position and
attitude parameters in the aerial dataset [21,22]). Each pixel in the rectified images is geo-coded with
the height plane so that some geometric distortions (e.g., scale and rotation) can be corrected except for
the ones caused by the terrain elevation differences. On the other hand, the window rectification-based
methods instead of geo-code matching windows with the given orientation parameters so that some
geometric distortions within the windows can be corrected. They either project multi-view matching
windows onto a common height plane [23] or adjust the window shapes according to the epipolar
lines [24,25]. In general, these rectification-based methods are simple and efficient in reducing some
geometric distortions for robust feature matching. However, such methods cannot be applied when no
orientation parameters are available, which is a common case in close-range photogrammetry and
computer vision. Besides, such methods cannot correct the geometric distortions that are caused by
the terrain elevation differences.

To achieve robust matching results without any available orientation parameters, some work
designs robust feature descriptors against some geometric distortions, among which the scale-invariant
feature transform (SIFT) [26] descriptor is perhaps the most famous. SIFT firstly detects feature points
in the difference of Gaussian (DOG) pyramids so that the scale differences between stereo images can
be greatly reduced, and then computes orientations of each feature point in the matching windows,
which are used to correct rotations between stereo images. Therefore, SIFT is a useful scale- and
rotation-invariant feature descriptors, while its high-dimensional descriptors will bring high time
complexity. For more efficient matching, Bay et al. [27] designed a much lower-dimensional feature
descriptor through Haar wavelet without scarifying its robustness against scale- and rotation-distortions
(also termed Speeded Up Robust Features, SURF). Leutenegger et al. [28] proposed a novel scale-space
FAST-based detector in combination with a bit-string descriptor (also termed BRISK), which can further
speed up the feature matching when compared with SIFT and SURF. To apply SIFT in more complex
geometric distortions, Morel and Yu [29] rectified stereo pairs by considering all possible camera views
and found the best camera views with the most SIFT matches. Such a method has been proven to be
affine invariant, thus also termed Affine-SIFT (ASIFT). Alcantarilla et al. [30] improved the feature
detection part of SIFT by using nonlinear diffusion filtering, which could detect more robust feature
points. In recent years, several convolutional neural network (CNN) based methods [31,32] have been
developed to extract deep features from matching windows, which can achieve more robust and more
accurate matching results than those traditional low-level feature (e.g., gradients and binary strings)
based methods. However, all the above feature matching methods only compute the local optima of
the matching of each feature point. They did not consider feature matching more globally. Therefore,
the uncertainties in the matching results of each feature point cannot be further reduced. In addition to
the geometric distortions, image textures also influence the final matching results. In weak or repeat
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texture regions, all the above local matching methods could not achieve robust matching results, due to
the low-intensity features and the high matching uncertainties.

To improve the local feature matching methods, some work introduced spatial constraints to
improve the feature matching results. Li et al. [33] firstly selected reliable matches or seed points by a
novel region descriptor, then assumed local affine transformations among these seed points, and finally
reduced the corresponding search range of other feature points under these local affine-transformation
constraints. Chen et al. [34] selected matches with higher distinctiveness as seed matches, defined
second-order geometric transformation based on the seed matches to reduce the corresponding search
range of other features, and then found correspondences for all the features within the reduced
searching range. Ma et al. [35] solved for correspondence by interpolating a vector field between the
two feature point sets and imposed nonparametric geometrical constraints in the vector field to obtain
good matches. Winter et al. [36] imposed reliable descriptor co-occurrences to improve the matching
performances. Such methods normally compute more accurate and more robust matching results than
those local matching methods, while their results are partly scene dependent. Some large geometric
distortions may reduce the reliability of seed point selections as well as the matching guidance of the
spatial constraints.

To further improve the robustness and the accuracy of feature matching, especially in large
geometric-distortion regions and weak/repeat texture regions, this paper optimizes the matching
results of each feature point by leveraging the matching results of its surrounding feature points with
the underlying constraints that feature points should have similar matching results to their surrounding
high-confidence points and proposes a novel robust matching method with the spatial smoothness
constraints (RMSS). The core algorithm considers the feature matching more globally, and formulates
the feature matching problem as the optimization of a graph-based energy function with the spatial
smoothness constraint. For efficient computation purposes, the global optimal solution of the energy
function is then broken into sub-optimizations, where the matching result of each feature point is
iteratively optimized by its surrounding feature points. Therefore, the uncertainties (caused by some
geometric distortions or weak/repeat textures) in the matching results of feature points can be greatly
reduced, and the matching robustness and the matching accuracy can be significantly improved,
especially in some large-distortion scenarios and weak/repeat texture scenarios. In addition to the
novel mathematical principles of the proposed method, the main contributions of the proposed method
include: (1) some spatial constraints based matching (SCM) methods correct unreliable matches by
seed points, while the proposed method instead correct them by the optimization of an energy function,
thus avoiding the mismatches caused by wrong seed points; (2) some SCM methods impose specific
spatial constraints among sparse seed points and may provide inaccurate matching clues (especially
in disparity jumps), while the proposed method introduces spatial smoothness constraints between
denser adjacent feature points, thus being fit for more complex scenes. The experiments on close-range
datasets show that the proposed method can greatly increase the feature matching accuracy.

2. Methodology

2.1. Workflow

Given a pair of stereo images {IL, IR} with IL, IR being the left and the right images in the pair,
and the corresponding feature point sets {PL, PR} with PL, PR being the sets of feature points in the
left and the right images through a certain feature matching algorithm (e.g., SIFT or SURF in this
paper), traditional feature matching methods find the correspondence in the right with the most similar
descriptor for each feature in the left. However, due to some geometric distortions or weak/repeat
textures, the correspondences with the most similar descriptors may not be true. Such uncertainties
may greatly reduce the final matching accuracy as well as the robustness.

To reduce such uncertainties, this paper simultaneously considers several potential correspondences
for each feature in the basic image (e.g., the left), and imposes spatial smoothness constraints across the
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whole feature point set to iteratively optimize the matching result of each feature. The core algorithm
formulates the feature matching as the optimization of a global energy function based on a graph,
which takes each feature point as nodes and defines the spatial relationships (i.e., edges) of these nodes
through Delaunay meshing [37]. The solut7ion of the energy function is the final matching result of
the proposed method. In general, the workflow of the proposed method follows an iterative manner
(Figure 1): (1) detect feature points in stereo images, compute their intensity features using a certain
feature descriptor (e.g., SIFT and SURF in this paper), and find several potential correspondences
for each feature in the basic through KD-tree [38] by ranking their distances in the feature space,
as shown in Figure 1a; (2) formulate these distances in the feature space as the matching cost terms
of the energy function, and each feature in the basic has a series of matching cost with respect to
its potential correspondences, as shown in Figure 1b, where the maximum cost among the potential
correspondences is only 1.23 times larger than the minimum cost; (2) define the spatial relationships of
these feature points through Delaunay meshing (as shown in Figure 1c), impose smoothness constraints
between adjacent feature points, and formulates these constraints as the smoothness terms of the
energy function, (3) break the optimization of the global energy function into sub-optimizations of
each feature point, and iteratively compute the local solutions of these sub-optimizations so that the
matching uncertainties in the matching cost can be reduced, as shown in Figure 1d, where the second
minimum cost is 4.45 times larger than the minimum cost; (4) take the other image as the basic, repeat
step (1) to (3), and detect and eliminate mismatches through the left-right-consistency (LRC) strategy.
The final remaining matching points are shown in Figure 1e.
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Figure 1. The workflow of the proposed method. In (a), red dots show the feature points in stereo
pairs, the blue and the yellow circles represent a feature point in the basic image and its potential
correspondences in the other, respectively. In (b) and (d), the horizontal axis represents the index of the
potential correspondences, and the vertical axis represents the ratio between the matching cost at a
certain correspondence index and the minimum cost of the feature point; in (c), the red dots are feature
points, and the green edges of the triangle meshes define the spatial relationships of these feature
points; in (e), the green lines connect matches of the proposed method after the LRC strategy.
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2.2. Feature Point Graph

To impose the spatial smoothness constraints in the feature matching, each feature point needs to
first find its surrounding feature points. To achieve this goal, Delaunay meshing is used to connect
all feature points in the triangularization form, as shown in Figure 2a,b. The feature points and the
edges in the Delaunay mesh construct a graph G = (V, E) with V being the set of nodes/feature
points and E being the set of edges. The matching result optimization of each feature point will be
influenced by its connected feature points. However, not all connected feature points can be used for
matching optimization. For example, some feature points have high uncertainties in their matching
cost, thus may propagate the uncertainties to other feature points through the edges. To address this
issue, the edges starting from the high-uncertainty/low-confidence feature points should be limited,
and the edges starting from the low-uncertainty/high-confidence feature points should be connected,
thus constructing a bidirectional graph (Figure 2c), where each edge has two weights with respect to
different directions. The weights of each edge will be described in Section 2.3. Each node in the graph
has a series of potential corresponding points, as shown in Figure 2d. Therefore, the final point feature
graph is a 3D discrete, irregular, bidirectional volume.
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Figure 2. Feature point graph. Blue circles are feature points or nodes in the graph; red lines are edges
in the graph; yellow circles are potential corresponding points. (a) is the set of feature points with blue
circles being nodes in the graph; (b) is the Delaunay meshing results from these feature points with red
lines being edges in the graph; (c) shows bidirectional edges between feature points; (d) shows the
potential corresponding points (the yellow circles) of each feature point.

2.3. Graph-Based Energy Function

To find good corresponding points from the potential ones, this paper imposes the spatial
smoothness constraints between any two connected feature points with the underlying assumptions
that feature points should have similar matching results to their surrounding high-confidence points,
and formulates the feature matching problem as the minimization of an energy function based on
the feature point graph G = (V, E). In general, the energy function consists of two terms: (1) cost
term, which measures the feature similarity between feature points and their potential corresponding
points, and (2) smoothness term, which penalizes the inconsistent matching results between any two
connected feature points. The formulation of the energy function is as follows.

M(L) =
∑
p∈V

C
(
p, lp

)
+

∑
eq,p∈E

P
(
eq,p

)
·

∣∣∣∣∣∣dp − dq
∣∣∣∣∣∣

2/
∣∣∣∣∣∣p− q

∣∣∣∣∣∣
2

dp = V
′
(
lp
)
− p

dq = V
′
(
lq
)
− q

(1)

where, M is the energy function; L is the set of matching results (i.e., the correspondence ID) of all
feature points in the basic image; C

(
p, lp

)
is the matching cost of the feature point p at its potential

correspondence label lp; V
′

is the set of feature point in the other image; V
′
(
lp
)

is the potential
corresponding point of p at label lp; ||·||2 measures the vector norm; dp measures the disparities of p in
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both row and column directions; eq,p is an edge from q to p; P
(
eq,p

)
is the weight of the edge eq,p, which

is also termed as the penalty coefficient. It means the contribution of q in the matching of p. Since G is a
bidirectional graph, P

(
eq,p

)
and P

(
ep,q

)
often have different values, which helps to reduce the influence

of low-confidence points on the matching optimization. To improve the matching robustness in slanted
regions, the disparity difference

∣∣∣∣∣∣dp − dq
∣∣∣∣∣∣

2 is divided by
∣∣∣∣∣∣p− q

∣∣∣∣∣∣
2 for the purpose of the normalization.

In this paper, the cost term C
(
p, lp

)
computes the feature similarity between the feature point p

and its potential corresponding point V
′
(
lp
)

by measuring their distance in the feature space. There are
various feature descriptors, among which SIFT [26] and SURF [27] are adopted in the experimental
comparisons in Section 4. However, the sizes of different feature descriptors are not the same,
thus leading to different matching cost ranges. To increase the generality of the proposed method,
this paper normalizes the matching cost by dividing it by the maximum matching cost, as follows.

C
(
p, lp

)
=

∣∣∣∣∣∣∣∣ f (p) − f
(
V
′
(
lp
))∣∣∣∣∣∣∣∣

2
/Cmax

Cmax = maxi∈Nrange

{
C(p, li)

} (2)

where, f is a certain feature descriptor (e.g., SIFT or SURF in this paper); Cmax is the maximum matching
cost among the matching cost of p; Nrange is the number of potential correspondences. The final feature
matching optimization results of the proposed method partly depend on the number of potential
correspondences. Too small a number may exclude the true label, while too large a number significantly
increases the time cost of the feature matching. In this paper, the appropriate correspondence number
will be analyzed in Section 4.1.

The smoothness term guides the matching results of any two connected feature points consistent
by penalizing the inconsistent cases. The matching result consistency is measured by the distances
between their disparity vectors in both row and column directions. Shorter distances mean more
consistent matching results as well as smaller penalties, and vice versa. However, some feature
points with low matching confidence may give bad influences on the matching of its surrounding
feature points. Therefore, the penalty coefficient P of edges starting from these low-confidence feature
points should be reduced. In addition, the penalty coefficient P is also related to the spatial distance
between the connected feature points. Considering matching in slanted regions, larger distance should
correspond to smaller P, and vice versa. Therefore, the penalty coefficient P

(
eq,p

)
is a function with

two independent variables: (1) the matching confidence of q and (2) the spatial distance between p and
q, as follows:

P
(
eq,p

)
= P0·

(
a + rq

)b
/
∣∣∣∣∣∣p− q

∣∣∣∣∣∣
2

rq = 1−Cmin
1 /Cmin

2

(3)

where, P0 is a predefined initial penalty coefficient; rq is the matching confidence of q, which is
formulated as the ratio between the minimum matching cost Cmin

1 and the second minimum matching
cost Cmin

2 ; a, b are predefined parameters, which are used to increase the penalty coefficient of
high-confidence points and decrease the ones of low-confidence points. a, b adopt fixed values in
all experiments with a = 0.4 and b = 3. P0 defines the scale of the penalty coefficient. In this paper,
the appropriate values of P0 will be analyzed in Section 4.2.

2.4. Solution

The solution of the global energy function in Equation (1) is the final feature matching result.
However, the optimization of Equation (1) is a typical NP-hard problem, which means that its global
solution has high time complexity. For efficient computation purposes, a compromise solution of
Equation (1) is computed by splitting the global optimization into a collection of sub-optimizations
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and then iteratively computing the local minimum for the matching of each feature point. To achieve
this goal, Equation (1) is first transformed into the summation of the local functions in Equation (4).

M(L) =
∑

p∈V
U(lp |p, Ep)

U(lp |p, Ep) = C
(
p, lp

)
+

∑
eq,p∈Ep

P
(
eq,p

)
·

∣∣∣∣∣∣dp − dq
∣∣∣∣∣∣

2/
∣∣∣∣∣∣p− q

∣∣∣∣∣∣
2

(4)

where, Ep is the set of edges that only end at p; U
(
lp

∣∣∣p, Ep) is a sub-optimization function which only
considers the cost term of p and the smoothness term of edges that ends at p.

For computational purposes, this paper only computes the local solution of the sub-optimization
U
(
lp

∣∣∣p, Ep) instead of the global optimal solution of M(L), i.e., transform the energy function minM(L)

into
∑

p∈V minU
(
p, lp, Ep

)
, which can greatly reduce the variable space. In the sub-optimization of

U
(
lp

∣∣∣p, Ep) , the matching result of the connected points in Ep is assumed available so that the matching
of p is constrained by the connected, high-confidence points, as follows.

lp = argminU(lp |p, Ep) = argmin
{
C
(
p, lp

)
+

∑
eq,p∈Ep

P
(
eq,p

)
·

∣∣∣∣∣∣dp − d0
q

∣∣∣∣∣∣
2
/
∣∣∣∣∣∣p− q

∣∣∣∣∣∣
2

}
(5)

where, d0
q is the initial matching result of the connected point q.

The matching result of p partly depends on d0
q. However, due to some geometric distortions

and weak/repeat textures, the initial matching result d0
q may be unreliable. To further improve the

matching accuracy, the sub-optimization in this paper proceeds in an iterative manner: (1) find the
corresponding point, for each feature point in the basic image, with the minimum matching cost as
the initial matching results; (2) compute the local optima of the matching for each feature point by
considering the initial matching results of their connected points, as shown in Equation (5); (3) update
the initial matching results and the matching cost C with the local optima and the more reliable cost U,
respectively, and then detect the number of inliers from the optimal solutions by using the fundamental
matrix; (4) repeat step (2) to (3) until the inlier number in the current iteration is smaller than the
one in the previous iteration; (5) output the matching results with the most inliers. The iterative
sub-optimization manner is summarized as the pseudo-code in Algorithm 1.

To remove mismatches in the matching results, this paper adopts the left-right-consistency check
(LRC) strategy. In general, this paper respectively takes the left and the right images as the basic
finds the corresponding points for each feature in the basic images by using the proposed method,
compares these two matching results, and detects and removes the inconsistent part whose matching
inconsistency is larger than 2 pixels. The matching inconsistency is measured by computing the
distance between the original feature point in the left and the matching result of its corresponding
point in the right, as follows.

δ =
∣∣∣∣∣∣p− p′

∣∣∣∣∣∣
2

q = V′
(
lp
)

p′ = V
(
lq
) (6)

where, p is a feature point in the left; q is the corresponding point of p when the left is the basic image;
lq is the correspondence label of q when the right is the basic image; p′ is the corresponding point of q;
δ is the distance between p and p′.
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Algorithm 1: The iterative solution of the sub-optimization in the proposed method

Function: Iterative_solution_of_sub_optimizations (PB, POther, N, C, L)
Input: the set of feature point in the basic image PB, the set of feature point in the other image POther, the set of
connected points for each feature point in the basic image N; the set of matching cost of all feature point C;
Output: the set of matching results of all feature points in the basic image L

Pseudo-code:

1. //step1: find the initial correspondence with the minimum matching cost
2. for i =1 to Num, do //Num is the feature point number in the basic
3. L0(i) = argmin

l
C(i, l) //L0(i) is the initial matching result of the feature point i

4. end for
5. inlier_num_crt = Detect_inliers_using_Fundamental_matrix (PB, POther, L0)
6. inlier_num_before = 0
7. inlier_num_max = inlier_num_crt
8. L = L0

7. while (inlier_num_crt > inlier_num_before)
8. {
9. //step2: compute the local optima of the matching in Equation (5)
10. for i =1 to Num, do
11. //Lre f ine(i) is the new matching result of i constrained by its surrounding connected points Ni

12. //U(i) is the optimized matching cost after the local optimization
13. [Lre f ine(i), U(i)] = Local_optima_of_matching (C, i, Ni, L0(Ni))

14. end for
15. //step3: update the matching results as well as the matching cost
16. L0 = Lre f ine

17. C = U
18. inlier_num_before = inlier_num_crt
19. inlier_num_crt = Detect_inliers_using_Fundamental_matrix (PB, POther, L0)
20. //update the output matching result
21. if (inlier_num_crt > inlier_num_max)
22. inlier_num_max = inlier_num_crt
23. L = L0

24. end if
25. }

3. Study Areas and Data

The proposed method was tested on close-range datasets provided by the National Laboratory of
Pattern Recognition, Institute of Automation, Chinese Academy of Science, including the Tsinghua
gate dataset, Bioscience building dataset, Fayu temple dataset, and the Zhantan temple dataset [39].
All datasets were captured by Canon EOS 5D. To evaluate the matching performance of the proposed
method, especially in large geometric-distortion and weak/repeat texture regions, this paper respectively
selected three pairs from each dataset with large scale differences (e.g., Figure 3a1,b2,c1), large
perspective distortions (e.g., Figure 3a2,b3,c3,d1,d2), occlusions by pedestrians, trees or other man-made
objects (Figure 3a3,c2,d2) and weak/repeat textures (Figure 3b,c). The limiting factors in most pairs are
the combinations of multiple above distortion and texture factors. To evaluate the matching accuracy
of the proposed method, this paper manually selected nine matching points as checking points for each
image pair. The distributions of checking points on each image pair are shown as red circles in Figure 3.
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4. Results

The proposed method was used to optimize the matching results of SIFT and SURF, termed SIFT +

RMSS and SURF + RMSS, respectively. For fair comparisons, all matching methods (SIFT, SURF, SIFT
+ RMSS, and SURF + RMSS) utilized the LRC strategy to detect and eliminate the mismatches, and the
remaining matching points were used in the experimental analysis and comparisons. The matching
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accuracy of the proposed methods as well as other feature matching methods was evaluated in three
aspects: (1) the number of inliers ninliers, which measures the robustness of the matching methods,
especially in large-geometric-distortion regions and weak/repeat texture regions, (2) the percentage of
inliers perinlier, which measures the uncertainties in the matching results of each method, and (3) the
matching accuracy against the checking points accchk (also termed absolute accuracy). Matching points
of each method were first utilized to compute a fundamental matrix through a RANSAC strategy [40].
The number of inliers ninliers is counted by computing the epipolar lines of matching points through the
fundamental matrix and adopting the matching points with the distances to the epipolar lines smaller
than 2 pixels as inliers. The percentage of inliers perinlier is then formulated as the ratio between the
number of inliers and the number of all matching points. On the other hand, the absolute matching
accuracy using checking points accchk was formulated as the average distance to the epipolar lines of
all checking points.

In general, this paper firstly analyzed some parameters of the proposed method on the Fayu
temple dataset, i.e., the number of the potential correspondences in Section 4.1 and the initial penalty
coefficient in Section 4.2, by studying the matching accuracy (including the inlier number ninliers,
the inlier percentage perinlier and the absolute matching accuracy accchk) with various parameters,
and found the most appropriate parameters with the highest matching accuracy. Then, the proposed
method was used to optimize the matching results of SIFT and SURF on the Tsinghua gate dataset,
Bioscience building dataset, and Zhantan temple dataset, and the optimized matching results were
compared with the original matching results as well as a robust matching method via vector field
consensus (VFC) [35] in the aspects of ninliers, perinlier and accchk in Section 4.3. VFC solved for
correspondence by interpolating a vector field between the two feature point sets and imposed
nonparametric geometrical constraints in the vector field to obtain good matches. All experiments
were conducted on the same compute configuration with a single CPU @ 2.60GHz.

4.1. Analysis about the Influence of the Number of the Potential Correspondences on the Final Matching Results

The matching results of the proposed method partly depend on the number of potential
correspondences (i.e., Nrange in Equation (2)). Too small a number may exclude the true correspondence,
while too large a number will increase the time cost. To select appropriate number of the potential
correspondences, this paper firstly utilized the proposed method to optimize the matching results of
SIFT on the Fayu temple dataset and then analyzed the matching accuracy of the proposed method
in the metrics of the inlier number ninliers, the inlier ratio perinlier and the absolute matching accuracy
accchk with various Nrange (from 2 to 20). As the ranges of the metrics in different pairs may be
significantly different (e.g., some pairs have hundreds of inliers, while some only have dozens of
inliers), this paper normalized the matching accuracy of the proposed method by dividing it by the
matching accuracy of SIFT (termed n0

inliers, per0
inlier and acc0

chk, respectively) so that the normalized
matching accuracy on different pairs were at the same level, as shown in Figure 4. ninliers/n0

inliers in
Figure 4a and perinlier/per0

inlier in Figure 4b are the ratio between the number of inliers of the proposed
method and SIFT, and the ratio between the percentages of inliers of the proposed method and SIFT,
respectively, thus the larger ratio ninliers/n0

inliers (> 1) and perinlier/per0
inlier (> 1) mean more robust

matching results. accchk/acc0
chk in Figure 4c is the ratio between the absolute matching accuracy of the

proposed method and SIFT, thus smaller ratio accchk/acc0
chk (< 1) means higher matching accuracy.
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In Figure 4a, almost all number ratios ninliers/n0
inliers on all pairs are larger than one (except for

pair 1 with Nrange as two), which means that the inlier number of SIFT has been increased after the
optimization of our proposed method. In Figure 4b, all percentage ratios perinliers/per0

inliers are larger
than one, which means that the inlier percentages of the proposed methods were also higher than
SIFT. Therefore, the proposed method can provide more robust feature matching results for the later
camera orientations. The percentage ratio perinliers/per0

inliers has an increasing trend with the increasing
of Nrange, since larger Nrange means a lower probability of selecting the same matching results for the
mismatches. More robust matching results (higher inlier number and higher inlier percentage) can
often be used to compute higher-accuracy camera orientation results, thus all absolute accuracy ratio
accchk/acc0

chk in Figure 4c are smaller than 1. Figure 4 shows that the proposed method could achieve
higher matching accuracy, though Nrange varied greatly. To achieve the highest matching accuracy,
the most appropriate Nrange is needed to be selected in the feature matching. However, different pairs
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corresponded to different appropriate Nrange in different matching accuracy metrics, e.g., the most
appropriate Nrange of pair 1 are 16, 16, and 18, respectively, in the metrics of ninliers, perinlier and accchk,
while the most appropriate ones of pair 2 are 18, 18, and 12, respectively, in the metrics of ninliers, perinlier
and accchk. To give a comprehensive evaluation of Nrange, this paper, therefore, ranked the matching
accuracy of each pair, as shown in Equation (7), and then summarized these ranks to find the most
appropriate Nrange with respect to the highest ranking, as shown in Figure 5.

Ranki, j
(
Nrange

)
=

 accmax
i, j /acci, j

(
Nrange

)
j = ninliers or perinlier

acci, j
(
Nrange

)
/accmin

i, j j = accchk
(7)

where, i represents a certain stereo pair; j represents a certain matching accuracy metric; acci, j
(
Nrange

)
means the matching accuracy of pair i in the metric of j at a certain Nrange; Ranki, j

(
Nrange

)
means the

rank of pair i in the metric of j at a certain Nrange; accmax
i, j means the maximum value of matching

accuracy among various Nrange, while accmin
i, j means the minimum value of matching accuracy among

various Nrange. Ranki, j closer to one means higher matching accuracy. The summation of all ranking
results is shown as follows.
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In Figure 5, a shorter-length bin means higher ranking. The ranking results did not change much
when Nrange ≥ 10, which shows that such a number of potential correspondences is sufficient to include
the true correspondence. The red bin with Nrange as 14 has the highest ranking. Therefore, this paper
adopted Nrange = 14 in all the following experiments in Sections 4.2 and 4.3.

4.2. Analysis about the Influence of the Initial Penalty Coefficient on the Final Matching Results

In addition to the number of the potential correspondences Nrange, this paper also evaluated the
influences of the initial penalty coefficient (i.e., P0 in Equation (3)) on the feature matching accuracy.
Too small P0 will bring weak smoothness constraints so that the matching of each feature point cannot
be optimized by its surrounding points. On the other hand, too large P0 will decrease the contribution
of the matching cost in the feature matching process so that some mismatches will be generated in some
slanted regions or height jumps. To select appropriate P0, this paper still utilized the proposed method
to optimize the matching results of SIFT on the Fayu temple dataset with various P0 (from 0.02 to 0.2),
and then analyzed the matching accuracy of the proposed method in the metrics of the inlier number
ninliers, the inlier ratio perinlier and the absolute matching accuracy accchk. For better experimental
comparisons, this paper also normalized the matching accuracy of the proposed method by dividing it
by the matching accuracy of SIFT (termed n0

inliers, per0
inlier and acc0

chk, respectively). The experimental
comparisons on various P0 are shown in Figure 6.
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In Figure 6a, most inlier number ratios ninliers/n0
inliers are larger than one (except for pair 1 with

P0 as 0.16 and 0.2, respectively), which shows that the matching results of the proposed method
is robust against the variation of P0 when P0 < 0.16. However, too large P0 (e.g., P0 ≥ 0.16) may
decrease the inlier number, since such large P0 may bring over-smoothness constraints in the feature
matching. In Figure 6b, all percentage ratios perinliers/per0

inliers are larger than one, which means that
the matching results of the proposed method contained more inliers as well as fewer outliers than
SIFT. All absolute accuracy ratio accchk/acc0

chk in Figure 6c are smaller than 1, which means that the
proposed method is capable of greatly improving the matching accuracy of SIFT. The highest matching
accuracy improvement on the three pairs were 66.44% at P0 = 0.08, 96.99% at P0 = 0.18 and 98.89% at
P0 = 0.04, respectively. Therefore, the most appropriate P0 for different pairs were different. To select
the most appropriate P0 in a general scenario, this paper still ranked the matching accuracy of each
pair in Equation (7) and then summarized these ranks to find the most appropriate P0 with respect to
the highest ranking, as shown in Figure 7.
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In Figure 7, the ranking results did not change much when 0.04 ≤ P0 ≤ 0.14, which shows that
such a range of the initial penalty coefficient is appropriate for the proposed method on the matching
optimization of SIFT. The red bin with P0 as 0.1 has the highest ranking. Therefore, this paper adopted
P0 = 0.1 in all the following experiments in 3.3.

4.3. Matching Accuracy Comparisons on More Datasets

To give more comprehensive evaluations of the proposed method, this paper applied SIFT [26]
and SURF [27] on more datasets (i.e., Tsinghua gate dataset, Bioscience building dataset, and Zhantan
temple dataset), utilized the proposed method to optimize the matching results of SIFT and SURF,
respectively, and compared the proposed method with a state-of-the-art matching method VFC [35].
VFC improved the matching results of SIFT or SURF by interpolating a vector field between the two
feature point sets and imposed nonparametric geometrical constraints in the vector field. The final
matching results of VFC and the proposed method are termed as SIFT + RMSS, SURF + RMSS,
SIFT + VFC, and SURF + VFC. All stereo pairs in the testing datasets were 4368×2912 pixels. Matching
parameters of the proposed method were fixed by using the experimental conclusions in Sections 4.1
and 4.2, i.e., Nrange = 14 and P0 = 0.1. The matching accuracy of SIFT, SURF, SIFT + VFC, SURF + VFC,
SIFT + RMSS, and SURF + RMSS were also evaluated in the three metrics, i.e., the inlier number
ninliers, the inlier ratio perinlier and the absolute matching accuracy accchk. The running time of these
methods was also tested. The experimental comparisons about the matching accuracy and the running
time are shown in Figure 8. The horizontal axes mean the ID of stereo pairs in the Tsinghua gate
dataset, Bioscience building dataset, and Zhantan temple dataset in Figure 3, and the vertical axes
mean the matching accuracy in Figure 8a–c, and the running time in Figure 8d. However, the ranges of
the absolute accuracy of different matching methods on different pairs were significantly different.
For better comparisons, this paper truncated absolute accuracy values that were larger than 100 pixels,
and then divided all absolute accuracy values of a certain pair by ten as long as any one of the absolute
accuracy values was larger than ten. Since the testing datasets were of poor matching quality (e.g., large
geometric distortions, weak/repeat textures and occlusions) for SIFT and SURF, most pairs needed the
absolute accuracy division operator except for the pair c-2 (marked by * in Figure 8c).
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Figure 8a shows the inlier number of SIFT, SURF, SIFT + RMSS, and SURF + RMSS on all testing
datasets. VFC generally increased the inlier number of SIFT and SURF by average 44.7% and 59.3%,
respectively, while its matching results were not robust. In some cases (e.g., SIFT + VFC in b-1 and
SURF + VFC in d-3), the inlier number after VFC was even less than the original ones. On the
other hand, the inlier number of SIFT and SURF has been increased by the proposed method in all
cases, which shows that the proposed method can robustly reduce the matching uncertainties in
SIFT and SURF by imposing the smoothness constraints. After the optimization of the proposed
method, the SIFT/SURF matching points can be increased by at most 437.5%/272.9%, at least 15.7%/5.5%,
and average 131.9%/113.5%. In Figure 8b, the average inlier percentages of SIFT and SURF were only
as low as 10.5% and 6.9%, respectively, due to the large geometric distortions, weak/repeat textures,
and occlusions in the testing datasets. VFC can significantly improve the inlier percentages of SIFT
and SURF to average 25.0% and 28.0%, respectively. However, VFC still met the unstable problem in
some cases (e.g., SIFT + VFC in b-1), where the inlier percentages of VFC were lower than the original
ones. The proposed method could improve the inlier percentage in all cases. After the optimization
of the proposed method, the average inlier percentages of SIFT + RMSS and SURF + RMSS can be
increased to 37.7% and 28.1%, respectively. It shows that the proposed method can also reduce the
mismatches as well as increase the inliers in the matching results as the proposed method considers
more potential correspondences in the matching and imposes the smoothness constraints to reduce the
matching uncertainties. Though the general performance of VFC was not as good as the proposed
method, it could achieve better results in some cases (e.g., c-2). In Figure 8c, the proposed method can
significantly improve the absolute matching accuracy of SIFT/SURF by at most 97.9%/96.1%, at least
55.2%/−0.65%, and average 80.6%/70.2%. The proposed method is capable of improving the absolute
matching accuracy in most cases except for the SURF matching of pair c-2. It is because the matching
results of SURF on pair c-2 were already good with 3471 inliers, in which case the proposed method
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did little to such a good matching result. The unstable inlier number and the inlier percentage of
VFC resulted in unstable absolute matching accuracy. In some cases (e.g., SURF + VFC in b-3), it can
significantly improve the absolute matching accuracy by 94.9%, while in some cases (e.g., SIFT + VFC
in c-1), it might decrease the absolute matching accuracy by 44.1%. In general, the proposed method
can greatly improve the matching results of SIFT and SURF on poor-quality stereo pairs. Since the
proposed method optimized the matching results of SIFT and SURF in an iterative manner, the running
time of the proposed method was certainly longer than the pure SIFT or the pure SURF. The proposed
method added on average 25.3 s more time to the SIFT matching and 52.3 s more time to the SURF
matching on the testing datasets. VFC was much more efficient than the proposed method with 61.3%
and 73.0% less time cost for SIFT and SURF, respectively. It should be noted that VFC was even faster
than pure SIFT and pure SURF. It is because VFC has already been capable of removing mismatches,
therefore it could avoid the repeat computation of the LRC strategy. Considering only one single
CPU is used in the proposed method, it has great potential to speed up when a parallel framework
is applied.

To give more visual comparisons, this paper selected pairs with the least inliers from each testing
dataset (i.e., (b-3), (c-1), and (d-2)), and illustrated the inliers of SIFT, SURF, SIFT + RMSS, and SURF +

RMSS, respectively, as shown in Figure 9. Since Fayu temple dataset (Figure 3(a1)–(a3)) is a training
dataset, which is used to train matching parameters of the proposed method, we did not illustrate the
matching results on such dataset for fair comparisons.
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Figure 9. Inliers distributions before/after the optimization of the proposed method. (b-3) is the stereo
pair with the least inliers in Tsinghua gate dataset; (c-1) is the stereo pair with the least inliers in
Bioscience building dataset; (d-2) is the stereo pair with the least inliers in Zhantan temple dataset.

In Figure 9, the weak textures of the white wall in b-3, and the repeat textures of the black wall
in (b-3) and the yellow wall in c-1 brought high matching uncertainties in SIFT and SURF. Thus,
both methods only matched dozens of points. The proposed method-imposed smoothness constraints
to reduce the matching uncertainties, thus being able to achieve more matching points in weak texture
and repeat texture regions. In Figure 9d-2, the matching points of SIFT and SURF only concentrated on
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the roof of the temple. The uneven distributions of matching points may lead to low camera orientation
accuracy. The proposed method not only matched more points on the temple roof but also matched
more even points (e.g., the points on the mountain). In general, the proposed method is capable of
achieving more robust matching results than pure SIFT and pure SURF.

5. Discussion

The results of this study indicate that the proposed method can greatly improve the matching
results of SIFT and SURF in some matching difficult regions (e.g., large geometric-distortion
regions and repeat textured regions). The experimental comparisons were tested on the datasets of
Tsinghua gate, Bioscience building, and Zhantan temple, which had serious matching limiting factors.
Both SIFT and SURF performed badly on the testing datasets with the average inlier number being
973.7/1072.2, the average inlier ratio being 10.5%/6.9% and the average absolute matching accuracy
being 27.0/27.5 pixels. As the proposed method reduces the matching uncertainties of feature points by
imposing spatial smoothness constraints over the whole feature point sets, it can greatly improve the
matching results of SIFT and SURF. After the optimization of the proposed method, the corresponding
accuracy was improved to 1549.9/1759.8, 37.7%/28.1%, and 4.09/2.89 pixels, respectively. In addition
to the matching accuracy improvement, the proposed method also obviously increased the matches
of SIFT and SURF, as shown in Figure 9. For example, Figure 9b-3,c-1 have repeat textures on the
walls of the Tsinghua gate and Bioscience building, where traditional SIFT and SUFR matched few
points, due to the high matching uncertainties. The proposed method introduced spatial smoothness
constraints to reduce these uncertainties, thus achieving more matches.

The study has gone some way towards enhancing our understanding of feature matching with
spatial constraints. Before this, some spatial constraints-based matching (SCM) methods utilized seed
points to constrain the matching process, while the wrong seed points will give wrong matching clues
to the matching of other features, this may decrease the final matching accuracy. The proposed method
instead constrains the matching process through the optimization of the energy function, thus being
more fit for the matching in difficult regions. Therefore, the proposed method has a great potential to
be applied in some close-range and oblique photogrammetric applications, e.g., street-view mapping,
robot navigation, relic reconstruction, and city modeling.

The proposed method has some limitations to be considered. First, the parameter selections in
Section 4.1 and 4.2 were determined through SIFT matching results and were also proved to be valid for
SURF matching in Section 4.3. However, since the descriptors of different matching methods may be
significantly different. The best parameters of SIFT and SURF may not be fit for other feature descriptors.
Therefore, it is recommended to retrain new matching parameters if other feature descriptors were
used. Second, the proposed method has a higher time cost than the pure SIFT and SURF, and the time
differences have an increasing trend with the increasing of feature points. For example, the time cost
of the proposed is 1.75 times higher than SIFT when the number of SIFT features is 56,165, while the
multiple reaches 3.25 when the number of SIFT features is 167,159. The increasing multiple of time
cost is caused by the Delaunay triangularization and the optimization of the energy function in the
proposed method. Therefore, the proposed method was not fit for the scenarios with large amounts of
feature points and high time efficiency demands. The above limiting factors of the proposed method
need to be further investigated in the future. We plan to enhance the normalization of different feature
descriptors so that the trained matching parameters could have more general applicability. We also
plan to improve the efficiency of the spatial relationship determination of adjacent feature points by
introducing tree-structure indexing.

6. Conclusions

This paper aims at addressing the matching uncertainties issues in large geometric-distortion
regions, weak-texture regions, and repeat-texture regions, and proposes a robust feature matching
method with spatial smoothness constraints to reduce such uncertainties with the underlying
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assumptions that each feature point should have a similar matching result to its surrounding
high-confidence points. The core algorithm formulates the feature matching as a minimization
of a global energy function based on a feature point graph and introduces a comprise solution by
breaking the optimization into a collection of sub-optimizations of each feature point. The proposed
method is capable of greatly optimizing the matching results of SIFT and SURF on some poor-quality
stereo pairs. Experiments on several poor-quality, close-range datasets show that the proposed method
can significantly increase the inliers number of SIFT and SURF by average 131.9% and 113.5%, improve
the inlier ratios of SIFT and SURF by average 259.0% and 307.2%, and improve the absolute matching
accuracy of SIFT and SURF by average 80.6% and 70.2%, respectively. However, the proposed method
will add more running time to the feature matching. For more efficient and more robust feature
matching, the authors plan to reduce the time cost by applying a parallel framework in the future.
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