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Abstract: Many automatic landslide detection algorithms are based on supervised classification of
various remote sensing (RS) data, particularly satellite images and digital elevation models (DEMs)
delivered by Light Detection and Ranging (LiDAR). Machine learning methods require the collection
of both training and testing data to produce and evaluate the classification results. The collection of
good quality landslide ground truths to train classifiers and detect landslides in other regions is a
challenge, with a significant impact on classification accuracy. Taking this into account, the following
research question arises: What is the appropriate training–testing dataset split ratio in supervised
classification to effectively detect landslides in a testing area based on DEMs? We investigated this
issue for both the pixel-based approach (PBA) and object-based image analysis (OBIA). In both
approaches, the random forest (RF) classification was implemented. The experiments were performed
in the most landslide-affected area in Poland in the Outer Carpathians-Rożnów Lake vicinity. Based
on the accuracy assessment, we found that the training area should be of a similar size to the testing
area. We also found that the OBIA approach performs slightly better than PBA when the quantity of
training samples is significantly lower than the testing samples. To increase detection performance,
the intersection of the OBIA and PBA results together with median filtering and the removal of
small elongated objects were performed. This allowed an overall accuracy (OA) = 80% and F1
Score = 0.50 to be achieved. The achieved results are compared and discussed with other landslide
detection-related studies.

Keywords: automatic landslide detection; OBIA; PBA; random forests; supervised classification

1. Introduction

The limitations of landslide field mapping are widely reported in the literature [1–8]. In certain
conditions, such as densely vegetated terrain, field-based investigation is ineffective or even
impossible [9]. Benefiting from an abundant collection of remote sensing (RS) data, automatic
approaches have been introduced to landslide studies by various scientists [1,3–8,10–28]. Among
the automatic methods, pixel-based (PBA) [4,5,14,16,19] and object-based (OBIA) [7,8,10–13,15,20]
classification methods can be distinguished. Different studies have compared the performance of OBIA
and PBA in various RS applications [29–31], including landslide detection [20,32,33].

Various supervised classification methods can be applied in PBA and OBIA to detect landslides.
Supervised classification requires the collection of both training and testing data to produce classification
results and assess the classification accuracy. The collection of good quality landslide ground truth data
to train the classifier is a challenge due to the time, access, and interpretability constraints, in addition to
the need for expert knowledge [34]. Many scientists emphasize that training samples have a significant
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impact on classification accuracy [35–37]. In particular, the number/quantity of training samples, which
can also be interpreted as the training–testing area ratio, has a crucial impact on classification results.

In the RS literature, many works present the problem of training samples in classification and
report that a reduction of the training sample quantity results in a decrease in accuracy [35–37].
However, there is a lack of studies that investigate the influence of the training–testing split ratio on
the accuracy of landslide detection.

Considering this research gap, the objective of this study was to assess the influence of the
training–testing split ratio of the study area on the accuracy of automatic landslide detection using
supervised classification and based on DEM-derived features.

Reading the literature related to automatic landslide detection can lead to confusion because there
is ambiguity in terms of basic concepts. For this reason, we adopted the predominant terminology
used in the machine learning (ML) community [38,39]. According to this, the initial dataset is split
into training and testing datasets. A small portion separated from the training samples is called the
validation dataset. Training and validation samples are used to construct and fine tune the classifier.
We used the so-called cross-validation approach for this purpose. The performance of the trained
classifier was than verified and assessed using the testing dataset.

We divided our study area into training and testing sites according to two strategies. In the
first strategy, testing areas were divided using the so-called region growing approach. In the second
strategy, we divided our study area into training and testing areas based on the boundary determined
by the water reservoirs of Rożnów Lake and Dunajec River. These various classification schemes
were implemented for PBA and OBIA. The classification was performed using the random forest (RF)
classification algorithm. Numerical investigations were carried out in the area highly prone to land
sliding located close to Rożnów Lake in Poland.

2. Related Studies

Automatic methods for landslide mapping include analyses of RS data, such as optical
images [8,10,40,41], synthetic aperture radar (SAR) data [42,43], and Light Detection and Ranging
(LiDAR) delivered digital elevation models (DEMs) [14,15,17,18,44,45]. The diversity of data and
their resolution provide opportunities for various types of investigations. Since SAR data processing
allows for estimating ground deformation, these data are usually applied for monitoring purposes and
indirectly for landslide detection [43,46–49]. Optical RS data and LiDAR data allow landslides to be
directly detected. Some researchers have attempted to utilize low-resolution optical images, such as
Landsat [50–53]. However, these data appear to be not detailed enough for the detection of some small
landslides [53]. The launch of SPOT as the first medium-resolution satellite captured significant attention
of the scientific community. The first applications of SPOT data for landslide detection were presented
by [54] and [55]. Subsequently, numerous other scientists have applied medium-resolution optical
images for landslide detection [56–58] also integrated with SAR data [59]. A completely new research
dimension has been provided by very-high-resolution optical images [41,60,61]. The application
of optical images is effective for the detection of recent landslide catastrophic events that generate
explicit and visible land cover changes (before and after the event), for example, the loss of vegetation,
presence of fresh soil, and exposure of debris [12]. For old and/or slow-moving landslides where
the changes in land cover/land use cannot be clearly observed, it is often impossible to distinguish
landslide-affected areas from the image background; however, this issue also depends on the image
resolution [8,12,15]. Thus, LiDAR is used due to its multi-return laser pulse, which has the ability to
penetrate through plant cover. This allows for the filtering of vegetation and other non-ground objects
and provides very detailed bare-earth terrain [62]. Therefore, LiDAR-delivered DEM is commonly used
solely [4,5,14,15,17,18,63] or integrated with other data [12,64] for landslide detection in such areas.

Among the automatic approaches related to this study that utilized DEM data, McKean and
Roering [4] were probably the first researchers who attempted automatic extraction of landslide features
from a 1-m LiDAR-DEM in a 0.5-km2 landslide complex near Christchurch, New Zealand. Surface



Remote Sens. 2020, 12, 3054 3 of 33

roughness allowed for separating the landslide complex into four kinematic units. Subsequently,
Glenn et al. [63] carried out a numerical analysis of LiDAR elevation data collected for two canyon-rim
landslides covering an area of 17 km2 in southern Idaho, USA. They separated landslides into
various morphological domains based on morphometric data, topographic measurements, and field
observations. One year later, Sato et al. [65] captured topographic information from an airborne LiDAR
survey, such as the terrain gradient, topographic texture, and local convexity, and classified landform
types into 17 domains over a 3.8-km2 landslide area in the Shirakami Mountains, Japan. Noteworthy
research was presented by Booth et al. [5], who applied two-dimensional discrete Fourier transform
and continuous wavelet transform for two LiDAR-DEMs to characterize the spatial frequencies
of morphological features characteristic of deep-seated landslides in the Puget Sound lowlands,
Washington, and the Tualatin Mountains, Oregon, USA. In the same year, a similar work was presented
by Kasai et al. [66]. They applied a 1-m LiDAR DEM to identify geomorphic features within deep-seated
landslides in a 5-km2 mountainous terrain area in the Kii mountain range, Japan. Chen et al. [19]
used DEM-derived features and the RF algorithm for landslide mapping. Aspect, DEM, and slope
images and their texture and window moving standard deviation filtering were applied for landslide
detection in the region of Three Gorges, China. Pawluszek et al. [14] applied an extended set of
DEM derivatives to assess the sensitivity of automatic landslide mapping using various supervised
classification methods in the area of Carpathians in Poland. For semi-automatic extraction of landslide
features, Passalacqua et al. [67] and Tarolli et al. [44] proposed two different approaches. However,
both found a problem related to PBA, which does not consider or only marginally considers the local
geomorphological setting and “context”, such as the size, shape, and position in the landscape of the
extracted features. Therefore, new needs appeared for the exploration of contextual information.

Around the year 2000, the Geographic Information System (GIS) and image processing community
began to pay special attention to OBIA [68]. OBIA, in contrast to PBA, utilizes a full range of spectral,
spatial, textural, and contextual parameters to delineate regions of interest [7,10,11,68]. In OBIA,
individual landslides are considered an ensemble of pixels, rather than individual pixels that are
spatially unrelated [13,68,69]. In our study area, because landslides did not generate explicit and visible
land cover changes, the application of optical data solely would be ineffective; thus, we integrated
these data with a DEM. Nevertheless, previous research based on optical RS presented leading
developments in OBIA methodologies. For instance, Lahousse et al. [70] developed a multi-scale
OBIA to map shallow landslides in the Baichi watershed in Taiwan after the 2004 Typhoon Aere
event. Furthermore, the ML classification method has also been applied for landslide detection.
Sumpf and Kerle [10] took advantage of OBIA and ML and proposed a supervised workflow for
landslide detection to reduce manual labor and objectify the choice of significant object features and
classification thresholds. They utilized very-high-resolution RS images (Quickbird, IKONOS, Geoeye-1,
and aerial photographs). In addition, Stumpf et al. [8] introduced a semi-automatic approach based
on object-oriented change detection for landslide rapid mapping and the use of very-high-resolution
optical images. The algorithm was first developed in a training area of Altolia and subsequently tested
without modifications in an independent area of Italy.

Due to the limitation of optical RS, OBIA has also captured the interest of scientists utilizing DEM
for landslide detection [71]. The first example of an OBIA and DEM application for landslide detection
is the study of Van Den Eeckhaut et al. [7]. The authors utilized support vector machine classification
and DEM derivatives, such as the slope gradient, roughness, and curvature, in the Flemish Ardennes
in Belgium for mapping slow-moving landslides in densely vegetated terrain, in which optical and
spectral data could not be applied. Then, Li et al. [20] identified forested landslides using OBIA, DEM,
and RF algorithms in the area of Three Gorges, China. Pawluszek et al. [15] performed multi-aspect
analysis of OBIA for landslide detection in Polish Flysch Carpathians by utilizing only DEM data.
They found that OBIA is very sensitive to scale and DEM resolution, and texture-related variables
(grey level co-occurrence measures) were not helpful in landslide detection. Moreover, at present,
geomorphological mapping is also integrated with OBIA. Knevels et al. [13] implemented OBIA
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combined with geomorphological mapping to identify landslides in Oberpullendorf, Austria [7,13].
Prakash et al. [12] integrated DEM and Sentinel-2 images with ML and deep learning methods for
landslide detection in Daglas county, Oregon, USA.

Most of the aforementioned landslide approaches utilized supervised classification for landslide
detection, but none have investigated the effect of the train–test split ratio of the study area on the
accuracy of landslide detection. This problem is widely recognized and discussed in RS, for instance,
in the literature related to land cover mapping [35–37]. Thus, this motivated us to investigate this
research issue in applications for landslide detection.

In addition to supervised-based methods, other types of automatic algorithms exist that are based
on DEM analysis and are worth mentioning. For instance, Leshchinsky et al. [18] presented a new
approach for the automatic and consistent mapping of landslide deposits called the contour connection
method (CCN) based on DEM. In CCM, contours and nodes are applied to mapping and vectors are
used to connect the nodes to evaluate gradients and associated landslide features based on criteria
defined by the users. Another study that continued the application of this method was presented by
Gaidzik et al. [72]. The authors mapped landslides based on two approaches: (1) manual mapping
using satellite images and (2) automatic landslide morphology detection by employing the CCM.
The automated inventory provided by the CCM with LiDAR DEMs effectively minimizes the time and
subjectivity required. A continuation of this method was presented by Bunn et al. [17], who utilized
a semi-automated method called the scarp identification and contour connection method (SICCM),
which utilizes various geologic conditions automatically or semi-automatically introduced by simple
inputs and interpretation from an expert. The application of the presented approach was demonstrated
for three various study areas: the Oso landslide in Snohomish County, Washington, and Dixie and
Pittsburg in Oregon Coast Ranges.

3. Study Area and Data

3.1. Study Area and Geological Conditions

The study area is located in the vicinity of Rożnów Lake, in the central part of the Outer Carpathians,
in the Małopolskie municipality, Poland (Figure 1). The study area covers from 49◦40′N to 49◦46′N
latitude and from 20◦38′E to 20◦48′E longitude. Within the study area of 157 km2, around 21 km2 is
affected by landslides. This means that landslides occupy 13% of the entire study area. Within the study
area, there are translational, rotational, or combined rock-debris slides and typical debris slides [73–76].
Based on Vernes’ classification, updated by Hungr et al. [74], landslides within the study are slow- to
very slow-moving landslides. The landslide activity is significantly connected with hydro-geological
factors, such as rock stratification and precipitation. Activation of deep rockslides requires long
continuous precipitation of 100 to 500 mm per month while cumulative rainfall of 50–400 mm over the
course of 2–5 days can induce mudslides and debris slides [75]. Usually, north-facing landslides are
found to be complex, while south-facing landslides tend to be insequent or subsequent [75]. Figure 1c,d
presents the various landslide morphologies within the study area. Unfortunately, there are many
landslides with smoothed morphology (Figure 1d), which makes them difficult to detect.
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Figure 1. Location of the study area (a) with a false color image (spectral bands: 4-3-2) of a Sentinel-2A
image (b) acquired 3/10/2015. Examples of landslide shapefile from the national landslide database
(SOPO) for (c) landslide with visible terrain roughness and (d) landslide with smoothed terrain.

Appendix A Figure A1a presents the normalized difference vegetation index (NDVI), Corine Land
Cover (CLC), and NDVI index (A-b) for the study area. According to CLC, the study area is mostly
covered by non-irrigated arable land (26%), mixed forest (20%), and lands principally occupied by
agriculture with significant natural vegetation (18%). The remaining parts are covered by various
types of forest (coniferous forest, broad-leaved forest), plantations, pastures, and water bodies (8%).
Appendix A Figure A1b presents the NDVI index calculated for Sentinel-2A data acquired at 25/03/2020.
As can be observed, 53.7% and 31.8% of the whole area have values greater than 0.6 and 0.3, respectively.
This indicates that most of the study area is covered by vegetation (forest and agricultural areas), which
is in agreement with CLC.

The terrain of the Beskid Mountain Range area mainly has features of low- and medium-high
mountains and medium-high foothills [77]. The slope length ranges from 0.6 to 1 km [75]. Predominant
slope gradients are in the range of 0–68◦ and the relative elevations range from 266 to 613 m in the
montane area. In sub-montane areas, slope gradients are in the range of 0–72◦ and 0–82◦ for Wielickie
and Ciężkowickie Foothills, respectively. Correspondingly, the relative elevation within Wielickie and
Ciężkowickie Foothills is from 232 to 486 m and 234 to 581 m, respectively. In Ciężkowickie Foothills,
landslides range in size from 537 m2 to 92 ha. In Wielickie Foothills, landslides range from 584 m2 to
26 ha. In Beskid Mountains, landslides range from 925 m2 to 37 ha. The mean size of the landslides
within the study area is 3 ha. Large inactive landslides can be generally observed in Beskid Wyspowy
in woodland areas, on upper slope segments, and in cones of depression [73]. The most susceptible
area to land sliding is that directly adjacent to Rożnów Lake.
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In Appendix B, the geological map for the study area, with explanation, is presented. The study
site mainly comprises Eocene–Oligocene sandstones and shales and Upper Cretaceous sandstone and
conglomerate–Lower Stebna layers. Additionally, many different geological subunits are interconnected
with each other (see Appendix B). Based on Appendix B, it can be observed that the landslide bodies are
mainly located in the boundaries/contacts of the units and steep slope areas along Rożnów Lake, where
the slope stability is poor. These areas are mainly covered by sandstones and shales. For example, in the
boundaries of the Eocene sandstone and shale in the Śląska series, Oligocene-aged shale of the Krosno
layers is found in high slope areas along the lake and Paleocene–Eocene-aged spotted shale is found in
the Magura Series. In contrast, landslides are less observed in medium-thick Oligocene sandstones
and shales of the Śląska Series. Other geological units have a low susceptibility for landslides [73,75].

3.2. Data

Various data were utilized for this analysis. LiDAR data were acquired using a Riegl LiteMapper
6800i system based on the Q680i laser scanner. The point cloud planimetric density is equal
to 4–6 points/m2, and the estimated root mean square error for the height component is about
0.15 m [78]. The ability of LiDAR to capture topographic information is highly advantageous in
forested areas [7,19,20]. The landslide inventory database (SOPO) from the Polish National Geological
Institute was utilized to capture the training and testing datasets. The SOPO database consists of
geological data, in addition to information on landslide locations and their type, and on areas prone to
mass movements.

The location of existing landslides was collected in the SOPO database by the method approved
by Polish National Geological Institute [79]. This method included conventional techniques, mostly
comprising field reconnaissance, the visual interpretation of aerial photographs, the analysis of
historical data, and detailed geomorphological/geological analysis [75]. Landslides within the study
area stored in the SOPO database were mapped during field work in the years 2010, 2011, 2012, 2013,
2014, and 2015 [76,80,81]. Additional mapping work was also performed on the basis of topographic
maps at a 1:10,000 scale supported by stereoscopic analyses of aerial photographs and LiDAR data [82].
In addition to LiDAR and landslide inventory maps, geological maps over the study area were
acquired in raster format from the Polish National Geological Institute. Furthermore, Sentinel-2A
images acquired on 25/03/2020 and road network maps from Open Street Map were utilized. Table 1
summarizes the data used, and their types and sources.

Table 1. Data used, their types, and their sources.

Data Used Data Type Source

DEM Point cloud LiDAR [78,83]
Landslide inventory map Raster http://geoportal.pgi.gov.pl/portal/page/portal/SOPO

Geology map Raster Polish National Geological Institute
Sentinel-2A Raster https://scihub.copernicus.eu/

Road network Shapefile Open Street Map

4. Methods

An overview of the methodology applied is presented in Figure 2. The 2-m DEM generated
from the LiDAR point cloud was used for the extraction of topographic variables. Other data, such
as Open Street Map (OSM) or Sentinel-2A data, were used for additional non-topographical layer
extraction. Moreover, we utilized the DEM to extract the streams’ networks and Sentinel-2A to extract
the extent of Rożnów Lake. A detailed description of the extracted variables is presented in Section 4.1.
The extracted variables were used for supervised classification using pixel- (PBA) and object-based
(OBIA) approaches. Despite the various classification approaches used, we classified the study area
using the two training and testing strategies presented in Section 4.4. The accuracy parameters were
computed for each classification approach and for the various training and testing strategies.

http://geoportal.pgi.gov.pl/portal/page/portal/SOPO
https://scihub.copernicus.eu/
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Figure 2. Overview of the entire methodology carried out in the present study.

Additionally, taking advantage of various processing approaches (pixels vs. object), the final
detection map was generated for overlapped results from PBA and OBIA. Then, additional refinement
was carried out (see Section 4.6). Furthermore, by utilizing the RF algorithm, we were able to indirectly
assess the feature relevance in automatic landslide mapping.

4.1. DEM Generation and Feature Extraction

The classified LiDAR point cloud was acquired within the IT System of the Country Protection
(ISOK) project [78,83]. LiDAR point cloud filtration within this project was performed using different
software, mainly TerraScan based on Axellson’s filtering method [84–86]. A filtered point cloud
was corrected manually based on a visual inspection of the point cloud and aerial photographs.
A classified LiDAR point cloud with a mean density of 4–6 /m2 was used to generate the base DEM.
The natural neighbor interpolation method was used to avoid smoothing of possible terrain breaklines
represented in the original point cloud. However, according to the recommendations provided in [14],
we resampled the base 0.5-m DEM into a 2-m resolution. This allowed us to preserve all landslide
surface features while significantly decreasing the data volume and removing the artifacts present
in the data at the original resolution. The issues connected with the suitable DEM resolution have
been investigated by various scientists, many of whom reported that the finest DEM resolution is
not the best choice [12,14,15,26,87]. Then, DEM derivatives (also called topographic variables or
land-surface variables and DEM variables) were calculated from the DEM. Based on a literature
review, the DEM variables presented in Table 2 were utilized. However, for OBIA, the mean pixels’
value of DEM variables inside the object was used. We applied 14 DEM variables, which are widely
used and recommended in the literature [7,10,13–15,19,20,87]. Roughness, curvature, mean slope,
topographic position index (TPI), and openness were calculated using various kernel sizes according to
the recommendations provided by Pawluszek et al. [14]. To take advantage of the hillshade, which is
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calculated by illuminating the DEM with sunlight coming from a specific direction, we calculated the
hillshade layers using eight sun angles (Figure 3) and then summed these layers into one hillshade
layer. This allowed us to simulate the sunlight coming from various directions [34].

Figure 3. Interrelationships of the used variables. The subscripts by the variable “hillshade” indicate
layers illuminated, in particular sun directions.

In contrast to PBA, OBIA takes advantage of various geometrical variables (compactness,
rectangularity, etc.). These variables were applied in the OBIA approach. In addition to the
topographical variables calculated from the DEM, the geology, normalized difference vegetation
index (NDVI), and proximity to roads, lake, and streams were also implemented in the classification.
A large amount of previous research [11,12] has utilized the NDVI for landslide identification. NDVI
application is only effective in the detection of recent catastrophic events that generate explicit and
visible land cover changes (before and after the event), including loss of vegetation, the presence of
fresh soil, and the exposure of debris. Nevertheless, we also utilized NDVI as an additional layer for
better segmentation and possible landslide boundary extraction. Landslide boundaries usually appear
along various land use classes (rivers, streams, forest boundaries, etc.). Additionally, the NDVI layer
was used for the Rożnów Lake extraction (NDVI < 0), which afterwards allowed for the extraction of
the lake proximity variable.

Geology is one of the most important aspects that influences the occurrence of landslide
identification and has been applied in many studies [30,88–96]. However, the proximity of roads
and water reservoirs (lake/streams) are also reported as critical factors that influence landslide
occurrence [89–92,94–96]. Information on the settings, methods, and software used are specified in
Table 2, while the interrelationships of data used, and the extraction of various landslide classification
variables are shown in Figure 3. Table 2 also provides the literature sources where particular variables
are explained in detail.
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Table 2. Variables used for landslide detection with the setting, software, and methods utilized to calculate them.

Variable Kernel Size/Setting Implementation PBA
(ArcGIS)

OBIA
(eCognition) Examples of Application

DEM-related variables
DEM - -

√ √
[7,12–15,19,20]

aspect - [97]
√ √

[12,19]
side exposure index (SEI) - [97]

√ √
[16]

flow direction - ArcGIS
√ √

[7,13]
roughness 7 × 7 [14,98]

√ √
[4,7,12,13]

slope 15 × 15 [97]
√ √

[7,12,13,19]
curvature 15 × 15 [97]

√ √
[7,12,13,27]

topographic position index (TPI) 15 × 15 [99]
√ √

[90]

openness 25 × 25 (interpolated DEM) [14]
DEM25m −DEM2m

√ √
[7,13]

hillshade 8 various sun angles ArcGIS
√ √

[10,12,15,34,45]
compound topographic index (CTI) - [97]

√ √
[26,87,90]

elevation relief ration (ERR) 10 × 10 [87]
√ √

[87]
integral relief (IR) 10 × 10 [87]

√ √
[87]

integrated moisture index (IMI) - [97]
√ √

Other variables
geology - -

√ √
[90]

NDVI - (NIR − RED)/
(NIR + RED)

√ √
[12]

roads proximity - Euclidean distance buffering
√ √

[90]
streams proximity - Euclidean distance buffering

√ √
[7,12]

lake proximity - Euclidean distance buffering
√ √

-

Geometry variables
count - eCognition

√
-

compactness - eCognition
√

[13]
rectangularity - eCognition

√
-

shape index - eCognition
√

[10,13]
roundness - eCognition

√
-

asymmetry - eCognition
√

-
length/width - eCognition

√
[13]

border length - eCognition
√

-
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4.2. Pixel-Based and Object-Based Classification

An overview of the implemented PBA and OBIA classification is depicted in Figure 4. In the
pixel-based approach, all used features are treated as a raster that is co-registered and resampled into the
common resolution of 2 m. This makes a per-pixel analysis computationally effective [12]. As can be seen
in Table 2, PBA, unlike OBIA, does not consider geometrical and contextual information [12,19,33,68].
In object-based classification, also known as geographic object-based image analysis (GEOBIA) or an
object-oriented approach (OOA), the study area is segmented into groups of meaningful homogeneous
objects [12,68]. This approach assumes that the neighboring pixels likely belong to the same class
or object. A segmented object in OBIA can then be classified using spectral, geometric textural,
or spatial variables and relationships. Based on [7,8,10–13,15,68], landslides are better represented
by heterogeneous objects (collection of pixels) rather than single pixels. The first and the most
important step in OBIA is the segmentation of the study area into objects that are candidates for
landslides. Methods like multiresolution image segmentation and simple linear iterative clustering
are predominantly used for the segmentation of objects. Some segmentation algorithms require
scale parameters that influence the shapes and sizes of the resulting objects. These scale parameters
vary depending on the applied segmentation algorithm. Moreover, the selection of appropriate scale
parameters is not a straightforward task. In addition, landslides have a multiscale character. This means
that in the real world, landslides come in a wide range of shapes and sizes, thus tuning segmentation
scale is challenging. For this reason, various algorithms for scale tuning have been proposed in the
literature (e.g., plateau objective function), which combined with expert knowledge allows for more
effective landslide detection; however, the problem remains when landslides with significantly different
sizes exist [11,28]. Because our research goal was to investigate the influence of the ratio between the
training area and testing area, we utilized a trial-and-error procedure, which is also applied in the
literature, to estimate the scale value [100]. We set each of the shape and compactness parameters equal
to 0.5. This segmentation was performed for all extracted variables using multiresolution segmentation
in eCognition.

Figure 4. Steps performed in the pixel-based approach (PBA) and object-based image analysis
(OBIA) classification.

4.3. Random Forest Classifier and Variable Importance

For the numerical investigations within this research, a mature ML classifier, random forest, was
used in both approaches (PBA and OBIA). This is a nonparametric classifier developed by Breiman [101].
The RF classifier allows reliable classification results to be achieved using predictions derived from an
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ensemble of decision trees [101]. This is a crucial advantage that allows for a dimensionality reduction
of the RS data. In the literature, this classifier is widely applied to various RS applications, such as land
cover mapping [102,103] and landslide detection [12,19,20]. Detailed information on RF classification
can be found in [101,104]. Moreover, this classifier can be effectively applied to select and rank variables
with the greatest ability to discriminate between the target classes based on the impurity function of
the Gini index, which is known as the mean decrease or Gini importance [101,104,105]. In Section 4.2,
we provide an evaluation of the variable importance within PBA and OBIA classification. Additionally,
a large feature set can cause problems, such as: (1) A long time needed to train the algorithm, (2) a
long time and many resources needed to generate the variables, and (3) overfitting when too many
irrelevant features are utilized [19]. Hence, the feature relevance assessment is a highly important
aspect of the classification task. Nevertheless, we did not reduce our input variables because they did
not decrease the classification time. However, if a larger study area is analyzed and more input layers
are used, this variable reduction would be beneficial. During the training process, cross-validation was
performed (Figure 4). This means that 10% of the training samples was removed from the training
dataset and used to perform cross-validation. This allowed the evaluation of the accuracy of the
predictive model applied and to fine tune this model. After the training process, formal classification
was performed for the whole investigated area using various training and testing strategies, which are
presented in the next subsection. The RF classification for both approaches (PBA/OBIA) was performed
for 500 trees, with the tree depth equal to 30.

4.4. Training and Testing Strategies

Selection of the training samples is a critical step in supervised classification and the focal point
of our study. According to [36,106], the training sample size has a larger impact on the classification
accuracy than the algorithm itself. This conclusion was made based on an evaluation of the impact of
training data size on various classifiers in land cover mapping. This issue is especially important in
deep learning methods, where a large amount of well-labelled training samples is needed to prevent
the classifier from overfitting [107]. Using various training sample sizes, Huang et al. [24] achieved
an OA between 69% and 75%. However, OA is not the best estimator of the classification results,
particularly for imbalanced classes. Nevertheless, this result shows that the training sample quantity
influences the accuracy of the classification. Therefore, the acquisition of ground truth samples is a key
factor when planning feature detection based on supervised classification methods. In addition to the
quantity of training samples, the strategy for training sample selection is also important. Based on
the literature, there are generally two sample selection strategies: manual and random sampling
design [102,103,108]. Random sampling design is based on the identification and labeling of small
random patches of homogeneous pixels/objects in an image [108]. Chen et al. [19] reported that
random sampling design introduces the effect of spatial autocorrelation, which affects the classification
accuracy. In manual sampling design, the study area is split into two datasets (training and testing)
based on administrative or environmental boundaries. Training samples are spatially compact with
no autocorrelation effect, unlike random sampling design. Manual sampling design is thus more
reasonable from a practical point of view. Collecting landslide ground truth data is time-consuming.
Consequently, these ground truths come from landslide inventory maps generated for specific regions.
Landslide inventories are usually performed systematically on a part-by-part basis. Therefore, areas
that have already been investigated and mapped can be used for training the algorithm and predicting
landslide locations in areas where landslide inventory maps have not yet been generated (especially in
poorly accessible areas).

We used a manual sampling design in our study and utilized landslide polygons and corresponding
landslide pixels delivered from the SOPO inventory to train OBIA and PBA variants of classifiers,
respectively. However, we implemented the training–testing split ratio (TTR) (compare Figure 4)
according to two various strategies. In the first strategy, training samples were selected in the center of
the investigated area and covered 13% of the entire study area. The remaining portion of the study area
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consisted of six testing areas (TAs), which were split using the region growing approach (Figure 5a).
These six various TAs (Table 3) were used for region growing testing. For instance, this means that the
training quantity for TA 1 covers 50% of the total investigated area and for TA 6 covers 13% of the total
investigated area (Figure 5a). This also corresponds to a training-split ratio of 1 and 0.15 for TA 1 and
TA 2, respectively. In the second strategy (natural boundary splitting design), the study area was split
into a testing and testing area along the boundary designated by Rożnów Lake and Dunajec River
(Figure 5b). In this variant, the training area covers 54% of the entire study area. The quantitative
values of the training samples in various testing strategies are presented in Tables 3 and 4 for the region
growing and the natural boundary splitting designs.

Figure 5. Various training and testing strategies used: (a) region growing testing design with various
testing areas abbreviated as TA 1–6 and (b) natural boundary splitting design (the right green area
used for training and red left area used for testing).

Table 3. Overview of the applied training sample size in the region growing testing design.
TSQ—training samples quantity of the entire study area; TTR—training-testing split ratio;
LTSQ—landslide training samples quantity of the entire classified area; and NLTSQ—non-landslide
training samples quantity of the entire classified area.

Areas No.
Landslides

Domain
[km2]

Landslide
Areas [km2]

Non-Landslide
Areas [km2]

TSQ
[%] TTR LTSQ

[%]
NLTSQ

[%]

Training area 156 20 4.3 15.7 -
TA 1 149 20 5.4 14.6 50 1 10.7 39.3
TA 2 197 50 6.4 23.6 28.5 0.4 6.1 22.4
TA 3 335 56 9.8 46.2 26 0.35 5.6 20.4
TA 4 455 81 13.9 67.4 19.8 0.25 4.3 15.5
TA 5 563 106 17.2 88.8 15.9 0.19 3.4 12.5
TA 6 646 137 18.8 118.2 13 0.15 2.7 10.3
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Table 4. Overview of the used training sample size in the natural boundary splitting design. For the
explanation of the abbreviations, see Table 3.

Area No.
Landslides

Total Area
[km2]

Landslide
Areas [km2]

Non-Landslide
Area [km2]

TSQ
[%] TTR LTSQ

[%]
NLTSQ

[%]

Training area 398 85 13.1 71.9 -
Testing area 404 72 8.3 63.7 54 1.2 8.3 45.7

4.5. Classification Accuracy Parameters

To directly compare the accuracy of OBIA and PBA for various testing areas, we carried out an
accuracy assessment at the pixel level. For this process, landslide shapefiles from the landslide inventory
database were rasterized with a 2-m resolution and overlaid with the achieved PBA classification
results. For OBIA, additional rasterization of the classification results was needed to overlay the OBIA
results with the reference data acquired in the framework of the SOPO database. To compare the
classification accuracy and evaluate the landslide detection skills of the tested variants, the confusion
matrix for a particular variant was calculated. This matrix includes the true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) values. Based on these values, the overall accuracy
(OA) of the model is calculated as follows:

OA =
TP + TN

TP + FP + TN + FN
. (1)

When comparing the classification results, we followed the recommendation in [103] to investigate
more than just the OA. The F1 score, probability of detection (POD), and probability of false detection
(POFD) are additional measures for the accuracy parameter:

F1 Score =
2× recall× precision

recall + precision
=

2× TP
2× TP + FP + FN

, (2)

POD (recall) =
TP

TP + FN
, (3)

POFD (fallout) =
FP

FP + TN
. (4)

These parameters are especially important when imbalanced data are the subject of classification.
POD provides a view of correctly classified landslide data, while POFD portrays how many
non-landslide areas have been classified as landslides. The preferred value of the POD is 1, while that
of POFD is zero. The F1 score defines the harmonic average of precision and recall. These additional
accuracy assessment parameters are specifically important if the mapping focuses on small classes
(i.e., classes of a limited extent in the image data). Small classes will have little influence on the OA,
although they may be key in determining the usefulness of the classification [103]. This situation
appears when dealing with landslide mapping. It is relatively rare for landslides to cover 50% of the
whole study area; therefore, their influence on the OA is lower than that of the non-landslide class.
For our study area, the landslide density is 14.7% of the whole study area (23.1 km2 of landslide areas
and 157 km2 of non-landslide areas). Thus, the influence of the landslide class on the OA is small.
It thus makes sense to also investigate the F1 score, POD, and POFD indexes to obtain a better overview
of the classification accuracy and landslide detection skills.

4.6. Post-Processing and Final Landslide Map Generation

Because landslide extents detected by the OBIA approach are represented by multiple objects
or multiple pixels, we performed a post-processing refinement of the results. We determined the
most probable landslide extent by extracting the regions detected by PBA, as well as by OBIA.
The intersection of both results provided the most likely results. Additionally, when observing the final
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results, we noticed many small and elongated objects that do not represent landslide areas. Since the
minimum landslide size within our study area is equal to 537 m2 (estimated based on SOPO inventory),
we consequently removed objects smaller than 500 m2 from the intersected results. A shape/perimeter
index lower than 5 was another threshold parameter. Finally, filtering of the result using a median
filter with a 6 × 6 window size was performed to fill the small holes within the landslide bodies.

5. Results

5.1. Accuracy Assessment of Various Training and Testing Strategies

The cross-validation rate achieved during RF training was higher than 0.98, which means that
the models were correctly trained, and data could be classified using RF. As previously mentioned,
in the region growing sample design, we performed classification of the total study area using training
samples located in the center of the study area. Then, an evaluation of the results was performed
for the growing testing areas. Table 5 presents the accuracy assessment parameters (F1 score, POD,
POFD, and OA) for particular testing areas. These results could be refined using post-processing to
increase their accuracy. However, to directly compare PBA and OBIA and the influence of the TTR
on the detection results, refinement was not performed at this stage. Analyzing the achieved results,
we can notice that the F1 score of both approaches (PBA vs. OBIA) is comparable; however, OBIA
performed slightly better (completeness and precision) (Figure 6). This can be especially observed for
TA 3–6. Notably, the same algorithm and parameters were utilized in both classification approaches.
The classification accuracy changes only under various training sample sizes. This important finding
is shown in Table 5. The detection landslide skills decrease subsequently with a decrease in the
contribution of training samples in the total study area. Notably, the OA does not change significantly,
and the other accuracy parameters, such as the F1 score and POD, consequently decrease. This fact is
more obviously presented in Figure 6 for the F1 score accuracy measure. The region growing testing
shows that the landslide detection skills decrease proportionally to decreases in the TTR. However,
a substantial decrease is observed when the training sample quantity decreases from 50% to 26%.
After this, we can observe a small decrease in accuracy. This proves the previously discussed issue
when the OA index is used alone to evaluate landslide detection accuracy.

Table 5. Accuracy assessment for training and testing strategy 1 (region growing testing). Testing areas
1–6 abbreviated as TA 1–6.

Testing Area Method TTR F1 Score POD POFD OA [%]

TA 1
PBA-RF

1
0.57 0.83 0.29 74

OBIA-RF 0.58 0.88 0.31 73

TA 2
PBA-RF

0.4
0.53 0.85 0.31 72

OBIA-RF 0.53 0.88 0.33 71

TA 3
PBA-RF

0.35
0.44 0.83 0.34 69

OBIA-RF 0.46 0.87 0.34 69

TA 4
PBA-RF

0.25
0.42 0.80 0.34 68

OBIA-RF 0.46 0.86 0.33 70

TA 5
PBA-RF

0.19
0.42 0.79 0.33 68

OBIA-RF 0.45 0.85 0.32 70

TA 6
PBA-RF

0.15
0.40 0.78 0.33 68

OBIA-RF 0.43 0.84 0.32 70
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Figure 6. Decrease of the F1 score value for the region growing testing areas (compare with Figure 5).

Based on the achieved results, it can be concluded that the best result was achieved with 50%
of the training samples (F1 Score = 0.58). These results are limited, likely due to the imbalance in
landslide and non-landslides classes. In the tested scenario, only 10% were landslide areas, while 40%
were non-landslide areas.

To verify if accuracy above 70% and an F1 score at the level of 0.5 can truly be achieved when
the training and testing areas are similarly large, we performed training and testing according to
the natural boundary splitting design. The study area was split along the natural Rożnów Lake and
Dunajec River boundary. Although, in this variant, the testing and training areas were similarly large
(TTR = 1.2), we achieved slightly worse results. For instance, the OBIA approach provided an OA, F1
score, POD, and POFD equal to 72%, 0.48, 0.87, and 0.30, respectively (for comparison, for TTR = 1,
the OA, F1 score, POD, and POFD were equal to 73%, 0.58, 0.88, and 0.31, respectively, in the region
growing strategy). Table 6 presents the accuracy parameters for both classification approaches, while
Figure 7 shows a graphical representation of the classification results.
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Figure 7. Training and testing area were superimposed on the random forest (RF) classification results
for OBIA (a) and PBA (b) according to strategy 2.

Table 6. Accuracy assessment for training and testing strategy 2 (Rożnów Lake splitting).

Testing Area ML Method F1 Score POD PODF Accuracy [%]

Łososina-testing
area

PBA-RF 0.46 0.86 0.33 70
OBIA-RF 0.48 0.87 0.30 72

5.2. Feature Relevance

The feature relevance for classification can be assessed as an output from the RF algorithm training
according to the Gini impurity reduction [101]. Figure 8 presents the variable importance for both
classification approaches. As can be observed in both the PBA and OBIA classification approaches,
the geology, DEM, and roughness are the most important variables. The geometric variables were
found to be relatively unimportant in landslide detection using OBIA. The reason for this could be the
segmentation settings, which lead to objects that did not result in significant geometric values. In this
scenario, over-segmentation results in many small objects that represent the extent of one landslide
body. Thus, the geometric parameters of segmented objects do not correspond directly to the landslide
extent and therefore landslide object geometric parameters. Thus, to extract the boundary of one
landslide body, several segmented objects of this landslide should be merged together.
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(a)

(b)

Figure 8. Variable importance assessed based on the random forest algorithm for pixel-based (a) and
object-based approaches (b).
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5.3. Final Landside Map Generation

The common elements of the OBIA and PBA results from the second strategy (natural boundary
splitting design) were then refined. This refinement was performed via the post-processing step
described in Section 4.6. The final map of the detected landslides with TP, TN, and FN is presented in
Figure 9. The accuracy indexes after the subsequent post-processing steps are presented in Table 7.
Based on these, we can observe that the intersection of the PBA and OBIA approach, in addition
to the removal of small and elongated objects, helped to decrease the POFD index. This means the
minimization of over-classification or over-mapping (a high false positive rate). Medial filtering
slightly increased POFD but also increased POD, which is desirable. From another point of view,
these post-processing steps also decreased the POD, which reflects the probability of correctly detected
landslides. However, the OA and F1 scores subsequently increased in the following post-processing
steps. Increasing the F1 score indicates the performance of classification by taking into account true
positives (correctly classified landslides), as well as false positives (wrongly detected landslides).

Figure 9. Training and testing area superimposed on the results of the PBA and OBIA joint approach
for landslide detection.
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Table 7. Accuracy assessment for training and testing strategy 2 with the accuracies acquired after post
processing steps (Rożnów Lake splitting).

Classification Results Post-Processing Step F1 Score POD POFD OA [%]

PBA-RF - 0.46 0.86 0.33 70
OBIA-RF - 0.48 0.87 0.30 72

PBA&OBIA intersection of PBA and OBIA 0.48 0.73 0.23 76

PBA&OBIA refinement 1 small elongated objects
removed 0.50 0.62 0.15 81

PBA&OBIA refinement 2 median filtering 0.50 0.71 0.19 80

6. Discussion

6.1. Landslide Classification Accuracy with Respect to the Training Samples

Based on the results presented in Section 4.1, it can be observed that the F1 score and OA with
respect to the TTR decreases proportionally to the decreased training sample contributions in the whole
investigated study area. However, when comparing the OBIA and PBA results, OBIA performed
better for testing areas 3–6 when the TTR decreased. Thus, it can be concluded that OBIA performs
better than PBA when the quantity of training samples is smaller. Additionally, based on the region
growing testing design, it can be assessed that to achieve an F1 score at the level of 0.5, the training area
should be as large as the testing area. Therefore, this should be considered when performing landslide
detection using supervised classification.

Additionally, when comparing the results from the region growing design and natural neighbor
splitting design, it can be seen that the landslide detection skills are smaller in the second strategy.
The term “landslide detection skills” refers to how well the algorithm detected both classes: landslide
and non-landslide areas. This can be represented by the F1 score. Comparing results from the first and
second strategy where a TTR around 1 (training and testing area are similarly large) was applied, higher
landslide detection skills of the second strategy should be expected. The explanation for this could
be a smaller landslide class or landslide sample contribution in the training samples. In the region
growing design for similarly large areas for training and testing, landslide samples covered an area of
10.7 km2, while in the natural splitting design, they covered 8.3 km2. Another issue could be related to
the landslide morphology, because in both strategies, various landslides were used for classification.
The terrain roughness, value of curvature, and other variables can differ between landslides.

Furthermore, study area conditions could be the reason for slightly smaller landslide detection
skills in the second strategy. These could be geological changes, various elements of landslide training
samples due to the many types of land used (agricultural vs. forests), etc. Specifically, this relates
to how the classification accuracy changes under various geological and environmental conditions,
also taking into account the local morphometry of a particular landslide (e.g., training the algorithm on
a study area in a hilly or mountainous terrain covered by forest and evaluating it using a study area that
is extensively cultivated, and vice versa). In addition to this aspect, the training sample number and
training sample size are also noteworthy aspects to investigate. In this research, we investigated the
training–testing split ratio. However, the training sample number can also influence the classification
results. Thus, the topic of selecting training samples is not exhausted and various aspects were not
covered in this paper but should be investigated in future works.

It is worth mentioning that the achieved accuracy of landslide detection from the natural splitting
design is affected by the different characteristics of the training and testing areas. More specifically,
landslides located on the one side of Rożnów Lake (training area) can have other characteristics than
this located on the other side of the lake (testing area). In a perfect scenario, landslides used, or the
training, that are randomly and evenly distributed across the investigated study can better capture a
variety of the characteristics and can more effectively detect landslides. However, as was mentioned
before, the collection of ground truth data across the study area is very challenging and time-consuming
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from a practical point of view. Usually, such ground truth data (landslide inventory) is generated on
the part by part basis. In Poland, landslide inventory is performed commune after commune. In the
case of the study area, Rożnów Lake and Dunajec River are also the border between two communes,
namely Łososina Dolna commune (testing area) and Gródek nad Dunajcem (training area). Landslide
inventory for Łososina was created in 2011 while for Dunajec around 2015. Thus, from the practical
point of view, it is desirable to utilize existing landslide inventory for training and detecting landslides
in the area where such an inventory is not available.

6.2. Comparison with Other Related Studies

Our final results for landslide automatic detection were achieved via integration of the PBA and
OBIA results and the post processing refinement described in Section 4.6. Considering the classification
accuracy measures (Section 4.5), we achieved moderate agreement with the ground truth data (F1 score
= 0.5). Thus, there is still space for improvement in automatic landslide mapping. In addition to various
data, approaches, and classification accuracy measures, we attempted to compare our results to those
of other studies related to landslide detection based on DEM. However, it should be mentioned that
direct comparison is not possible due to the various study areas used in various works or also different
accuracy measures. Anyway, to somehow relate our study with some existing in the literature and to
summarize our achievement and limitations, we made this comparison. To compare these results with
those in [13] and those in our previous studies [14,15], we additionally calculated the Kappa index,
which is also a frequently used classification accuracy measure in the RS community. Some scientists
discussed the limitation connected with the Kappa index in accuracy evaluation [109,110]. Since some
papers present Kappa and OA and/or recall only [13–15], we decided to not omit the Kappa index due
to the limited number of presented accuracy measures, which can be used for comparison.

Comparing the accuracy measures of the other studies presented in Table 8, the results achieved
in this study are consistent with those of previous studies using similar methods [12,14,15,19,20],
especially ML-based or deep learning classification methods [12] (compare Table 8). Nevertheless,
these accuracy indexes still show only moderate landslide detection skills. The authors in [12] achieved
a smaller POFD, which indicates a smaller amount of false positives when using similar OBIA and
ML classification approaches. This is probably due to the specificity of the study area (Oregon, USA).
From Google Earth satellite images, it is apparent that the majority of Oregon is covered by dense
forest. There is only one city (Elkton), one main road (No. 38), and a lack of agricultural areas. Thus,
the explanation for the higher false positive rate could be the forest coverage, which maintains the
characteristic landslide topography. Additionally, when comparing our results with the work in [20]
conducted on the Three Georges in China, similar results were obtained. When comparing OA with the
work of [17], it can be stated that a similar accuracy was achieved; however, the POD (recall) presented
in [17] was significantly smaller, especially for the study area of Dixie Mountain. Based on the results
in Table 8, landslide detection in Dixie Mountain was the worst. This proved again that accuracy
measures other than OA are needed (e.g., F1 score, POD, POFD, K) to reliably compare classification
results between various areas with different landslide densities and different conditions. Additionally,
the authors in [17] observed that the scarp identification and contour connection method (SICCM)
mapped various study areas differently, either under-mapping or over-mapping in various study areas.
Thus, there is no clear indication that SICCM mapped one study area better than another.

Based on the Kappa and POD, slightly better results were provided by Knevels [13]. The reason
for the higher Kappa value could be the methodology applied in this study. Specifically, landslide
detection in the area of Oberpullendorf in Austria was performed by OBIA and support vector machine
(SVM) classification, but the authors in [13] integrated geomorphological mapping with the OBIA
approach. Specifically, the authors focused first on landslide scarp detection and then on the detection of
neighboring landslide bodies. The relationships between these features likely increase the algorithm’s
detection skills. This strategy would be beneficial for landslide detection but is computationally more
demanding and needs additional parameters to be tuned.
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Table 8. Comparison with other works and accuracy assessment indexes.

Authors Method Study Area F1 Score POD
(Recall)

POFD
(Fallout) K Accuracy

(OA)

Presented
research Łososina, Poland 0.50 0.71 0.19 0.4 0.80

[12] Deep learning Oregon, USA 0.56 0.72 0.13 - 0.85
[12] RF-PBA Oregon, USA 0.51 0.66 0.14 - 0.83
[12] ANN-OBIA Oregon, USA 0.55 0.48 0.06 0.86
[13] SVM-OBIA Oberpullendorf, Austria - 0.69 - 0.48 -
[17] SICCM Dixie Mountain - 0.39 - - 0.74
[17] SICCM Gales Creek - 0.43 - - 0.85
[17] SICCM Big Elk Creek - 0.65 - - 0.73
[19] RF-PBA Three Gorges, China - 0.65 0.64
[20] RF-OBIA Three Gorges, China - 0.71 - - 0.77
[15] SVM-OBIA Łososina, Poland - 0.71 - 0.6 0.85
[14] SVM-PBA Łososina, Poland - 0.65 - 0.55 0.81

Additionally, by comparing the accuracy measures with the works of Pawluszek et al. [14,15], it can
be concluded that previous approaches offer better detection skills. However, Pawluszek et al. [14,15]
utilized a significantly smaller study area (26.3 km2 compared to the 157 km2 analyzed in this paper). An
additional issue is the training sample designs that they utilized in their previous investigations. In [14],
they utilized stratified random sampling to train the algorithm, while in [15], the authors manually
selected random samples across the image. The authors of [19,111] also reported that random samples
taken across an area affected by landslides are more beneficial for landslide detection rather than small
coherent clusters used as training samples. However, this is the effect of a spatial auto-correlation,
which contributed to the final accuracy of landslide detection. There is no clear indication whether this
is an advantage or drawback of these specific training sample designs. Nevertheless, from a practical
point of view, when the landslide ground truth data need to be collected during field investigations, a
manual sample design is more pragmatic than a random sampling design. This is mostly due to the
time needed to collect samples across the investigated area during field work. Therefore, based on the
observations of our current and previous studies, the selection of the training samples is a significant
aspect that influences the final results and should be undeniably considered when planning ground
truth data collection during field work.

6.3. Opportunities and Limitations of the Presented Approach

A detailed analysis of the final landslide detection map reveals some opportunities and limitations
of the proposed approach. A section of the landslide detection map is presented in Figure 10a,b as
an example of these limitations and opportunities. For a better understanding of the classification
performance, the classification results were superimposed on the hillshade map (Figure 10a,b).
We selected these specific parts of the map to discuss various issues affecting landslide detection.
In Figure 10a, the presence of many false positive results can be observed. This means that the
landslides were over-mapped. In Figure 10b, we can observe very appropriate landslide mapping
in the middle part of the landslide in the areas with clear and fresh topographical characteristics
(rough surface, etc.). In the upper part of the landslide (Figure 10b), we can observe false negatives,
which means that this area was not properly mapped by the algorithm as a landslide but rather as
a non-landslide area. This is due to the smoothed morphology, which is changed by agricultural
treatments. However, in the lower part of the landslide, where the topography is again smoother,
we can observe significantly more false positives, similar to the situation in Figure 10a. To explain this
issue, we investigated our training samples used for training the RF algorithm.
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Figure 10. Landslide prediction in the testing area (a) with a large false positive rate, (b) with small
false positive rate and (c–f) examples of landslides used for training the RF algorithm superimposed
with the hillshade map.

Figure 10c–f presents the landslides located in the training area in the second classification
strategy. These landslides were mapped by geologists in the field and are included in the official
national landslide database. The morphology of the landslides used for training (Figure 10c–f) clearly
suggests that the characteristic landslide features were smoothed and altered. The reasons for this
are probably denudation and/or agricultural treatments. In such cases, it is highly challenging to
evaluate if a false positive is truly a false positive or if it is also a landslide body where the typical
landslide morphology has been smoothed. Based on visual interpretation, some areas with rough
terrain have been correctly classified by the algorithm and clearly show the landslide extent (green
color). Additionally, here we can observe the problem of landslide feature visibility, which makes
OBIA integration with geomorphological mapping (division into some characteristic landslide parts)
more challenging or impossible. The problems are mostly connected with an appropriate landslide
scarp definition, because in Figure 10c–f, these characteristic landslide features are invisible. Having
considered these aspects, it is our opinion that to minimize landslide over-mapping (reflected by a high
POFD index), altered and smoothed landslides should be removed from the training process. This will
probably help in more effective landslide boundary extraction and will minimize the false positive rate.
Additionally, another aspect is related to the quality of the reference data because the delineation of
landslide polygons can be too sparse and generalized. This would influence the accuracy of landslide
detection [106,112]. Therefore, the quality of landslide shapefiles located within the training site should
be investigated and discussed in future works.
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7. Conclusions

Training samples are essential for supervised classification. In the case of automatic landslide
mapping, it is especially important to determine how much representative data is required to achieve
the specified level of accuracy in landslide detection based on supervised classification methods.

The region growing testing performed in this study shows that landslide detection skills decrease
proportionally to a ratio decrease of the training–testing area. However, a substantial decrease is
observed when the training sample quantity decreases from 50% to 26%. The application of region
growing testing allowed us to assume that the training areas should be as large as the testing area.
To verify this assumption, training sample selection according to the natural splitting design, which
covers almost half of the entire study area, was used as the second strategy. In this strategy, the OA
and F1 score were 72% and 0.42, respectively, and proved our assumption that the appropriate ratio of
the training–testing area would be around 1. Slightly lower landslide detection skills when compared
to the region growing design (an OA and F1 score of 73% and 0.58, respectively) can be related to other
aspects of training sample selection (training sample number, quality of landslide inventory, etc.) or
the environmental condition of the study area, which should also be investigated in future works.

In addition to, the training–testing ratio, which was the main focus of this study, the final landslide
detection map was also generated by the intersection of the OBIA and PBA approaches and refinement
of the results. Refinement included median filtering and the removal of small elongated objects, which
allowed us to remove false positives from the final results. However, we inferred that the smoothed and
vanished morphology of the landslides used for training and/or the quality of the landslide inventory
have a direct influence on the rate of false positives. Nevertheless, the achieved results (OA = 80% and
F1 score = 0.5) are consistent with those presented in the literature.

The RF algorithm also allowed us to identify the most relevant variables for landslide detection.
In both cases (PBA and OBIA), the geology and terrain roughness were the most important variables
and should undeniably be used in landslide detection. Furthermore, geometry-related variables were
insignificant in the OBIA approach, probably due to the undersegmentation strategy used for the OBIA
classification in this study.

In summary, this study, supported by the comprehensive literature review, allows us to draw
a few conclusions for further research on landslide detection approaches. Firstly, from a practical
point of view, manual sampling design should be selected to evaluate the landslide detection skills
of algorithms based on supervised classifications. Secondly, the OA measure alone should not be
used to evaluate the classification results, especially for imbalanced classes. Further, the train–test
ratio should be around 1 (the training area should be as large as the testing area). The quality of
the landslide ground truth sample is also an important issue. Additionally, the removal of old and
denudated landslides whose characteristic topography is not visible in the terrain’s morphology should
be removed from the training samples. Moreover, the environmental conditions of various study areas
and the influence of landslide detection skills should be tested in the future to assess the transferability
of the algorithms. Finally, the landslide phenomenon, due to its complexity, is highly challenging to
detect; thus, the integration of the OBIA approach with geomorphological mapping, also taking into
account morphometry, would be preferable.
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Appendix A

Figure A1. Corine Land Cover Map of the study area superimposed on the slope image (a) and (b)
Normalized Difference Vegetation Index (NDVI) index.
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Appendix B

Figure A2. Geological map of the study area.
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Table A1. Explanation to geological units presented in Appendix B.

Unit Number Unit Type Additional Description

1 peat and ground soils

Quaternary

2 calcareous tumbles

3 gravel, sands and clays, ore dregs of the valley bottoms

4
clay, slıts with admixture pf sands and alluvial soils, river
sands and gasses of flooding and overflow terraces 1–5 m

on the riverbank

5 rock rubbles in situ

6 sands and weathering clays.

7 clays, sands, clays, sometimes with congregational and
diluvial rubble.

8 landslide colluviums

9 loess-like clays

10 gravel, sands and river clays, erosive and storage terraces.
6–13 m on the riverbank

11 gravel, sands and river clays, erosive and storage terraces.
15–30 m on the riverbank

12 boulders, gravel and water type sand

13 gravel, sands and river clays, erosive and storage terraces.
35–60 m on the riverbank

14 gravel, sands and river clays, erosive and storage terraces.
65–80 m on the riverbank

15 gravel, sands and river clays, erosive and storage terraces.
85–110 m on the riverbank

16 conglomerates and sandstones wıth clay
liner—formatıon Beli

Transgressive Miocene on the
Carpathian flysch (Tertiary

period-neocen)17 clay, slits from inserts, lignite lenses—formation
from Iwkowej

18 spotted marl in coal
Under Silesian Nappe in the
coal facies (Tertiary period

Upper Cretaceous—Paleocene)

19 thick-bedded sandstone and shale sandstones from Rajbrot

20 gray marl from exotic frydeckie

21 marl from Żegociny

22 shale and sandstones

Silesian Nappe (Tertiary
period—Paleocene)

23 darkish limestone

24 medium-thick and semi-thin sandstone and shale

25 shale, sandstone, chert, marl, and
conglomerate-menilite layers

26 globigerina marl

27 sandstone and shale–hieroglyph layers

28 sandstone and shale—heavy type sandstone

29 shale with thick-bedded and medium-bedded
sandstone inserts

30 sandstone and conglomerate—upper Istebna sandstone

31 shale with thin-bedded sandstone inserts

32 Istebna shale with lower layers from upper Istebna
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Table A1. Cont.

Unit Number Unit Type Additional Description

33 sandstone and conglomerate—lower Istebna layers

Silesian Nappe
(Upper Cretaceous)

34 thin, thick and medium-bedded sandstone, seated
conglomerate—unseparated Godulskie layers

35 medium and thick-bedded sandstone, conglomerate and
shale—Godulskie layers

36 medıum and thin-bedded sandstone and
shale-Godulskie layers

37 Godulskie spotted shale

38 sandstone and shale-Igockie layers

Silesian Nappe
(Lower Cretaceous)

39 Rzewów shales

40 sandstone-Grodziskie layers

41 shale with thin-bedded sandstone inserts—upper
Cieszyn shales

42 thick-bedded sandstone—Cergowa sandstone Under Magura Nappe
Dukielskie series (Tertiary

period—Palaeogene)
43 shales menilite and lower Cergowa mar

44 shales or shale and sandstone—hieroglyphs and
green shale

45 tylawskie limestone

Grybów and Michalczowej
Unit (Tertiary

period-Palaeogene)

46 Sandstone and shale

47 Shale, chert, sandstone—Grybowskie layers

48 Organodetic limestone and sandstone—Luzańskie
lımestone and Michalczowej sandstone

49 marn shale, sandstone, lower Grybowskıe marl

50 shale and sandstone–hieroglyph layers

51 spotted shale

52 thin and medium-bedded sandstones and shales—layers
of Jawoveret/inoceramic in biotite facies

53 sandstone and shale-Magura layers in glauconite faction

Magura Nappe (Tertiary
period—Palaeogene)

54 shales within the Magura sandstone in the muscovite facies

55 thick-bedded sandstones and shales—Magura sandstone
in the muscovite facies

56 chert, Pelic limestone

57 shale, marl, sandstone—Zembrzyckie submarine layers

58 low, medium and medium-bedded shales and
sandstone–hieroglyphic layers

59 Ciężkowice sandstones in the Magura sandstone form
of Wojakowa

60 spotted shale

61 thin and medium-bedded sandstones and shales—layers
of Jawoveret/inoceramic layers in the biotite facies

62 medium and thin-bedded sandstones and shales—layers
of Kanina

63 marl and spotted shale
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79. Grabowski, D.; Marciniec, P.; Mrozek, T.; Neścieruk, P.; Rączkowski, W.; Wójcik, A.; Zimnal, Z. Manual for
Mapping Landslides and Areas Threatened by Mass Movements; Ministerstwo Środowiska: Warszawa, Poland,
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83. Kowalski, M. Zastosowanie technologii lotniczego skaningu laserowego na przykładzie projektu
Informatyczny System Osłony Kraju przed nadzwyczajnymi zagrożeniami (ISOK). Przegląd Geod. 2013,
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