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Abstract: Infrared (IR) radiometers from geostationary (GEO) satellites have an advantage over
low-earth orbiting (LEO) satellites as they provide continuous observations to monitor the diurnal
variations in the sea surface temperature (SST), typically better than 30-minute interval. However, GEO
satellite observations suffer from significant diurnal and seasonal biases arising due to varying
sun-earth-satellite geometry, leading to biases in SST estimates from conventional non-linear
regression-based algorithms (NLSST). The midnight calibration issue occurring in GEO sensors
poses a different challenge altogether. To mitigate these issues, we propose SST estimation from
split-window IR observations of INSAT-3D and 3DR Imagers using One-Dimensional Variational
(1DVAR) scheme. Prior to SST estimation, the bias correction in Imager observations is carried
out using cumulative density function (CDF) matching. Then NLSST and 1DVAR algorithms were
applied on six months of INSAT-3D/3DR observations to retrieve the SST. For the assessment of
the developed algorithms, the retrieved SST was validated against in-situ SST measurements available
from in-situ SST Quality Monitor (iQuam) for the study period. The quantitative assessment confirms
the superiority of the 1DVAR technique over the NLSST algorithm. However, both the schemes
under-estimate the SST as compared to in-situ SST, which may be primarily due to the differences in
the retrieved skin SST versus bulk in-situ SST. The 1DVAR scheme gives similar accuracy of SST for
both INSAT-3D and 3DR with a bias of −0.36 K and standard deviation (Std) of 0.63 K. However,
the NLSST algorithm provides slightly less accurate SST with bias (Std) of −0.18 K (0.87 K) for
INSAT-3DR and −0.27 K (0.95 K) for INSAT-3D. Both the NLSST and 1DVAR algorithms are capable
of producing the accurate thermal gradients from the retrieved SST as compared to the gradients
calculated from daily Multiscale Ultrahigh Resolution (MUR) level-4 analysis SST acquired from
Group for High-Resolution Sea Surface Temperature (GHRSST). Based on these spatial gradients,
thermal fronts can be generated that are very useful for predicting potential fishery zones (PFZ),
which is available from GEO satellites, INSAT-3D/3DR, in near real-time at 15-minute intervals.
Results from the proposed 1DVAR and NLSST algorithms suggest a marked improvement in the SST
estimates with reduced diurnal/seasonal biases as compared to the operational NLSST algorithm.

Keywords: SST; variational technique; split-window technique; thermal gradients; INSAT-3D/3DR

1. Introduction

Sea Surface Temperature (SST) is an essential climate variable (ECV), which is very important
for understanding the Earth’s climate variability (e.g., [1]). It is also a critical boundary condition in
the Numerical Weather Prediction (NWP) models, Ocean and Coupled models to predict the weather
and ocean state [2–6]. This is mainly because SST as a parameter plays an important role in determining
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the exchange of heat, moisture, and momentum fluxes at the interface of the ocean and the atmosphere [7].
Furthermore, SST also provides an insight into various physical processes that are responsible for several
oceanographic as well as meteorological phenomena, thereby directly affecting large and small-scale
weather and climate patterns [8–11].

Conventional methods of SST estimation include ship-based measurement besides moored
and drifting buoys. Reliable measurements of SST began in the mid-1850s from ship-based measurements
by drawing a bucket of seawater and measuring its temperature using a thermometer [12]. During the past
few decades, accurate SST is measured using an array of drifting as well as moored buoys using
thermometers and transmitting the data through communication satellites. These subsurface temperature
measurements from buoys have become a valuable dataset to develop empirical algorithms and validate
the retrieved SST estimates. Although these in-situ measurements provide an accurate estimate of SST,
they are sparse in spatial coverage due to the high cost involved to cover vast oceanic regions. Space-based
instruments have made it possible to sample the SST over the global ocean from low earth orbiting (LEO)
satellites but less frequently, typically a few ascending and descending orbits over a particular location.
To overcome this and obtain frequent observations over a fixed location the geostationary earth orbiting
(GEO) satellites are used, but these observations are mostly limited to the tropics and mid-latitudes.

In the recent past, many studies have been carried out by the scientific community worldwide to
estimate the SST efficiently and accurately (e.g., a review by [13]). The satellite radiometer measurements
acquired in the infrared (IR) and microwave (MW) region of the electromagnetic spectrum are used
for SST estimation. Each one of these has its merits and limitations. Microwave observations are not
contaminated by non-precipitating clouds or aerosols [14–17]. Hence, these can be used in all-weather
(non-raining) conditions to estimate SST. However, IR-based satellite measurements are required
to undergo a cloud removal procedure prior to SST estimation because of their inability to observe
the surface through clouds [18–22]. SST has been derived from satellite-based IR observations since
1981, with a typical spatial resolution of 1–4 km [1,23–26].

Currently, most of these IR sensors are flown on the LEO satellite platforms that provide
observations for SST estimation over a fixed location, typically twice a day. However, many applications,
like identifying potential fishery zones, require the diurnal variations in the SST gradients that are not
possible from LEO platforms. Therefore, GEO satellite observations are required for high temporal
resolution SST estimates. Due to solar heating during daytime and prevailing wind conditions, there
may be a diurnal variation in SST and a different relationship in the skin and bulk/subsurface SST
measurements [27–30]. In this regard, the observations from GEO satellites provide crucial insight
into the magnitude of diurnal variation in the SST over different oceanic regions [31,32]. Besides
the study of diurnal variability of SST over clear sky conditions, a unique advantage of GEO satellites
is to significantly increase the probability of finding a clear field of view from 48 images in a day to
provide the gap-free daily composite of SST [33]. Presently, various parts of the tropical/mid-latitude
regions of the global oceans are observed from GOES-E/W, Meteosat Second Generations (MSG) [34],
Himawari-8/9, FY-2/4, and INSAT-3D/3DR. To make a global high spatio-temporal resolution SST
product, the individual satellites need to provide accurate bias-free estimates of SST over their region
of operation.

Presently, India has two geostationary satellites INSAT-3D and 3DR in the orbits, launched in 2013
and 2017, and located over 82◦E and 74◦E, respectively. These satellites have two identical instruments:
(1) 6 channels Imager and (2) 19 channels Sounder. The Imager provides observations in 6 channels, as
shown in Table 1.
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Table 1. Sensor specifications of INSAT-3D/3DR Imager.

Band # Wavelength (µm) Spatial Resolution @ Nadir (km) SNR or NEDT *

1 0.52–0.72 1 150:1
2 1.55–1.70 1 150:1
3 3.80–4.00 4 0.27 K@300 K
4 6.50–7.00 8 0.18 K@230 K
5 10.3–11.2 4 0.15 K@300 K
6 11.5–12.5 4 0.25 K@300 K

* SNR: Signal to noise ratio, NEDT: Noise equivalent differential temperature.

The SST products from INSAT-3D/3DR are available from Meteorological and Oceanographic
Satellite Data Archival Centre (MOSDAC) hosted by the Space Applications Centre (https://mosdac.gov.in)
and Multi Mission Data Reception and Processing Systems (MMDRPS) at the India Meteorological
Department (IMD). Presently, SST is being produced operationally using the Non-Linear SST (NLSST)
algorithm [35] based on split-window observations from both the INSAT-3D/3DR Imagers. From Table 1,
Imager Channel number 5 (TIR-1) and 6 (TIR-2) form the required split-window channels for SST
estimation. The NLSST algorithm is a globally used algorithm for estimating the state-of-the-art SST
products from satellite IR observations. However, it also suffers from some inherent limitations
like regional biases, improper midnight calibration of satellite observations, predominantly for
the observations from GEO satellites that use a three-axis stabilization system. To address these
limitations, algorithms based on 1-Dimensional Variational (1DVAR) or Optimal Estimation (OE) have
been developed in the recent past for estimating SST from various satellite-based IR observations
(e.g., [34,36,37]). The 1DVAR utilizes a forward model to simulate satellite observations using prior
information of atmosphere and oceanic state, which leads to improvement in the accuracy of SST
retrievals. The first IR-based SST climate data record from the European Space Agency Climate Change
Initiative (ESA-CCI) project was prepared using the 1DVAR technique [34,38]. Although the 1DVAR
model involves high computational costs because of the required forward modeling, it has significant
advantages as retrieval uncertainty and sensitivity can both be estimated [39].

Recently, Ojha and Singh [40] presented a physical retrieval algorithm for SST using an optimal
estimation method for INSAT-3D and concluded its preeminence over the presently operational
algorithm. However, the authors did not discuss the fact that the NLSST algorithm is already
operational at MOSDAC since July 2018. Moreover, there are a few shortcomings of the methodology
presented in the paper. The first one is regarding the use of climatological SST as the background
and subsequently using the same as surface skin temperature along with the latest forecast profiles of
temperature and humidity for bias correction in the radiative transfer model. The dominant contribution
in the satellite-measured radiances for the split window IR channels comes from the surface skin
temperature, as the atmosphere is relatively transparent for window channels [13], except for the weak
absorption due to the water vapor. This makes it illogical to use climatological SST at a location along
with the forecast atmospheric conditions to represent the simulated satellite radiance or brightness
temperature (BT) and subsequently using it for bias correction of actual satellite observations. Ideally,
the closest available forecast SST in operational setup [34] and reanalysis/analysis [41] in the creation
of offline SST data records, along with the atmospheric profiles of temperature and humidity, needs
to be used in the RT model, in case bias correction of the satellite observation is required. Further,
the accuracy of the retrieved SST was compared with that of the background SST that is essentially
a climatological SST. It is not appropriate to compare the accuracy of the satellite retrieved SST with
climatology and conclude that the retrieved product is better than the climatology. Preferably, it
should be compared with the analysis or the closest available SST forecast. The study also did not
demonstrate the major advantage of geostationary satellite observations, e.g., diurnal variability
and spatial gradients or thermal fronts, for various physical and biological oceanographic applications.

https://mosdac.gov.in
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Therefore, in the present study, a new algorithm based on the 1DVAR approach for SST retrieval
from split-window observations of INSAT-3D/3DR Imagers for clear-sky has been proposed. To
evaluate the efficacy of the developed algorithm, it has been applied on split-window observations
of both INSAT-3D/3DR Imagers for a period of six months spanning from December 2019 to May
2020 to retrieve the SST. The retrieved SST has been then validated against in-situ measurements
for this period. Moreover, the operational SST products have also been assessed against the same
in-situ measurements to monitor the relative performances of the operational NLSST (OPR), along
with the proposed NLSST and 1DVAR algorithms. Additionally, the spatial gradients of daily SST have
also been computed and compared with the gradients of the Multiscale Ultrahigh Resolution (MUR)
level-4 daily analysis SST products acquired from Group for High-Resolution Sea Surface Temperature
(GHRSST) [42]. The spatial gradients are used to compute the thermal fronts that are required for
an important application of predicting the potential fishery zones [43].

This paper is structured such that the next section provides the details of the data used.
Subsequently, the detailed methodology of the algorithms’ development is elaborated, followed
by a detailed discussion of the results. Finally, a brief summary of the study is provided in
the conclusion section.

2. Data Used

To realize the objectives of the present study, a large amount of dataset from various global
meteorological and oceanographic data providers has been acquired.

2.1. Global Forecasting System (GFS) Forecasts

The 1DVAR technique utilizes a priori information of atmospheric state and surface parameters to
simulate the satellite observations. This a priori information has been taken from the closest available
3-hourly forecast at the time of satellite observations from the Global Forecasting System (GFS) provided
by the National Center for Environmental Prediction (NCEP) and is available at 0.5◦ × 0.5◦ spatial
grid. Since the present dataset was processed in the offline mode, we used more conservative forecasts
corresponding to 9 and 12-hr, closest to the time of satellite observation to match the operational scenario.
The model output has been obtained from the National Oceanic and Atmospheric Administration
(NOAA) National Operational Model Archive & Distribution System (NOMADS; https://www.ncdc.
noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs) server.

2.2. INSAT-3D/3DR L1B Data

The primary objective of the study is to develop the retrieval algorithm for SST from level-1b (L1B)
products of INSAT-3D/3DR Imagers. These L1B products have been acquired from the Meteorological
and Oceanographic Satellite Data Archival Centre (MOSDAC) (https://mosdac.gov.in) hosted by
the Space Applications Centre (SAC), Ahmedabad, of the Indian Space Research Organisation
(ISRO). The data for the period of December 2019 to May 2020 have been preferred for this study,
representing winter, spring and summer months. During the monsoon season June–September,
the region under INSAT-3D/3DR observations remains predominantly cloud covered, and only a small
fraction of the region is available for SST estimation from IR-based satellite measurements. However,
these products will be available throughout the year once they are operational and will undergo
continuous evaluation.

2.3. In-situ SST Measurements

The efficacy of the proposed algorithm has been assessed against in-situ measurements obtained
from In-situ SST Quality Monitor (iQuam) portal of NOAA (www.star.nesdis.noaa.gov/socd/sst/iquam/).
The global SST measurements by four in-situ platform types (drifters, ships, and tropical and coastal
moorings) as well as their corresponding “in-situ minus reference” SST statistics have been provided
in monthly maps at iQuam web portal [44].

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://mosdac.gov.in
www.star.nesdis.noaa.gov/socd/sst/iquam/
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2.4. MUR Level-4 Daily Analysis GHRSST

For comparison of the SST-derived thermal gradients, the MUR level-4 daily analysis GHRSST
based upon nighttime GHRSST L2P skin and sub-skin SST observations from several instruments,
has been utilized (JPL MUR MEaSUREs Project. 2015. GHRSST Level 4 MUR Global Foundation Sea
Surface Temperature Analysis (V4.1). Ver. 4.1. PO.DAAC, CA, USA [42]). Data have been obtained
from https://doi.org/10.5067/GHGMR-4FJ04.

3. Methodology

In this study, two different algorithms have been exploited to retrieve the SST from split-window
observations of INSAT-3D/3DR Imagers. For the forward computation/simulation of the satellite
brightness temperatures and their Jacobians, the Radiative Transfer for Television Infrared Observation
Satellite (TIROS) Operational Vertical Sounder (RTTOV), version-11.3, has been used. RTTOV-v11.3 is
a fast radiative transfer model originally developed at the European Centre for Medium range Weather
Forecast (ECMWF) [45–47].

The methodology for both the algorithms is described as follows:

3.1. Cloud Masking

Since IR measurements cannot penetrate through the clouds to observe the underlying surface
and affect observations even if a small fraction of the pixel is cloudy, they must be masked prior to SST
estimation. In this study, the cloudy pixels are detected through a threshold and spatial coherence
technique in these split-window thermal bands. Threshold technique assumes that over the oceans
in the Indian domain, the brightness temperature in the thermal band (TIR-1) is greatly affected by
the presence of clouds, resulting in decreased brightness temperature from cold cloud tops. Spatial
coherence method is based on the assumption that SST is homogeneous and warmer than clouds;
thus clouds can be identified where the scene brightness temperature has a lower mean value and/or
larger standard deviation within a defined field-of-regard (FOR) around a pixel under observation.
Additionally, the cloud-contaminated pixels have also been removed by comparing the brightness
temperatures of the concerned pixel with simulated brightness temperatures using the nearest model
forecast fields. The following criterion has been adopted for detecting a given pixel as cloudy.

• If BT of TIR-1 channel is less than 275 K (sea-ice test). If the absolute difference between actual
and simulated BTs is greater than 3 K.

• If the standard deviation of BTs in a FOR of 3 × 3 pixels centered at the given pixel is greater than
0.5 K.

• If the difference between TIR-1 and TIR-2 BTs is negative or greater than 5 K, (i.e., the valid range
of the difference is 0–5 K),

T1 − T2 < 0 or T1−T2 > 5K.

3.2. Bias Correction of the Observations

The satellite observations must be well calibrated and unbiased prior to their use in the retrieval
algorithms [34]; otherwise, it will lead to erroneous and biased retrievals. The INSAT-3D/3DR
observations, being used in the present study, reported to have shown biases and thereby undergone
bias removal using Geostationary Satellite Inter-Calibration System (GSICS) procedures [48]. The biases
are computed with reference to observations from hyperspectral sounders such as Advanced Infrared
Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). Since both of these reference
satellites take measurements from LEO platform, a limited matchup dataset could be obtained between
these reference instruments and INSAT-3D/3DR, typically twice a day. Because of this, the diurnal
biases could not be removed from GEO observations. Therefore, even after GSICS calibration correction,

https://doi.org/10.5067/GHGMR-4FJ04
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biases persist in the INSAT-3D/3DR observations [48]. Moreover, there is a large bias/uncertainty
present in the INSAT-3D/3DR observations during local midnight. Hence, it is further necessary to
remove these remaining biases before utilizing them in the retrieval algorithms.

For each satellite acquisition, the actual observations are matched with concurrent simulated
observations. The simulations are performed using a fast radiative transfer model RTTOVv11.3, with
input data of surface and atmosphere from the nearest available forecast from GFS. The matching
of the cumulative density function (CDF) has been utilized here. At first, CDFs of both actual
and simulated observations are computed. Thereafter, the actual observations have been mapped
according to the simulated CDF to get the corrected observations. A typical example of bias correction
procedure applied on INSAT-3D observations is shown in Figures 1 and 2.

Figure 1. Sample bivariate density plot of INSAT-3D BT of TIR-1 channel, (a) before bias correction,
and (b) after bias correction, for 16 January 2020, 0800 UTC.

Figure 2. Sample bivariate density plot of INSAT-3D BT of TIR-2 channel, (a) before bias correction,
and (b) after bias correction, for 16 January 2020, 0800 UTC.

Figures 1 and 2 illustrate the bivariate normalized density plots for TIR-1 and TIR-2 channels
before and after the bias correction. It may be noted from these figures that the bias is not constant
across the range of values, but is defined by a slope in the best fit. A similar bias correction procedure
is also applied on INSAT-3DR channels prior to retrieval. It is interesting to note that the scatter
plots for both INSAT-3D/3DR deviate from one-to-one line towards lower SST values, even after bias
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correction, indicating the cloud-leakage problem arising due to inability of cloud-detection algorithm
in removing small fractional cloudy pixels. This might lead to small residual bias in the retrieved
SST even after bias correction. This is also supported from Figures 3 and 4 that depict differences in
the observed and simulated BT corresponding to different values of simulated BT for TIR-1 (Figure 3)
and TIR-2 (Figure 4). These Figures 3 and 4 show that TIR-1 and TIR-2 observations have negligible
bias around 296 K, which increases towards colder BTs, with values of −0.4 K at 286 K (284 K) for TIR-1
(TIR-2). The bias correction procedure brings these bias values within ±0.1 K, which is a significant
improvement. The small residual trend in the bias may be due to the distribution of BT values largely
concentrated over 297 K (294 K) for TIR-1 (TIR-2). This needs further improvement in future by
applying better cloud filtering procedures, e.g., [22], and utilizing pooled dataset for longer duration
instead of just a single acquisition. Another reason for the residual bias may be the zenith angle
dependency of the forward RT model, cf. [49].

Figure 3. Sample plot of differences between observed and simulated BT (red curve) as a function of
simulated BT of INSAT-3D TIR-1 channel, (a) before bias correction, and (b) after bias correction, for 16
January 2020, 0800 UTC. The Number of observations for each temperature bin at 1 K interval is shown
by the green curve.

Figure 4. Sample plot of differences between observed and simulated BT (red curve) as a function of
simulated BT of INSAT-3D TIR-2 channel, (a) before bias correction, and (b) after bias correction, for 16
January 2020, 0800 UTC. The Number of observations for each temperature bin at 1 K interval is shown
by the green curve.
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3.3. NLSST Algorithm

The NLSST algorithm has been proposed by Walton [35], in which the weighting factor for
atmospheric correction is assumed proportional to a first-guess SST value that can be obtained in
various ways. For SST estimation, the following form of the NLSST algorithm was used in this study

SST = a0 + a1T1 + a2(sec θ− 1) + a3Ts f c.(T1 − T2) + a4(sec θ− 1).(T1 − T2)
)

(1)

where T1 and T2 are the BTs of INSAT-3D/3DR thermal IR channels (TIR-1 and TIR-2) and θ is
the satellite zenith angle. a0, a1, a2, a3 and a4 are the retrieval coefficients estimated from the regression
analysis using collocated/simulated BT observations from satellite and SST measurement. Tsfc is the a
priori estimate of SST taken from the GFS model forecast.

The atmospheric profiles and required surface variables have been obtained from the ECMWF
diverse data set [50]. The simulations have been performed using RTTOV-v11.3 for the clear
atmosphere over oceanic regions spanning from 0◦E–130◦E and 60◦S–60◦N only, corresponding
to the full disk-viewing region of INSAT-3D/3DR and for satellite zenith angle varying from Nadir up
to 60 degrees.

Currently, Equation (1) is being used operationally to retrieve SST from INSAT-3D/3DR Imagers
at MOSDAC/SAC and MMDRPS/IMD. However, real-time bias correction is not being applied on
satellite observations in operational SST retrieval.

3.4. 1DVAR Algorithm

The relationship between geophysical parameter and satellite measurements can be written in
a generalized form as

y = F(x) + e (2)

where y is the measurement vector (satellite observations), F(x) is the non-linear forward model
(radiative transfer (RT) model) which transforms x, the state vector containing the relevant geophysical
parameters of the ocean and the atmosphere, into measurement vector [51]. e is a residual uncertainty
term containing uncertainties of measurement and the forward model.

The forward model, i.e., RT model synthesizes the top-of-atmosphere BTs that should be measured
by the individual channels of a radiometer given prior knowledge of the relevant atmosphere state
and surface condition (x). Here, a fast RT model RTTOV11.3 has been used as the forward model.

Now, by inverting Equation (2), we can retrieve the most likely geophysical parameters (x) that
can reproduce the top-of-the-atmosphere brightness temperatures, y. Herein, we have used an inverse
approach (1DVAR or optimal estimation (OE)) developed by Rodgers [51] for retrieving the x (e.g., SST).

Assuming the forward model is a general function of the state, the representative (measurement +

model) error has a Gaussian distribution, and there is a prior estimate with a Gaussian uncertainty
distribution, the maximum probable state x can be found by minimizing the cost function, J

J(x) = (x− x0)
TB−1(x− x0) + (y− y(x))TR−1(y− y(x)) (3)

where y is the observations with error covariance R; x0 being the prior atmospheric state having error
covariance B and y(x) is the observations simulated through the forward model using atmospheric
state x.

Rodgers [52] has given the following iterative solution for the minimization of J(x)

xn+1 = x0 + BHT
n

(
HnBHT

n + R
)−1

[y− y(xn) −Hn(x0 − xn)] (4)

where xn being the nth estimate of atmospheric state, x0 is the background atmospheric state. y
represents the actual BTs of concerning channels and y(xn) are the simulated BTs corresponding to nth

atmospheric state (xn). Hn is the sensitivity of the simulated observations with respect to state variables,
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also known as the Jacobian matrix. Hn consists of the partial derivatives of the BTs in a particular
channel with respect to each parameter of the state vector (xn). Due to nonlinearity, these partial
derivatives need to be computed at each iteration (state).

The Equation (4) implies that the sensitivity information (Hn) together with the difference between
the actual BTs, y, and the simulated BTs, y(xn), can be used to estimate the difference between the prior
information about the state and the actual state, and thereby to estimate the actual state.

3.4.1. 1DVAR Setup

In our case, the BTs of thermal IR split-window channels from INSAT-3D/3DR Imagers are used
as measurement vector, y, in the forward model. The prior information is taken from GFS forecast
fields which provide the temperature (t) and humidity (q) values at 25 atmospheric pressure levels
starting from 1000 hPa to 1 hPa along with the surface temperature (equivalent to SST over the ocean
and LST over the land) and surface air temperature/humidity. We have assumed forecast temperature
and humidity profiles including SST as state vector (xn), i.e., x = [t(1:25), SST, q(27:51)]. The state vector
x hence consists of 51 geophysical parameters. The error covariance matrix B of the a priori atmospheric
state therefore, has 51 × 51 elements, in which temperature and humidity are assumed mutually
uncorrelated. The error covariance of all the parameters is calculated by comparing the forecast fields
with corresponding analysis fields. To prepare an error covariance matrix, B, the entire year of forecast
and analysis fields from GFS is considered. In case of SST, the standard deviation of the error is found
to be 0.51 K.

For simulating the top-of-the atmosphere BTs, the full atmospheric state has been used.
The measurement covariance matrix, R, is set to a 2 × 2 diagonal matrix corresponding to TIR-1
and TIR-2 channels. The uncertainty of each channel is considered as per respective noise equivalent
differential temperature (NEDT) values, i.e.,

R =

[
e2

1 0
0 e2

2

]
where e1 = 0.15 K and e2 = 0.25 K as given in Table 1. At present, for providing more weight to
the observations, the RT model errors have been ignored. However, these may be suitably modified in
the operational implementation of the algorithm after due sensitivity study.

Now, using the values of H, B and R in iterative solution (Equation (4)), the actual atmospheric
state is retrieved. Although the retrieved atmospheric state includes temperature and humidity profiles,
the measurement vector consists of channels that are insensitive to these profiles. The channels in
the measurement vector are most sensitive to the underlying surface; therefore, SST is only considered
as the final retrieved parameter.

3.4.1.1. Convergence Testing

The atmospheric state, for which the solution of Equation (4) converges, would be the optimized
or final retrieved state. To check whether the solution is actually being converged or not, can be
ensured through the minimization of the cost function, J [52]. The minimization of the cost function
can be performed by examining the change in the cost function (∆J = Ji − Ji+1) between two subsequent
iterations. For convergence, ∆J must be decreasing for each subsequent iteration. If ∆J changes by less
than 2%, it is considered that the solution has converged to its final state. In other cases, where there is
no decreasing trend in ∆J, it implies that the solution failed to converge.

4. Results

Assessment of both the algorithm’s skill has been performed through the validation of the retrieved
SST products against the reference SST values, i.e., iQuam SST products. The extensive validation of
the retrieved SST is carried out by comparing it for a six-month’s period spanning from December
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2019 to May 2020. The period embodies different seasons, i.e., winter, spring and summer, thereby,
covering maximum variability of the SST. The monsoon season, June–September, is not considered as
during this time the Indian Ocean is dominated by the cloud cover. The first guess SST, henceforth
denoted by FCT, is also compared with the reference SST to monitor the impact of actual observations
in the retrievals. A typical example of daily composite SST retrieved from INSAT-3D and 3DR Imagers
for the day 07 January 2020 is shown in Figure 5. For better comparison, a daily averaged forecast SST
on the same day, which was used as the first guess and for bias correction, is shown in Figure 6.

Figure 5. Daily retrieved SST from INSAT-3D (top panel) using, (a) NLSST, (b) 1DVAR, and INSAT-3DR
(bottom panel) using, (c) NLSST, and (d) 1DVAR algorithms on 07 January 2020.
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Figure 6. A sample example of daily averaged first guess forecast SST used on 07 January 2020.

4.1. Validation Against iQuam SST Measurements

For comparing the SST products retrieved using both the algorithms, first they have been collocated
with iQuam SST data to generate the matchup dataset. For collocation, the spatial resolution of 0.04◦

(corresponding to the INSAT-3D/3DR resolution and spatial sampling of retrieved SST) and temporal
window of ±15 minutes is assumed. The standard statistical quality indicators, like bias (Bias),
standard deviation (Std) and Pearson correlation coefficient for SST retrieved from INSAT-3D/3DR
using both the algorithms are calculated from the reference SST. As we know that Bias and Std do not
account for outliers present in the data, these indicators may sometimes be misleading [53]. Hence,
the robust parameters like median (Median) and median absolute deviation (MAD) [53] are also
computed to monitor the robustness of the retrieved SST products. These quality indicators are shown
in Figures 7 and 8 for INSAT-3D and INSAT-3DR, respectively.

Figure 7. Validation statistics generated on a daily scale for the retrieved SST from the INSAT-3D observation
against iQuam SST, (a) Bias/Median, and (b) Std/MAD.
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Figure 8. Validation statistics generated on a daily scale for the retrieved SST from the INSAT-3DR
observation against iQuam SST, (a) Bias/Median, and (b) Std/MAD.

Although Figures 7 and 8 are showing all four-quality indicators, viz., Bias, Std, Median and MAD
computed on daily-scale for the six months, the collocation is performed on an instantaneous SST basis
and not on the daily-averaged SST. For making MAD comparable to Std, we have multiplied MAD by
a factor of 1.4826, cf. [53]. The scale factor is computed with the assumption that the concerned data
distribution is Gaussian.

It can be observed from Figure 7 that Bias and Median do not show any noteworthy difference,
so as Std and MAD. This implies the robustness of the matchup data. We can further observe that
the 1DVAR shows the higher accuracy (0.6 K) than the NLSST (0.9 K). However, both algorithms
are showing negative biases, i.e., underestimating SST values as compared to iQuam SST. Moreover,
the performance of the 1DVAR is more consistent than the NLSST throughout the period, demonstrating
superior efficacy of the 1DVAR over the NLSST. A point worth mentioning here is that for the overall
period the biases in SST derived from the NLSST (−0.27 K in INSAT-3D and −0.18 K in INSAT-3DR) are
smaller compared to the 1DVAR SST (−0.36 K in INSAT-3D and −0.34 K in INSAT-3DR). It may be noted
that the NLSST and the 1DVAR SST are skin SST without any correction for bulk-skin SST, whereas
the iQuam SST is the representative of subsurface or bulk SST. Therefore, the bulk-skin SST correction
of −0.2 K needs to be applied on the retrieved skin SST [54]. This means that the effective biases in
the retrieved SST should be around −0.07 K (0.02 K) in the NLSST and −0.16 K (−0.14) in the 1DVAR for
INSAT-3D (INSAT-3DR). It may be further noted that the INSAT-3D/3DR Imager observations undergo
large biases and uncertainties during the satellite eclipse period (peak midnight sun/stray-light problem)
as discussed in Shukla and Thapliyal [48]. This leads to the large bias/uncertainties in the operational
SST (OPR) products presently available from INSAT-3D/3DR.

As discussed by Merchant [34] this improvement in the 1DVAR SST in comparison to the NLSST is
because it utilizes an accurate prior SST information as the first guess. It is interesting to note that when
FCT SST is compared with iQuam for the same duration, it showed the value of Std < 0.5 K. It can be
explained from the fact that in-situ measurements are utilized to improve the initial conditions in NWP
models. Therefore, as 67% of the information content is attributed to the first guess [34], the overall
Std of the 1DVAR is significantly smaller than the NLSST. The NLSST has higher Std due to the fact
that the satellite observations impart the full information content for the retrieval. Although FCT SST
has shown the smallest error (Std) than the SST derived from the NLSST and 1DVAR algorithms, it
lacks the small-scale SST features like thermal gradients, due to the coarser spatial resolution (50 km)
and significant smoothing.

To monitor the error distribution, the matchup dataset is divided into two categories as follows:

•

∣∣∣SST1DVAR − SSTiQuam
∣∣∣ ≤ 1K Filtered data referred to hereafter as FILT_DATA.

• Entire matchup, referred to hereafter as NOFILT_DATA.

The validation statistics on a monthly scale for these two categories of dataset is shown in
Tables 2 and 3 for the INSAT-3D and 3DR, respectively.
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Table 2. Monthly Validation Statistics of INSAT-3D (FILT_DATA shown in bracket).

Month
No. of

Matchups
(% of total)

CC * Bias
(K)

NLSST
Median

(K)

Std
(K)

MAD
(K) CC * Bias(K)

1DVAR
Median

(K)

Std
(K)

MAD
(K)

December 2019 54,116 (85.8) 0.97
(0.97)

−0.28
(−0.15)

−0.22
(−0.09)

0.94
(0.86)

0.92
(0.82)

0.99
(0.99)

−0.38
(−0.23)

−0.36
(−0.26)

0.62
(0.48)

0.64
(0.53)

January 2020 34,164 (87.5) 0.96
(0.97)

−0.22
(−0.10)

−0.16
(−0.07)

0.95
(0.87)

0.92
(0.83)

0.99
(0.99)

−0.35
(−0.22)

−0.32
(−0.24)

0.61
(0.47)

0.59
(0.50)

February 2020 37,732 (83.6) 0.96
(0.96)

−0.35
(−0.22)

−0.32
−

(0.18)

0.92
(0.86)

0.92
(0.85)

0.98
(0.99)

−0.42
(−0.27)

−0.40
(−0.29)

0.65
(0.46)

0.62
(0.50)

March 2020 32,404 (87.7) 0.96
(0.97)

−0.24
(−0.13)

−0.23
(−0.13)

0.93
(0.87)

0.93
(0.86)

0.98
(0.99)

−0.33
(−0.21)

−0.32
(−0.23)

0.62
(0.49)

0.62
(0.53)

April 2020 28,877 (87.3) 0.96
(0.98)

−0.27
(−0.17)

−0.25
(−0.15)

0.94
(0.88)

0.96
(0.90)

0.99
(0.99)

−0.32
(−0.20)

−0.30
(−0.23)

0.62
(0.49)

0.62
(0.53)

May 2020 23,770 (87.9) 0.98
(0.98)

−0.22
(−0.10)

−0.18
(−0.07)

1.02
(0.95)

1.05
(0.96)

0.99
(0.99)

−0.30
(−0.19)

−0.27
(−0.19)

0.63
(0.49)

0.62
(0.53)

Overall 211,063 (86.5) 0.97
(0.9)

−0.27
(−0.15)

−0.23
(−0.12)

0.95
(0.88)

0.95
(0.86)

0.99
(0.99)

−0.36
(−0.23)

−0.34
(−0.25)

0.63
(0.48)

0.62
(0.52)

* CC: Pearson correlation coefficient.

Table 3. Monthly Validation Statistics of INSAT-3DR (FILT_DATA shown in bracket).

Month
No. of

Matchups
(% of total)

CC * Bias
(K)

NLSST
Median

(K)

Std
(K)

MAD
(K) CC * Bias

(K)

1DVAR
Median

(K)

Std
(K)

MAD
(K)

December 2019 40,286 (87.4) 0.97
(0.98)

−0.26
(−0.15)

−0.21
(−0.11)

0.83
(0.76)

0.79
(0.71)

0.99
(0.99)

−0.36
(−0.23)

−0.33
(−0.25)

0.60
(0.46)

0.59
(0.50)

January 2020 27,602 (88.3) 0.98
(0.98)

−0.22
(−0.14)

−0.20
(−0.13)

0.73
(0.68)

0.77
(0.71)

0.99
(0.99)

−0.37
(−0.26)

−0.36
(−0.28)

0.58
(0.46)

0.58
(0.50)

February 2020 32,486 (85.7) 0.97
(0.98)

−0.24
(−0.15)

−0.22
(−0.13)

0.73
(0.67)

0.74
(0.70)

0.98
(0.99)

−0.42
(−0.27)

−0.39
(−0.29)

0.61
(0.45)

0.59
(0.49)

March 2020 31,578 (87.7) 0.97
(0.97)

−0.20
(−0.10)

−0.19
(−0.10)

0.90
(0.84)

0.87
(0.82)

0.99
(0.99)

−0.35
(−0.23)

−0.33
(−0.25)

0.61
(0.47)

0.59
(0.50)

April 2020 29,428 (88.7) 0.98
(0.98)

−0.08
(0.01)

−0.10
(−0.01)

0.97
(0.91)

0.95
(0.89)

0.99
(0.99)

−0.25
(−0.14)

−0.22
(−0.15)

0.63
(0.49)

0.61
(0.53)

May 2020 21,581 (87.4) 0.98
(0.98)

−0.04
(0.08)

−0.02
(0.09)

1.07
(1.00)

1.13
(1.04)

0.99
(0.99)

−0.23
(−0.12)

−0.19
(−0.12)

0.65
(0.50)

0.65
(0.56)

Overall 182,961 (87.6) 0.98
(0.98)

−0.18
(−0.09)

−0.17
(−0.09)

0.87
(0.81)

0.85
(0.79)

0.99
(0.99)

−0.34
(−0.21)

−0.31
(−0.23)

0.62
(0.47)

0.61
(0.52)

* CC: Pearson correlation coefficient.

In Table 2, the validation statistics corresponding to the first category is provided in the small
parenthesis. Based upon the parameters’ values, the following inferences can be drawn:

• The majority of the matchup dataset (>85%) is lying within 1 K of iQuam SST, leaving only <15%
of it beyond this limit.

• Bias and Median do not show much difference indicating the robustness of the matchup data.
The same outcome is endorsed by Std and MAD values being almost similar.

• For a larger population of the data, the 1DVAR SST shows Std (Bias) of 0.48 K (−0.23 K) whereas
the NLSST gives 0.88 K (−0.15 K). However, SST accuracy with 0.95 K (−0.27 K) for the NLSST
and 0.63 K (−0.36 K) for the 1DVAR, degrades slightly for the entire matchup. These values are
without bulk-skin SST correction.

• The 1DVAR produces SST with greater accuracy and consistency than the NLSST, clearly seen
when validated against iQuam SST.
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• Both the algorithms demonstrate the consistent performance for all months, thereby ensuring
their robustness.

Similarly, Table 3 illustrates the monthly validation statistics for SST retrieved from INSAT-3DR
observations. Except for a few differences, the validation statistics are more or less similar for SST
retrieved from both the satellites, INSAT-3D/3DR. In the INSAT-3DR, the NLSST performs slightly
better showing Std (Bias) of 0.87 K (−0.18 K) than in the INSAT-3D when observed for the entire dataset.
However, the 1DVAR exhibits similar error characteristics for both INSAT-3D and 3DR SST.

To evaluate performance of both algorithms corresponding to different SST values, a bivariate
normalized density is computed from the entire dataset (December 2019 to May 2020). Figure 9a,b,
respectively, show bivariate normalized density plots for INSAT-3D SST retrieved using the NLSST
and the 1DVAR algorithms. Here, the bivariate density states the number of SST pairs (retrieved
and iQuam SST) in a given bin of SST values. If the same number of values from both SSTs lies in
a given bin this implies there exists a strong agreement between them. The parameters, viz., total
number of matchup points, bias, median, Std and MAD, are also given in the respective plots.

Figure 9. Bivariate normalized density plots for iQuam and the INSAT-3D SST retrieved using,
(a) NLSST, and (b) 1DVAR algorithms.

From these plots, it is evident that most of the matchup data are concentrated over the higher SST
(>298 K) values. It can also be inferred that both retrieved and iQuam SST are matching well with each
other for the entire dynamic range of SST. When observing the spreads around the one-to-one line,
it can be seen that the NLSST has a larger spread than the 1DVAR. This implies the higher values of
Std (0.95 K) in the NLSST than in the 1DVAR (0.63 K). However, the mean values (Bias) of differences
in the NLSST (−0.27 K) is smaller than in the 1DVAR (−0.36 K). Overall, the 1DVAR outperforms
the NLSST in terms of both accuracy and consistency of the retrieved SST.

As it can be observed in Figure 10a,b, the INSAT-3DR also demonstrates the similar type of
bivariate density pattern. Here too, the density plots are reflecting the improved performance of
the 1DVAR over the NLSST. However, the NLSST is providing slightly better results for INSAT-3DR
than INSAT-3D, showing the Std value of 0.87 K reduced from 0.95 K. The bias is also reduced
considerably from −0.27 K to −0.18 K.
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Figure 10. Density scatter plots between iQuam and the INSAT-3DR SST retrieved using, (a) NLSST,
and (b) 1DVAR algorithms.

The validation exercise performed for INSAT-3D and 3DR derived SST against iQuam SST
implies that the 1DVAR outperforms the NLSST algorithm. The majority of the matchup data (>85%)
demonstrate that the retrieval accuracy (Std) is better than 0.5 K in case of the 1DVAR algorithm whereas
<0.9 K in the NLSST. The consistent performance of both the algorithms across all months reflects
their robustness. The NLSST provides slightly higher accuracy when applied on the observations of
INSAT-3DR than INSAT-3D.

Scatter/density plots of the retrieved SST for both INSAT-3D/3DR using the NLSST and the 1DVAR
algorithm show that there is a slight shift in the scatter from the one-to-one line mostly representing
cooler SST in the INSAT-3D/3DR. This is probably because of the cloud-leakage arising due to retention
of the small fractional cloudy pixel as clear-sky pixel in the present cloud detection routine, which will
be a key focus area in future work.

The major advantage of the present algorithms is a real-time bias monitoring using RT
model simulation of satellite radiances/BTs with inputs from forecast surface temperature (SST)
and atmospheric profiles. This is thought to be a plausible solution for correcting the diurnal biases in
the GEO satellite observations arising primarily due to stray-light problem at local midnight (~18–20
UTC for INSAT-3D/3DR), which is more severe during satellite eclipse period, i.e., around 23 March
and 23 September every year.

To examine the improvement in the diurnal biases in INSAT-3D/3DR using new algorithms,
the statistics are generated for hourly binned matchup dataset, and are shown in the Figures 11 and 12
for INSAT-3D and INSAT-3DR, respectively.

Figure 11. Diurnal behavior of the (a) Bias/Median, and (b) Std/MAD, for the SST from OPR (Red),
NLSST (Green), 1DVAR (Blue) and FCT (Black) for INSAT-3D.
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Figure 12. Diurnal behavior of the (a) Bias/Median, and (b) Std/MAD, for the SST from OPR (Red),
NLSST (Green), 1DVAR (Blue) and FCT (Black) for INSAT-3DR.

From Figures 11 and 12, it is evident that the OPR SST (NLSST without diurnal bias correction)
exhibits very high and erratic diurnal variation of biases, particularly around local midnight. Also, it
may be kept in mind that there is still a cold bias of around 0.2 K in all the curves, as the reference data
are bulk SST from iQuam, thereby, a shift of 0.2 K upward is needed in the bias curves. It is apparent
that the new algorithms for INSAT-3D/3DR, i.e., the NLSST and the 1DVAR, are following patterns
of FCT in the diurnal variation with the 1DVAR very close to FCT and the NLSST slightly larger at
many times of the day. Overall, the 1DVAR followed by the NLSST have smaller biases as compared to
the presently operational version of the NLSST algorithms. The Std/MAD curves show that patterns
are similar throughout the day and have no clear diurnal dependency. This is because the Std/MAD is
a manifestation of the noise uncertainty in the satellite observation. Therefore, for the NLSST there is
only a small improvement, whereas there is a large improvement in the 1DVAR due to the use of a priori
information from forecast, which has a small Std/MAD as compared to in-situ observation. A large
smoothing in the NLSST or 1DVAR, similar to the FCT (50 km), is not advisable, because these satellite
observations are primarily used for various applications where high spatial resolution is required.

4.2. Comparison with MUR Level-4 Daily Analysis GHRSST Products

To monitor the geographical distribution of errors in the retrieved SST, the difference between
retrieved and MUR level-4 GHRSST products are computed for the entire study period. Since MUR
level-4 GHRSST is the daily analysis SST as discussed in Section 2.4, the daily average of retrieved SST
products using the NLSST and the 1DVAR algorithms for INSAT-3D and 3DR Imagers are calculated.
Because of different spatial resolutions of MUR level-4 GHRSST (1km) and INSAT-3D/3DR (4 km), we
have resampled both daily products at 5km regular grid. Figures 13 and 14 are showing the difference
plots for INSAT-3D and 3DR, respectively. Figures 13a and 14a show that the NLSST has large positive
bias in the central Indian Ocean, which changes to negative bias in the eastern and the western Indian
Ocean. There is a considerable improvement noticed in the biases over the entire domain using
the 1DVAR technique, as shown in Figures 13b and 14b. The negative bias towards peripheral regions
in the 1DVAR is significantly smaller as compared to the NLSST.
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Figure 13. The geographical distribution of differences between SSTs from MUR level-4 GHRSST
and INSAT-3D using (a) NLSST (b) 1DVAR algorithms for December 2019–May 2020.

Figure 14. Same as Figure 13, but for INSAT-3DR.

4.3. Thermal Gradients Derived from SST

The spatial gradients of SST, also known as thermal gradients, are primary inputs to predict
the potential fishery zones (PFZ) and a major advantage of split-window thermal IR observations
from geostationary satellites [43]. Therefore, here we evaluate the thermal gradients observed in
the SST retrieved from INSAT-3D/3DR using both the 1DVAR and the NLSST algorithms. These
gradients are computed from the daily composite of retrieved SST. The spatial gradients are calculated
using central differences in the interior points and one-sided (forward or backward) differences at
the boundaries [55]. For the comparison and assessment, the gradients of MUR level-4 GHRSST
daily analysis SST products are also shown over the Bay of Bengal (BOB) region (Figure 15). For
example, Figure 16a,b illustrate the thermal gradients for INSAT-3D SST estimated using the NLSST
and the 1DVAR algorithms for 16 January 2020, respectively. This date was chosen due to the least
presence of cloud cover to obtain the gap-free INSAT-3D/3DR SST products. These thermal gradients
have been compared with the SST gradients obtained from FCT and MUR level-4 GHRSST, respectively,
in Figure 17a,b. Similarly, the thermal gradients derived from the INSAT-3DR SST products are shown
in Figure 18a,b. Here, it may be noted that the spatial resolution of FCT is 50 km, whereas the same
is 1 km in MUR level-4 GHRSST products, and 4 km in INSAT-3D/3DR products. As gradients are
fine scale features, they are observed best in the high-resolution SST products and diffuse as spatial
resolution becomes coarser.
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Figure 15. Geographic location of the Bay of Bengal (BOB)

Figure 16. Spatial gradients of the INSAT-3D SST retrieved using (a) NLSST (b) 1DVAR algorithms in
the Bay of Bengal region.

Figure 17. Spatial gradients of the SST from (a) FCT, and (b) MUR level-4 GHRSST in the Bay of
Bengal region.
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Figure 18. Spatial gradients of the INSAT-3DR SST retrieved using (a) NLSST (b) 1DVAR algorithms in
the Bay of Bengal region.

From the Figure 16, Figure 17, Figure 18, it is clearly observed that FCT SST is not showing any
spatial gradients, mainly due to its coarser spatial resolution. This indicates the limitation of FCT SST to
utilize it in important oceanographic applications, such as prediction of PFZ. Although FCT SST showed
the least bias/Std when compared with iQuam SST (Figures 7 and 8), it lacks the small-scale features
of SST. Thereby, the retrieval of accurate SST from satellite observations becomes more important.
Moreover, both algorithms proposed in the present study are able to produce SST that depicts all
the prominent features of thermal gradients as observed in the MUR level-4 GHRSST products. Since
MUR level-4 GHRSST has ultra-high spatial resolution of 1km, it exhibits more gradient features,
mostly the weaker ones, as compared to INSAT-3D and 3DR SST products.

5. Conclusions

The motivation of the present study comes from the utility of high spatial and temporal resolution
GEO satellite observations for estimating one of the most important boundary parameters over
the ocean, i.e., SST. Presently, there are many GEO satellites from various countries populated over
the equatorial orbit, providing continuous coverage of the global tropics and mid-latitude regions.
Indian GEO satellites, INSAT-3D/3DR, provide coverage over a very important region, i.e., the Indian
Ocean. However, so far INSAT-3D/3DR SST products suffer from the midnight stray sunlight problem,
adding large uncertainties in the observations. An attempt was made by Ojha and Singh [40] to
develop a physical retrieval method, but there were a few shortcomings of the study. For example,
they used SST climatology in the RT model for the bias correction of INSAT-3D observations as well as
the background/first-guess and used it for the relative assessment of the retrieved products.

In the present study, we have exploited the 1DVAR technique to retrieve the SST using thermal
split-window IR observations from INSAT-3D/3DR. The conventional regression-based retrieval
technique, NLSST, has also been utilized for SST estimation. Although the NLSST algorithm is already
implemented from July 2018 at MOSDAC/SAC and MMDRPS/IMD, it does not have a mechanism to
correct for diurnal and seasonal dependent biases. In the present study, this has been corrected using
a real-time bias correction of satellite observations using model forecast fields as input in the RT model.
Since both the algorithms, NLSST and 1DVAR, utilize RT model for coefficient generation as well as
forward/Jacobian computation, this procedure makes satellite observations consistent with the RT
model. Both algorithms are tested for six months of INSAT-3D and 3DR observations to retrieve SST to
capture seasonal variability ranging from winter (cold SST) to summer (warm SST). The quantitative
assessment of the retrieved SST is carried out by validating with the iQuam SST. It may be noted
that the validation statistics have been generated for daily and monthly scales using pooled matchup
dataset of instantaneous SST fields, and not using the daily/monthly averaged SST that introduces
significant smoothing. To monitor the accuracy of the retrieved SST in different SST bins, bivariate
density plots are demonstrated. Based on the validation exercise, it has been observed that the 1DVAR
outperforms the NLSST for both the satellites. The 1DVAR based retrieval shows a similar accuracy
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with Std (Bias) of 0.63 K (−0.36 K) for both INSAT-3D and 3DR. Whereas, the NLSST provides slightly
less accurate SST with Std (bias) of 0.87 K (−0.18 K) for INSAT-3DR and 0.95 K (−0.27 K) for INSAT-3D,
respectively. It may be noted that an additional cold bias of about 0.2 K may also be removed because
the satellite SST fields are skin-SST, whereas the iQuam is bulk or sub-skin SST. This brings a bias
value in both the 1DVAR and the NLSST very close to 0 that implies a significant improvement in SST
retrieval accuracy using the 1DVAR algorithm over the NLSST. Additionally, the majority (>85%) of
retrieved SST data lie within 1 K of the reference SST giving the accuracy of <0.5 K in case of the 1DVAR
and 0.8 K in case of the NLSST. This may be because the 1DVAR utilizes the accurate a priori FCT SST
as the first-guess, which provides about 67% of the information content to the retrieval [34], whereas
the NLSST utilizes direct satellite observations, which has large uncertainties.

As the real benefit of a GEO satellite is to provide continuous observations for high spatial
and temporal resolution SST, the diurnal pattern of the bias is also evaluated. The present study shows
that using real-time bias correction leads to a reduction in the diurnal biases in the OPR SST and brings
these biases very close to the biases in the FCT SST. Although the NLSST used herein shows slightly
higher biases as compared to the 1DVAR, they are still far superior to the OPR algorithm without any
mechanism for diurnal and seasonal dependent bias correction. Moreover, the Std does not exhibit
diurnal variation, and is improved significantly in the 1DVAR followed by the NLSST algorithm as
compared to the OPR. Other than the validation, the retrieved SST has been further exploited for
the application of small-scale features such as spatial thermal gradient studies. The computed spatial
thermal gradients from SST retrieved using the 1DVAR and the NLSST algorithms exhibit an excellent
match for the large-scale features with the MUR level-4 GHRSST derived gradients. The new 1DVAR
and NLSST algorithms are able to capture the majority of the prominent features observed in MUR
level-4 GHRSST gradients that is very essential for many oceanographic applications, especially
PFZ identification.

In a nutshell, the present work demonstrates that the 1DVAR physical retrieval and the NLSST
based algorithms perform very well after making RT model-dependent observation bias correction
from closest forecast fields as input to the RT model. These algorithms show far superior accuracy in
terms of both diurnal/seasonal dependent biases as well as uncertainties and are capable of producing
small-scale features desired from the GEO platform for making a global composite along with various
other international GEO missions. The proposed improved algorithm for the NLSST and the 1DVAR is
currently undergoing implementation for operational INSAT-3D/3DR SST products.
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