
remote sensing  

Article

Assessing the Influence of UAV Altitude on Extracted
Biophysical Parameters of Young Oil Palm

Ram Avtar 1,2,* , Stanley Anak Suab 2 , Mohd Shahrizan Syukur 3, Alexius Korom 4 ,
Deha Agus Umarhadi 2 and Ali P. Yunus 5

1 Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
2 Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan;

stan@eis.hokudai.ac.jp (S.A.S.); deha@eis.hokudai.ac.jp (D.A.U.)
3 Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA (UiTM),

Shah Alam, Selangor 40450, Malaysia; 2016321111@isiswa.uitm.edu.my
4 Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA (UiTM) Sabah Branch,

Kota Kinabalu, Sabah 88997, Malaysia; alexi502@uitm.edu.my
5 Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba,

Ibaraki 305-8506, Japan; pulpadan.yunusali@nies.go.jp
* Correspondence: ram@ees.hokudai.ac.jp; Tel.: +81-011-706-2261

Received: 27 August 2020; Accepted: 14 September 2020; Published: 17 September 2020
����������
�������

Abstract: The information on biophysical parameters—such as height, crown area, and vegetation
indices such as the normalized difference vegetation index (NDVI) and normalized difference red
edge index (NDRE)—are useful to monitor health conditions and the growth of oil palm trees in
precision agriculture practices. The use of multispectral sensors mounted on unmanned aerial vehicles
(UAV) provides high spatio-temporal resolution data to study plant health. However, the influence of
UAV altitude when extracting biophysical parameters of oil palm from a multispectral sensor has not
yet been well explored. Therefore, this study utilized the MicaSense RedEdge sensor mounted on a
DJI Phantom–4 UAV platform for aerial photogrammetry. Three different close-range multispectral
aerial images were acquired at a flight altitude of 20 m, 60 m, and 80 m above ground level (AGL) over
the young oil palm plantation area in Malaysia. The images were processed using the structure from
motion (SfM) technique in Pix4DMapper software and produced multispectral orthomosaic aerial
images, digital surface model (DSM), and point clouds. Meanwhile, canopy height models (CHM)
were generated by subtracting DSM and digital elevation models (DEM). Oil palm tree heights and
crown projected area (CPA) were extracted from CHM and the orthomosaic. NDVI and NDRE were
calculated using the red, red-edge, and near-infrared spectral bands of orthomosaic data. The accuracy
of the extracted height and CPA were evaluated by assessing accuracy from a different altitude of
UAV data with ground measured CPA and height. Correlations, root mean square deviation (RMSD),
and central tendency were used to compare UAV extracted biophysical parameters with ground
data. Based on our results, flying at an altitude of 60 m is the best and optimal flight altitude for
estimating biophysical parameters followed by 80 m altitude. The 20 m UAV altitude showed a
tendency of overestimation in biophysical parameters of young oil palm and is less consistent when
extracting parameters among the others. The methodology and results are a step toward precision
agriculture in the oil palm plantation area.

Keywords: UAV; different altitudes; multispectral; biophysical parameters; young oil palm

1. Introduction

The oil palm (Elaeis guineensis) is an important industrial cash crop for major producer countries
such as Indonesia, Malaysia, and Thailand, which provide sizeable economic benefits both from
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employment and income through exports [1]. Malaysia is the second-largest producer of oil palm and
employs more than 600,000 high- and low -skilled laborers. In the next few years, ove 66,000 new jobs
are expected to be created through continued research and innovation [2]. According to the Department
of Statistics in Malaysia, oil palm is a significant contributor to the gross domestic product (GDP) of the
agriculture sector by 46% in 2017 [3]. Oil palm is the most significant source of vegetable oil because
of its high yield and extended productivity with a lifespan up to 25 years [4]. Currently, 4.49 million
hectares of land in Malaysia is planted with oil palm, which produced 17.73 million tons of oil palm [5].
More land areas for expansion of oil palm plantations are controversial and not sustainable; hence,
there is a need to optimize and maximize oil palm yield and production [6]. Moreover, the yield of oil
palm plantation depends mostly on plant health. In addition, the corresponding market price depends
heavily on the quality of oil palm [1]. However, oil palm growth is susceptible to the effects of climate
change through a range of expected biotic (e.g., pests, diseases, pollinators, associated crops) and
abiotic (e.g., temperature, rainfall, soil moisture, soil pH) stresses [7].

Information on oil palm plantation health conditions provides valuable inputs for the oil palm
companies for planning, decisions, and management strategies. Information technology plays a vital role
in increasing the cost-effectiveness of agriculture practices in precision agriculture. Precision agriculture
implements management activities, both spatially and temporally. These include pre-planting, planting,
fertilizing, crop protection, harvesting, and irrigation [8]. Remote sensing is one of the main tools
that supports precision agriculture as the spatial data provider with its spectral capability to detect
some variables, including soil properties, plant health, and crop yields [9]. In the case of oil palm
plantations, plant health detection at an early stage is crucial to curb future losses from underperforming
trees. There could be several reasons for low yields, such as diseases, pest attacks, weak quality
seedlings, fertilizers, climatic, and edaphic factors that require further investigations. Previous studies
reported that early monitoring of oil palm health not only promotes appropriate and effective remedial
measures but also extends oil palm lifespan and increases productivity [10]. The health of oil palm
can be monitored by studying the biophysical parameters such as height, crown size, and vegetation
vigor. Spectral reflectance-based vegetation indices are effective in monitoring vegetation vigor
and phenological parameters [11]. Several biophysical parameters such as leaf area index (LAI),
crown diameter, crown projection area (CPA), vigor, and tree height are positively correlated with
the plant growth stage [12]. Real-time quantification of these parameters can be useful for detecting
the health of a tree, which allows the selection of appropriate remedial measures such as the use of
fertilizer, insecticides, and irrigation to improve tree health. Meng et al. studied real-time detection of
ground objects using unmanned aerial vehicle (UAV) and deep learning methods in China [13].

The recent development in UAV techniques made it possible to apply low altitude photogrammetric
techniques in precision agriculture due to their flexibility and low cost [14]. In the oil palm industry,
UAV-based imaging provides low cost flexible data acquisition with less weather constraints and
higher spatial/temporal resolution, as compared to high-resolution satellite data [15]. There are
various applications of UAV, such as monitoring canopy structure and condition, mapping biomass,
and precision agriculture [16,17]. There are ground-based sensors available for precision agriculture
applications, but UAV-based monitoring is advantageous in generating smaller ground sample
distances, instantaneous calibration to reflectance, and point cloud construction [18]. The structure
from motion (SfM) technique is useful to characterize individual trees [17]. Díaz-Varela et al. and
Zarco-Tejada et al. used the SfM technique to estimate olive tree height and crown diameter in
Spain [19,20]. Previous studies showed that UAV-based SfM derived canopy cover of oil palm showed
20-50% overestimation as compared to ground-based measurement [21]. Usually, before conducting
aerial surveys, several parameters need to be optimized. These include flight altitude, image overlap,
speed, resolution, and area of coverage [22]. Logically, higher flight altitude captures a smaller number
of images with lower ground sample distance (GSD) because of the broad field of view of the camera
sensors onboard the UAV. High flight altitude can influence the accuracy of information derived for
an object due to the decline of the image detail [23]. Hence, lower altitude UAV flight (15–30 m) can
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provide more accurate and detailed image information [22]. However, it has been reported that there
is no significant difference in the normalized difference vegetation index (NDVI) value between two
objects (weed and crop) in images taken from 60 m, 80 m, and 100 m above ground level [24]. Moreover,
the reconstruction of 3D point clouds is sensitive to the movement of twigs and leaves induced by
wind [22]. As the UAV flies lower, the camera captures more images so that the possibility of the
object movement becomes greater. In addition, more images require more storage capacity and more
computing power for processing.

Oil palm plantations generally cover a large area. However, UAV data collected at low flight
altitudes can only cover a small area in a given time. There is a trade-off between flight altitude and area
covered during the flight [22]. Some aerial surveys conducted over oil palm considered using 80 m,
100 m, and 150 m flight height [1,23,25]. See et al. found that 80 m altitude aerial images produced
a fair amount of accuracy in individual tree identification and tree crown delineation in matured
oil palm plantations [1]. A previous study on the comparison between fixed-wing and multi-rotor
UAVs suggests that flying altitude below 150 m is suitable for environmental mapping for better
representation of vegetation features. Multi-rotor UAV systems are more accurate and better suited
for small areas than fixed-wing drones [22]. The flight altitude can directly influence the details and
quality of the derived biophysical vegetation parameters. There is a lack of studies about the influence
of low flight altitude on the extraction of biophysical parameters of young oil palm. Only a few
studies noticed the impact of flight altitude on data acquisition and processing time [26]. Furthermore,
Torres-Sanchez et al. investigated the influence of UAV collected image overlap on computation
and DSM accuracy in olive orchards in Calancha, Spain [27]. Therefore, it is necessary to understand
the influence of flight altitude on derived biophysical parameters of young oil palm for precision
agriculture studies. This study attempts to compare the influence of different flight altitudes to derive
biophysical parameters of young oil palm using the SfM technique.

2. Study Area

The study site lies between latitude 5◦8′8.368”N to 5◦8′4.852”N and longitude 118◦24′26.299”E to
118◦24′35.717”E in the Lahad Datu district of the Eastern coast of Sabah, Malaysia. The area of interest
(AOI) covers 5.2 acres of young oil palm planted trees (Figure 1). In total, 241 young oil palm trees
with the age of 3 to 4 years were present in the study area. All the oil palm trees were planted with a
fixed tree spacing of approximately 8 × 8 m. The climate of the study area is tropical, with an average
annual temperature of 26.9 ◦C and an average rainfall of 2063 mm [28]. Figure 1 shows the location of
the study area and individual oil palm trees in the inset aerial images of the AOI.

Besides oil palm trees, the ground area is covered with Mucuna Bracteata, a type of land cover crop
purposely planted to protect the soil from weeds. Mucuna Bracteata in oil palm plantations also helps
to maintain soil moisture content, supply organic matter, and protect from soil erosion [29]. Some of
the trees were affected by Rhinoceros beetle (Oryctes rhinoceros L.) and other pests in the study area.
Hence, some of the trees were showing damaged fronts and dying leaves. Rhinoceros beetles (RB)
destroy the young oil palm trees by burrowing into the shoots and young fronts. Figure 2a,b show a
healthy and diseased oil palm tree, respectively. Figure 2c shows a variety of damages caused by RB
and other pests. Overall, the affected oil palm trees show biological and physical damages such as
dying leaves, stunted growth, and irregular crowns. Therefore, the detection of these diseased trees is
essential to follow up treatment and control over the spreading to other healthy oil palm trees.
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3. Materials and Methods

3.1. Aerial Imaging Tools and Data Collections

For the aerial surveys, DJI Phantom–4 mounted with a MicaSense RedEdge multispectral sensor
at downward-facing/nadir was used. A multi-rotor UAV platform was chosen for this study because
it is capable of capturing images at low altitudes for close-range photogrammetry. Phantom–4 is a
quadcopter, which enables vertical take-off and landing, as well as slow flight speed to provide a
stable platform for the multispectral camera. The MicaSense RedEdge camera was mounted with a
GPS device to acquire geotagged images with 2–3 m accuracy [30]. It captures information in five
spectral bands within the visible to red-edge and infrared spectrum. A downwelling light sensor
(DLS) and calibrated reflectance panel were used to calibrate the images according to ambient light
(Figure 3a). The MicaSense RedEdge Multispectral sensor was calibrated on-site before each flight
using the reference panel for accurate ground reflectance calibration (Figure 3a). Tables 1 and 2 show
the specifications of MicaSense RedEdge sensor and details about the spectral bands with wavelength
and bandwidth, respectively. Ground control points (GCPs) were collected using Leica GS20 real-time
differential GPS base and rover system with sub-meter accuracy (Figure 3b). Handheld Garmin
GPSMAP 60CSx and GoPro Hero-6 Action Camera were used to record location points and capture
images of oil palm tree conditions. Oil palm tree height and crown diameter samples were also
measured at the ground using the measuring tape and a height stick.
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(GCPs) collection.

Table 1. Specifications of MicaSense RedEdge sensor.

Parameter Specification

Spectral bands Blue, green, red, red edge, near-infrared
Ground sample distance 8.2 cm/Pixel (per band) at 120 m above ground level

Capture speed Programmable by seconds interval for all bands
Format RAW 12–bit camera

Foal length / field of view (FOV) 5.5 cm/47.2 degrees (FOV)
Image resolution 1280 × 960 pixels



Remote Sens. 2020, 12, 3030 6 of 21

Table 2. MicaSense RedEdge spectral bands with respective wavelength and bandwidth values.

Band Center Wavelength (nm) Bandwidth (nm)

Blue (B) 475 32
Green (G) 560 27

Red (R) 668 16
Red edge (R–Edge) 717 12
Near-infrared (NIR) 842 57

The UAV surveys were conducted on 29 and 30 August 2018 between 10–12 a.m. The weather
conditions during the data acquisitions were adequate with enough solar illumination, calm wind
with a slight breeze, and no clouds. The flight missions were planned using the DJI flight planner and
executed by Pix4DCapture apps. A single grid type flight plan was deployed in an automatic mode
at three different flight altitudes of 20 m, 60 m, and 80 m above ground level (AGL). The UAV flight
speed of each flight altitude was at 5 m/s. The MicaSense RedEdge camera was programmed using
Bluetooth connection to capture every 2 seconds and preview the initial test images every time before
take-off. This was to ensure image capturing was started with the right exposure setting, which was
calibrated before every flight missions. Images were captured with a flight path setting of 80% front
overlap and 75% side lap. The ground sampling distance (GSD) varies with the flight altitude. The time
required for the processing of aerial images at different flight altitudes with the same workstation was
also recorded and summarized in Section 4.1.

3.2. Data Processing

The flowchart of the proposed method is summarized in Figure 4. The overall aim is to investigate
the influence of UAV altitude using MicaSense RedEdge Multispectral sensor on the extracted oil
palm’s biophysical parameters. Therefore, a suitable spatial scale of data collection could be determined,
which will be useful for precision agriculture applications. The collected multispectral images at altitude
20 m, 60 m, and 80 m were processed using the structure from motion (SfM) technique in PiX4D mapper
software running in a workstation with an Intel Core i7–(9700) processor and with 16 GB random
access memory (RAM). Standard image processing steps in the Pix4Dmapper software were followed.
In the initial processing, the individual bands (B, G, R, R-Edge, and NIR) of the aerial images were
radiometrically corrected using reference images of the calibration panel, which were also collected in
the field before every flight. Then, followed by key point extraction, matching, camera optimization,
and geolocations of GCPs occurred. The coordinate system used in this study is the local coordinate
system of a Borneo rectified skew orthomorphic (BRSO) Timbalai 1948 in meters measurement unit.
The processing was then followed by steps of creating point clouds with scale constraint defined
setting and meshing in Pix4Dmapper with settings selected at high resolution. The final steps of the
processing were the generation of outputs of multispectral orthomosaic (B, G, R, R-Edge, and NIR) in
GeoTIFF format, point clouds in LAS format, and digital surface model (DSM) in GeoTIFF format.

The point clouds were used to produce DEM and to subtract the DSM for canopy height models
(CHM) production and subsequently to delineate individual oil palm tree crowns for generating the
CPA (details in Sections 3.2.1–3.2.3). The orthomosaics were used for the transformations to vegetation
indices of NDVI and normalized difference red edge index (NDRE). Figure 5 shows the images in
true color composite with the orthomosaics combination of RGB bands at a flight altitude of 20 m,
60 m, and 80 m. Figures A1 and A2 illustrate the output of 3D point clouds and 3D DSM for the
three flights altitude, respectively. Statistical information of the biophysical parameters of CPA, height,
including vegetation indices (NDVI and NDRE) of individual oil palm trees, were extracted and
analyzed. The statistical analysis was performed with the help of central tendencies and histogram of
difference to see the deviation of biophysical parameters at different flight altitudes.
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(a) 20 m, (b) 60 m, and (c) 80 m with AOI overlay.

3.2.1. Classifications of Point Clouds and Production of DSM and DEM

The point clouds were classified to separate oil palm trees (off-ground points) and ground
elevations (ground points) using automatic cloth simulation filter (CSF) in CloudCompare software.
However, automatic CSF classification was not sufficient; some remaining off-ground points in
the ground class were cleaned manually. It was observed that CSF was unable to totally clean off

ground point clouds because of the inability to detect independent non-grouped off ground points.
Cleaned ground point clouds were used to produce the digital elevation model (DEM) of the study
area while the original was for productions of DSM directly. The term DEM was employed because
the ground points did not indicate real bare ground. The ground was covered by the legume crop
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Mucuna Bracteata at a height of approximately less than 25 cm. Figure 6a,b illustrate the original point
clouds and classification operations to extract ground elevation, respectively.
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3.2.2. Production of Canopy Height Model (CHM)

The canopy height model (CHM) was derived by simple subtraction of the DEM from the DSM
(i.e., CHM = DSM − DEM) computed in ArcMap using the Raster Calculator tools. The CHM process
is illustrated in Figure 7, with all DEM, DSM, and CHM showed from 3D perspectives. It can be
observed in the CHM that individual oil palm tree canopies with crown and height were depicted in
black to white color height gradient.
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3.2.3. Height, Crown Area, and Crown Projection Area (CPA)

The crown area of individual trees were extracted into vector format by generating contours
at a specified height of crown edges of CHM for each altitude in Global Mapper software. In CHM,
the pixels with high values represent the presence of the oil palm trees, as compared to the surrounding
CHM, which has zero value after the terrain was completely removed (Figure 7c). The extracted
individual tree crown area vectors were filtered to remove small polygons that did not represent
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oil palm trees. Subsequently, information of individual oil palm tree height was derived from the
CHM-based on crown area maximum height using zonal statistics in ArcMap software. As a result,
individual oil palm tree height was stored in a tabular format. Additionally, the CPA was generated
using “minimum bounding geometry” in a circle that represents the generalized size of the area
covered by the crown. Figure 8 represents the biophysical parameters of individual oil palm trees.
Height, crown area, and CPA information were combined into the attribute table of individual trees.
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3.2.4. Vegetation Indices (NDVI and NDRE) Transformations

The land use and land cover in the study site are mainly oil palm trees, Mucuna Bracteata,
and exposed soil. Previous studies have used various vegetation indices based on UAV acquired data
to delineate information about various vegetation parameters [31–33]. These vegetation indices have
been widely used to identify vegetation and soil properties. Basically, plants interact with incident
solar radiation by absorbing, transmitting, and/or reflecting electromagnetic radiation. The reflected
radiation contained information about the plants’ biophysical composition and physiological status
and is measured with multispectral sensors [34]. In this study, NDVI and NDRE were computed
using ArcMap software. NDVI is a standard spectral transformation technique used for monitoring
vegetation health [35,36]. NDVI shows a strong sensitivity to the vegetation as compared to the
background soil. The equation for calculation of NDVI is given below:

NDVI =
NIR−Red
NIR + Red

(1)

where red represents reflectance in red band and NIR is the reflectance in the near-infrared band of the
acquired data.

Meanwhile, NDRE is used to measure the stress and chlorophyll content in leaves [37]. It is more
suitable to detect early stress as compared to NDVI [38]. NDRE is the ratio measurement between the
near-infrared band with the red edge band. The equation to calculate NDRE is given below:

NDRE =
NIR−Red Edge
NIR + Red Edge

(2)

Both NDVI and NDRE were computed using the multispectral orthomosaic aerial images in
ArcMap software for the 20 m, 60 m, and 80 m flight altitudes. Figures A3 and A4 show the NDVI and
NDRE images of the study area at UAV altitude 20 m, 60 m, and 80 m, respectively. NDVI and NDRE
show a variation in the vegetative and soil areas. The NDVI and NDRE values of individual oil palm
trees were extracted using the vector file of the crown area in ArcMap.
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3.3. Data Analysis

The biophysical parameters (CPA diameter, tree height, including vegetation indices of NDVI,
and NDRE) were statistically analyzed to evaluate the influence of flight altitudes. Firstly, we compared
biophysical parameters extracted from different flight altitudes using central tendencies from histogram
analysis. Histograms were used to see the tendency of value differences resulting from the deviation
of each parameter between different flight altitudes. The central tendency of subtraction values was
assessed by calculating mean and median values. Ground measured CPA diameter and tree height were
used to validate UAV derived parameters. Standard error of estimation (SE) with a 95% confidence
level was used to assess the accuracy of UAV extracted CPA diameter and tree height with the ground
information [39,40]. For NDVI and NDRE, root mean squared deviation (RMSD) was calculated to
determine the absolute difference between each UAV altitude [41]. The formula of RMSD is given
as follows:

RMSD =

√∑N
i=1(y1i− y2i)2

N
(3)

where y1 denotes the value of parameter obtained from “1” UAV altitude, while y2 from “2” UAV
altitude. N represents the total number of samples and i represents a specific tree sample.

4. Results

UAV collected data were processed to extract various biophysical parameters and transformations
of vegetation indices from oil palm trees. Table 3 summarized the areal coverage, duration,
ground sampling distance (GSD), and processing time (total and per acres) of images for different UAV
flight altitude acquisition. Higher altitude flight of 60 m and 80 m yielded much larger areal coverage
(12 and 22 acres) in just one flight as compared to the 20 m altitude, which required 4 flight missions to
cover just 5.7 Acres. This is mainly because it was not possible to perform the whole flight mission
with only one battery.

Table 3. Summary of flight parameters and details of collected images. GSD: ground sampling distance.

Flight
Altitude

Area Covered
(Acres)

Number
of Flights

Planned
GSD

Processed
GSD

Number
of Images

Total Processing
Time

Processing
Time per Acres

20 m 5.7 4 1.39 cm 1.37 cm 8800 4h and 22 m 46 m
60 m 12.2 1 4.17 cm 5.16 cm 2350 56 m 5 m
80 m 22.0 1 5.56 cm 5.68 cm 2195 1h and 6 m 3 m

On the other hand, a lower altitude (20 m) gathered more than three times the number of aerial
images (8800) compared to 60 m (2350) and 80 m (2195). The processing time required for 20 m, 60 m,
and 80 m altitude flight missions was about 4 hours 22 minutes, 56 minutes, and 1 hour 6 minutes,
respectively (Table 3). The 60 m altitude required less processing time compared to the 80 m because
the areal coverage was only about half of that obtained during the 80 m altitude flights. Nevertheless,
the image acquired at 20 m flight altitude produced GSD of 1.37 cm, whereas 60 m and 80 m flight
resulted in 5.16 cm and 5.68 cm GSD, respectively. A lower GSD (higher resolutions) implies that
more ground details and, therefore, dense point clouds are available for the subsequent SfM analysis
and DSM generation. There is a positive relationship between dense point cloud reconstruction and
processing time, which agrees with the studies that reported the relationship between flight altitude
and point cloud density [42]. In general, a higher flight altitude causes a decrease in processing time [27].
The results of the biophysical parameters extracted from different flight altitude missions are discussed
in the following sections.

4.1. Crown Projection Area (CPA) Diameter

The crown area of individual oil palm trees was generated from the canopy height model (CHM);
subsequently, the crown projection area (CPA) was generated using the “minimum bounding geometry”
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of the crown area (see Figure 8). The CPA is indeed a generalization representing the crown rather
than the crown area itself, which has complex-shaped morphometry. It is worth noting that there
are certain difficulties in obtaining uniform diameter measurements from the complex shaped crown.
Estimating crown diameter based on CPA may result in under- or overestimation. Yet, CPA size
variations within a uniform age oil palm plantation may provide insight into underlying health issues
when combined with vegetation indices [43]. Therefore, deriving tree diameter from the CPA is suitable
for this study.

The derived CPA diameters were statistically analyzed for the three different flight altitudes.
The CPA diameter values were plotted on the x and y-axis (Figure 9a–c). From the results, it can be
observed that the scatterplots exhibit normal distributions with all CPA values are clustered around the
1:1 line. Despite the difference in the altitudes, the derived CPA values have a strong linear relationship
indicated by the high correlations with the value of the coefficient of determination (R2) more than 0.61.
The CPA derived from 20 m and 60 m altitudes show a weaker relationship (R2 = 0.616), while CPA
derived from 60 m and 80 m show a high correlation (R2 = 0.649).
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Figure 9. Scatterplot to compare crown projected area (CPA) diameter measured from different altitudes:
(a) 20 m and 60 m, (b) 20 m and 80 m, and (c) 60 m and 80 m. A plot between ground measured CPA
and UAV estimated CPA at flight altitude of (d) 20 m, (e) 60 m, and (f) 80 m.

Figure 10 shows the histogram of the difference for CPA to see the tendency at different altitudes.
Difference values are the result of subtraction between the compared flight altitudes. It can be observed
in the graphs that the CPA values derived from 80 m flight are generally less than 20 m and 60 m
flight altitudes (see Figure 10b,c). CPA values at 60 m UAV altitude are higher among the others as the
central tendency of histograms (Figure 10a,b) skewing towards 60 m altitudes.

Validation of CPA Diameter

The UAV derived CPA diameters were validated with the ground measured CPA diameters
collected randomly in the field. The comparison of UAV derived CPA diameters with field data is
given in Figure 9d–f, as well as Table 4. As shown in Table 4, all three flights show high correlations to
the ground data, but the strongest correlation is observed from the 60 m altitude data (0.938). A high
correlation indicates that the UAV derived CPA diameter has a good agreement with the ground data.
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In addition, to assess the accuracy, SE for three UAV altitude were also calculated. The 60 m flight
altitude produced the highest accuracy of 92.47%, among other altitudes (Table 4).
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Figure 10. Histogram of difference for CPA diameter between different flight altitudes: (a) 60 m and
20 m, (b) 80 m and 20 m, and (c) 80 m and 60 m.

Table 4. Correlation and accuracy value of CPA diameter.

Flight Altitude Correlation Coefficient (r) Accuracy (%)

20 m 0.903 90.35
60 m 0.938 92.47
80 m 0.912 89.69

4.2. Tree Height Model

Unlike the tree crown relationships, the tree height scatterplots yielded a low correlation coefficient
between different altitudes. As shown in Figure 11a–c, only the scatterplots of 60 m: 80 m had a good
correlation (R2 = 0.568). A lower coefficient obtained for 20 m: 60 m and 20 m:80 m suggest that the
tree height measured from 20 m flight produced a large difference in tree height values compared
to 60 m and 80 m flight. Histograms of difference also show that the tree heights at 20 m flight are
generally higher than 60 m and 80 m, and that of 60 m is higher than 80 m flight (Figure 12).
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Validation of Tree Height Model

Similar to CPA diameter, the tree heights derived from UAV were validated with ground measured
tree heights as shown in Figure 11d–f. Based on the correlation and accuracy value (Table 5), our results
showed that 20 m flight data has the lowest accuracy, reaching 78.10%. The 60 m UAV altitude had the
highest accuracy (86.52%) among all three flight altitude missions (Table 5).

Table 5. Correlation and accuracy value of tree height.

Flight Altitude Correlation Coefficient (r) Accuracy (%)

20 m 0.765 78.10
60 m 0.875 86.52
80 m 0.883 85.70

4.3. Vegetation Indices (NDVI and NDRE) Comparison

Figure 13 illustrates the scatterplots to compare extracted NDVI and NDRE values from different
flight altitudes. Only for the scatterplot of 60 m: 80 m were close to the 1:1 line for NDVI and NDRE
(Figure 13c,f). The 60 m: 80 m also had the highest correlations for NDVI (r = 0.774) and NDRE
(r = 0.696). The second highest correlation is observed for 20 m: 60 m with (r = 0.507) and (r = 0.402),
respectively. The flight comparison of NDVI value at 20 m: 80 m shows the least correlation with
a value of 0.435. The correlation value of NDRE at 20 m: 80 m is very low, reaching only 0.273
(p-value = 0.000018). Although having the same pattern, the relationship of each flight comparison on
NDVI is stronger than that of NDRE. Similarly, the RMSD follows the same results as the scatterplots
(Figure 14). Observation of scatterplots and RMSD reveals that numerous tree plots extracted from 20 m
have a big difference in vegetation indices value when compared to 60 m and 80 m flight. Least RMSD
value was observed between 60 m and 80 m flight altitudes.

Since the scatterplots are similar between NDVI and NDRE, the histograms of difference value
provide the same pattern (Figure 15). The histograms in Figure 15c,f show that the small deviations were
observed between measurements made at 60 m and 80 m, suggesting a better match between them.

4.4. Evaluation of Flight Altitude

We analyzed the optimal flight height by assessing the accuracy of CPA diameter and tree
height, as well as RMSD value of NDVI and NDRE, as discussed in Sections 4.1–4.3. Furthermore,
we also assessed the consistency of biophysical parameter extraction for each flight. With the growth
of oil palm trees, there is growth in biophysical parameters such as crown diameter, tree height,
etc. [43–45]. Hence, crown diameter and tree height should grow linearly. Since both parameters were
generated from point clouds, we examined the relationship and observed whether flight altitude affects
consistency. Table 6 shows a strong relationship between CPA diameter and tree height with a value
of correlation coefficient is 0.568 and 0.583 at 60 m and 80 m flight altitude, respectively. The flight
altitude at 20 m shows a low correlation of 0.277. Similarly, the relationship between vegetation indices
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(NDVI and NDRE) was also assessed. All flight altitudes showed a strong relationship between NDVI
and NDRE, with correlations of more than 0.85. The 20 m flight maintained produces the weakest
relationship for both comparisons, which means having the lowest consistency. On the contrary, 60 m
and 80 m were highly consistent for extracting the biophysical parameter.

Remote Sens. 2020, 11, x FOR PEER REVIEW 14 of 21 

 

 
Figure 13. Scatterplot to compare NDVI and NDRE measured from different altitudes. Comparison 
between 20 m and 60 m (a) and (d), 20 m and 80 m (b) and (e), and 60 m and 80 m (c) and (f). 

 
 
 

 
Figure 14. RMSD value of NDVI (blue) and NDRE (green) for each compared flight altitude. 

Figure 13. Scatterplot to compare NDVI and NDRE measured from different altitudes. Comparison
between 20 m and 60 m (a,d), 20 m and 80 m (b,e), and 60 m and 80 m (c,f).

Remote Sens. 2020, 11, x FOR PEER REVIEW 14 of 21 

 

 
Figure 13. Scatterplot to compare NDVI and NDRE measured from different altitudes. Comparison 
between 20 m and 60 m (a) and (d), 20 m and 80 m (b) and (e), and 60 m and 80 m (c) and (f). 

 
 
 

 
Figure 14. RMSD value of NDVI (blue) and NDRE (green) for each compared flight altitude. Figure 14. RMSD value of NDVI (blue) and NDRE (green) for each compared flight altitude.

Table 6. Correlation analysis between crown diameter and height, and NDVI and NDRE at different
flight heights.

Variables of Comparison Flight Altitude Correlation Coefficient (r)

CPA Diameter Height
20 m 0.277
60 m 0.568
80 m 0.583

NDVI NDRE
20 m 0.863
60 m 0.910
80 m 0.924
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5. Discussion

This study demonstrates a systematic analysis of the influence of different UAV altitudes to extract
biophysical parameters of the young oil palm plantation area in Malaysia. It provides a methodological
approach to extract various biophysical parameters from UAV data. These parameters can be useful
indicators to monitor plant growth and health. The objective of this study was to evaluate the suitable
flying height to extract crown diameter and height using UAV-based aerial images. Obtaining the
tree heights and crown diameter from satellite-based surface models have limitations due to their
low spatial resolution. Further, obtaining tree height values with a GNSS device is difficult in denser
forest areas [19,43]. Terrestrial light detection and ranging (LiDARs) and UAV-LiDARs, on the other
hand, produce accurate results, but long processing time and heavier payload limit the gathering of
base data [44]. Therefore, a low-weight DJI Phantom–4 UAV device mounted with the MicaSense
RedEdge Multispectral sensor were used for obtaining the tree height and crown diameter at 20 m,
60 m, and 80 m flight altitudes. Since the RedEdge camera has the capability to obtain information in
the NIR and RedEdge spectrum, we also calculated NDVI and NDRE in this study.

The important finding of this was that flight altitude at 60 m can provide more accurate results as
compared to 20 m and 80 m. The highest accuracy to extract CPA diameter and height was produced
at 60 m altitudes. UAV data at low altitude (20 m) with an increased number of point clouds can
provide better height estimation, but it was not true in this study. The findings of this study is in
contrast to Whitehead et al. [23] and Seifert et al. [22]. Whitehead et al. reported that the probability of
detection of objects is better with higher point clouds data [23]. However, a higher spatial resolution is
not necessary to obtain the desired accuracy, as noticed in this study. Seifert et al. [22] reported that
low flight altitude could produce more details in forest areas. The reason might be that the authors
also used high forward overlaps, which is not explored in this study. Even though 20 m flight altitude
produced more point clouds than 60 m and 80 m, the systematic error propagation may also be higher
while employing denser point clouds. However, this condition is not correct to extract CPA diameter.
In this study, flights at all altitudes produced high accuracy for CPA measurements. This is mainly
because the extraction of CPA diameter is not as sensitive as tree height, which relies on the maximum
height value of the point clouds. According to Section 4.2, many errors (overestimations) are produced
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at 20 m flight altitudes, which makes the accuracy lower than tree height estimated at 60 m and 80 m
flight altitudes.

To produce accurate point clouds, capturing UAV aerial images closer to objects is not always
necessary. At a low flight altitude, the UAV captures many images because of the smaller field of
view of the sensor. However, even though producing more point clouds, the images-alignment from
many images at lower altitudes can result in an additional error. Tree structures (twigs and leaf) may
change due to wind-induced movement. This shifts the relative position of objects between images,
which causes mismatching in image alignment [22]. Therefore, more images captured may lead to
more errors in image alignment. An additional consideration when capturing aerial images is the
height of objects in the area of interest. For example, the maximum oil palm height in our study area
was around 5 m and therefore only 15 m difference from the sensor. Moreover, the topography was not
flat, which meant some trees would be captured less than 15 m from the UAV. These conditions also
make the less consistent for biophysical parameters extraction was observed at 20 m height.

Based on our results, we determined that the NDVI and NDRE are best extracted from 60 m
followed by 80 m flight altitudes. Mesas-Carrascosa et al. reported that the NDVI value is not
significantly affected by the different flight altitudes [24]. Contrary to their observation, we found that
the low flight altitude (20 m) produced larger RMSD values than 60 m and 80 m flight. This is probably
because, at the highest pixel size (1.37 cm), more noise may also be captured when compared to the
coarser pixel sizes. The higher altitude can maintain the spectral accuracy as it is observed that NDVI
and NDRE values of 60 m and 80 m flight are well correlated. During field measurement, the UAV
speed for all altitudes were at 5 m/s. Therefore, the closer sensor to the objects, the faster its relative
speed to the object even the drone speed remains the same. As a result, some images were not clear and
had to be eliminated. To overcome the limitations of the distance between objects and sensors, the use
of a GNSS onboard system like Phantom4 RTK is useful. It can provide real-time, centimeter-level
positioning data for improved absolute accuracy on image metadata. The use of real-time detection
of young oil palm biophysical parameters using UAV is advantageous because at the young stage,
there is a rapid growth of biophysical parameters and it can be helpful to monitor the health of oil
palm in case of pest infestation [13].

This study examined different flight altitudes, but all flights were lower than 100 m above the
ground. To cover a larger area, flights at higher altitudes are needed for higher efficiency, and, in this
case, 60 m altitude and 80 m altitude flights will be more efficient than flights at 20 m altitudes. It is
challenging to provide an optimum value of UAV and sensors parameters since each combination of
sensors and drone parameters produce different results. Nonetheless, we attempted to consider only a
few parameters in this study. Thus, we need to optimize these combinations based on our requirement
by considering various trade-offs such as: altitudes, sensors resolution, point clouds, processing time,
side and forward overlaps, etc. A further investigation of the effects of sensors and overlaps would be
desirable to better understand their impact.

This study is focused on young oil palm plantation areas with limited coverage, while the old oil
palm plantation area was not considered. Fawcett et al. reported that 100 m UAV altitude is the best
for estimating the height of seven-year old oil palm trees [25]. Therefore, we can suggest that flight
altitude should be increased in tall trees to minimize the high relative speed, as mentioned earlier.
Moreover, the crowns of young oil palm plantations are still in the growing stage, which makes the
gaps between individual trees are apparent in this study. Therefore, the estimation of crown size at the
young stage is more accurate as compared to the old stage because at the old stage, there is a possibility
of overlaps between the crowns of old trees. This challenge can be further explored to determine
optimal flight altitudes for different growth stages of oil palm in the future.

6. Conclusions

This research was undertaken to evaluate the influence of UAV flight altitude on the extraction
of biophysical parameters of oil palm plantations. Multispectral UAV aerial images over oil palm
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plantations were processed to produce multispectral orthomosaic, DSM, and point clouds. The study
involved (i) detection of individual oil palm trees and extraction of biophysical parameters;
(ii) comparison of biophysical parameters with ground data; and (iii) evaluation of UAV altitude for
obtaining the most accurate biophysical parameters. CHM was generated by subtraction of DSM with
DEM. Individual oil palm trees were segmented from the CHM, which was used for extractions of
biophysical parameters such as tree height, crown diameter also vegetation indices of NDVI, and NDRE.
Statistical methods were used for comparison of biophysical parameters at different UAV altitudes.
The results of the statistical analysis show that 60 m altitude is best for measuring CPA diameter and
extracting oil palm height. Moreover, NDVI and NDRE show good vigor at 60 m and followed by
80 m UAV altitudes. Based on the results presented in this study, flying at 60 m altitudes is suitable for
extracting biophysical parameters of oil palm. However, 20 m UAV altitude tends to overestimate the
biophysical parameters even though visually, it shows the best visual detail. The 60 m followed by 80 m
altitudes are suitable for UAV aerial images collection, since biophysical parameters can be accurately
measured at these altitudes and larger areas can be covered more efficiently. This is also important
for commercial applications. The findings of this study can be useful for future research because the
generation of DSMs from UAV is rapidly increasing. This study can contribute to finding optimal flight
altitudes to extract biophysical parameters accurately and efficiently. In the future, real-time processing
of UAV data can help in plant disease detection and fast response to support timely remediation.
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