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Abstract: The estimation and mapping of forest stand characteristics are vital because this information
is necessary for sustainable forest management. The present study considers the use of a Bayesian
additive regression trees (BART) algorithm as a non-parametric classifier using Sentinel-2A data
and topographic variables to estimate the forest stand characteristics, namely the basal area (m?/ha),
stem volume (m3/ha), and stem density (number/ha). These results were compared with those of three
other popular machine learning (ML) algorithms, such as generalised linear model (GLM), K-nearest
neighbours (KNN), and support vector machine (SVM). A feature selection was done on 28 variables
including the multi-spectral bands on Sentinel-2 satellite, related vegetation indices, and ancillary
data (elevation, slope, and topographic solar-radiation index derived from digital elevation model
(DEM)) and then the most insignificant variables were removed from the datasets by recursive feature
elimination (RFE). The study area was a mountainous forest with high biodiversity and an elevation
gradient from 26 to 1636 m. An inventory dataset of 1200 sample plots was provided for training
and testing the algorithms, and the predictors were fed into the ML models to compute and predict
the forest stand characteristics. The accuracies and certainties of the ML models were assessed by their
root mean square error (RMSE), mean absolute error (MAE), and R-squared (R?) values. The results
demonstrated that BART generated the best basal area and stem volume predictions, followed by
GLM, SVM, and KNN. The best RMSE values for both basal area (8.12 mz/ha) and stem volume
(29.28 m3/ha) estimation were obtained by BART. Thus, the ability of the BART model for forestry
application was established. On the other hand, KNN exhibited the highest RMSE values for all
stand variable predictions, thereby exhibiting the least accuracy for this specific application. Moreover,
the effectiveness of the narrow Sentinel-2 bands around the red edge and elevation was highlighted
for predicting the forest stand characteristics. Therefore, we concluded that the combination of
the Sentinel-2 products and topographic variables derived from the PALSAR data used in this study
improved the estimation of the forest attributes in temperate forests.

Keywords: machine learning; remote sensing; forest stand characteristics; Bayesian additive
regression tree
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1. Introduction

Forests cover around 30% of the Earth’s surface and are one of the main sources of human supplies
and services [1]; sustainable development, climate change mitigation, and bio-diversity preservation
can be achieved by forestry and forest management [2]. Continuous forest management is crucial,
which requires precise knowledge of forest characteristics through detailed information extraction [3].
Spatiotemporal change detection, logging, and evaluating the forest management regime in the region
can bring more transparency into the management and ecosystem services in the forest [4].

The extensive advancements in the remote-sensing (RS) technologies as well as the geographic
information system (GIS), computer science, and algorithms, allow not only for a rapid and up-to-date
data collection, but also an accurate broad Earth observation and reliable information extraction,
specifically related to forest inventory and management [5-7]. The Sentinel satellites continuously
map and monitor vast forest regions using high spatial, spectral and temporal resolution data, but at
low costs [5,8]. The operation of the Sentinel-2 satellite provides multi-spectral data in 13 bands, with a
spatial resolution of 10 to 60 m, 10-day revisiting period, and 290 km swath width.

Forest management explicitly necessitates the use of remotely sensed data owing to its cost
effectiveness and regional availability. These data has been investigated in terms of data accuracy
and reliability in many applications including those of vegetation, agriculture, and forestry [8-10].
Therefore, research focus is being increasingly centred on mapping the quantitative distribution of forest
stand characteristics (e.g., diameter, height, location, basal area, potential volume of wood, and tree
species) as a forest management strategy [1,6]. The use of Sentinel-2 as medium resolution and freely
accessible data in forestry have been explored by [11-13]. In study done by [14,15], they emphasized
on the successful application of Sentinel-2 data for forest classification and monitoring. In this context,
Frampton et al. [16] applied simulated Sentinel-2 data to estimate the bio-physical variables of
vegetation (e.g., canopy chlorophyll content index, leaf area index, and leaf chlorophyll concentration).
Similarly, Majasalmi and Rautiainen [17] estimated the bio-physical properties of vegetation (canopy)
using Sentinel-2 data in a boreal forest; they demonstrated the potential of using Sentinel-2 data with
its four narrow bands around the red edge for detecting the bio-physical properties and vegetation
applications of the canopy:.

The ability of Sentinel-2 data in combination with other sensors (e.g., Landsat 8) for vegetation
monitoring and estimating the normalised difference vegetation index (NDVI), C-Testl indices,
green chlorophyll index, and red-edge chlorophyll index were confirmed by Addabbo et al. [18] in
urban areas. Grabska et al. [10] reviewed several studies focusing on the Sentinel-2A data and forest
applications, and concluded that further investigations should be conducted using more time series
images (e.g., Sentinel-2A data) in a dense forest to comprehensively evaluate the overall accuracies of
the classification. Hence, the use of Sentinel-2 data still requires extreme consideration.

Additionally, quantitative monitoring of the forest stand parameters (e.g., volume, basal area, biomass,
vegetation density, tree height, etc.) plays a significant role in sustainable forest management [6,19].
Recently, Astola et al. [20] used the Sentinel-2A data to estimate forest variables such as stem volume,
stem diameter, tree height, basal area, and tree species, and their results were compared with those
obtained using the Landsat 8 data; they reported that Sentinel-2 mostly outperformed the Landsat
8 predictions. Table 1 shows a summary of applications of RS data in forestry and vegetation.

The studies listed in Table 1 predominantly, focused on tree species classification, while very
few reviewed the mapping of the forest stand characteristics. Hence, further research is required to
determine the other quantitative factors (i.e., stem density, basal area, and stem volume) in forests.
In addition, the development of intelligent techniques and algorithms for classification and information
extraction facilitates the use of the big RS data in their full potential [28]. The RS technologies (especially,
the Sentinel program) supply huge volumes of raw data (big earth data) with various spectral,
spatial, coverage, and multi-scale characteristics; such volumes of data require various algorithms
and appropriate models to precisely extract and classify the information [29].
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Table 1. Brief review on details and applications of RS data in forestry and vegetation.

Application Data Models Reference
Estimation of bio-physical . Vegetation indices assessment [16]
. . Sentinel-2 .
variables of vegetation Physically-based reflectance [17]
model (PARAS)
Clasmﬁcatlon. of agricultural Sentinel-2 Random Forest (RF) [21]
and tree species
Land use/cover and . Object-based image analysis
forest detection Sentinel-2 (O]giIA) g Y [15]
Tree cover mapping (forest/non
forest and broadleaved/coniferous  Sentinel-2 k-means [12]
forest)
Forest type mapping Sentinel-2 RF [14]
[10]
. [22]
Classification of forest tree species Sentinel-2 RF [7]
[13]
Sentinel-2 and DEM [23]
Vegetation monitoring Sentinel-1 and 2 Vegetation indices assessment [18]
and Landsat 8
Estimation of forest Sentinel-2 and Landsat 8 Multi-layer perceptron neural [20]
stand parameters network and regression tree
Sentinel-2 data, PALSAR,
Mapping of forest attributes airborne laser scanner, Multiple linear regression and RF  [11]
DEM
Estimating the forest Pleiades data RE 6]
stand volume and basal area and climate data
Forest parameters estimations
(e.g., stand age, aboveground - Classification and regression tree
bi(s)oyrnass, leafg area indegx, tree Quickbird (CART), SVM, ANN?and RF (24]
height, crown diameter)
Classification/change detection of =~ Landsat TM time series [25]
tree species Hyperspectral data from SVM
P ypersp:
HySpex VNIR-1800 [1]
and SWIR-384
K-means and iterative
Tree species compositional . . self-organizing data analysis
Changl:e,s i Landsat TM time series technigue (IS(%DATA), m};ximum 0]
likelihood, and SVM
Relationships between forest
stand parameters and vegetation
indices (e.g., volume, basal area, Landsat TM Vegetation indices assessment [19]
biomass, vegetation density,
tree height)
Estimation of the forest structural
attributes (e.g., stand volume, Landsat-5 TM, ASTER, CART [27]

basal area, and tree stem density)

and Quickbird

30f24

For example, the optical Sentinel-2A and B satellites alone produce already ~3.4 TB of data
on average per day according to the acquisition plan [30] and the combined Sentinel-1, Sentinel-2
and Sentinel-3 fleet produce an estimated data volume of ~20 TB per day [31]. Many studies have been
conducted to develop and apply different algorithms to the RS data; such algorithms were grouped
accordingly. The common classification algorithms include parametric and non-parametric [32].

Parametric methods are defined by strong assumptions regarding the probability distribution of
the variables [33], while the non-parametric approaches have limited or no assumptions concerning
the probability distributions of the data [33,34]. Some examples of popular parametric classifiers involving
RS data classification are maximum likelihood and logistic regression [35]. Similarly, the common
non-parametric approaches are K-nearest neighbour (KNN), random forest (RF), decision trees (DT),
SVM, artificial neural network (ANN), and Bayesian additive regression trees (BART) [27,36,37].
The development of these artificial intelligence techniques enables the extensive use of multi-variables
and datasets. In this context, the non-parametric ML algorithms have demonstrated robust intelligence
and learning strategies to handle complex non-linear variables and received more attention in RS big
data classification [38]. In contrast with the high-performing ANN and deep learning (DL) models,
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the simplicity of the traditional ML methods was demonstrated to be reliable and straightforward [39]
for the classification of vast areas such as forests.

In vegetation applications, most researchers have classified the Sentinel-2 data using
non-parametric RF [7,10,13,14,21-23]. Fragou et al. [25] explored Landsat TM time series images
(1993, 2001, and 2010) for classification and change detection within nine classes (e.g., tree species of
Aleppo pines and Cephalonian fire, grassland, agriculture etc). The images were classified by machine
learning (ML) algorithm (i.e., support vector machine (SVM)) and the obtained overall accuracies higher
than 89.85% proved the robustness of the ML algorithm for vegetation classification and tree species in
details and landscape changes. Tree species compositional changes were investigated in deciduous
forests [26] during 30-year period by exploiting k-means and iterative self-organizing data analysis
technique (ISODATA) clustering techniques, maximum likelihood, and SVM over multi-seasonal
Landsat image-stacks. SVM obtained the best accuracy to compare with other algorithms even with
small size of training datasets and again the capability of ML algorithm was confirmed.

Noorian et al. [27] used the classification and regression trees (CART) algorithm for Landsat-5
thematic mapper (TM), ASTER (advanced spaceborne thermal emission and reflection radiometer),
and Quickbird satellite data to estimate and compare the forest structural attributes (e.g., stand volume,
basal area, and tree stem density). They reported that among the three different satellites bands,
Quickbird data exhibited the best performance with an RMSE of 2.44 m?2/ha, 50.98 m3/ha, and 125 n/ha
for basal area, stand volume, and stem density, respectively. Zhao et al. [24] applied four ML models
(CART, SVM, RE, and ANN) to the Quickbird images of a plantation site to map its parameters such as
diameter at breast height (DBH), stand density, tree height, and leaf area index; they reported that RF
exhibited the highest accuracy.

On the other hand, the non-parametric regression trees in the BART model provide the advantages
of tree-based ML approaches; besides, this model does not tent to overfit the dataset and is suitable
for small-sized training data [37]. Among the most important tree-based methods, the interpretation
of uncertainty by BART is different from that of the RF model. Thus, BART leads to the retrieval of
missing data and better performance over the lost data; in addition, its RMSEs are smaller than those
of RF [37,40]. The BART uses a set of low-performance regression trees to create a robust model for
prediction and classification [40]. Therefore, the application of BART for effective mapping the forest
parameter could be explored.

Therefore, in order to consistent and frequent forest monitoring and management, using RS data
and automated data analysis techniques are required. Herein, we have applied the above-mentioned
techniques in the northern forests of Iran (Hyrcanian temperate forests), which is one of the most
important and valuable ecosystems. To the best of our knowledge, there are no studies have applied
and evaluated the performances of the BART model to characterise temperate forests using Sentinel
data. With the focus on developing more precise and robust framework, our methodology could
decrease the fieldwork in temperate forest with inaccessible steep terrain and lower the cost and time
of forestry (to measure and estimate forest stand characteristics) in vast region.

Comparing frequent and accurate results from such framework, the habitat changes and forest
productivity are timely measured. The presence of deciduous trees in temperate forests also calls
for continuous and valid monitoring due to the different leaf colors, photosynthesis, and conditions
in four seasons. According to UNESCO World Heritage, hosting hundreds tree/animal species
including endangered mammals (e.g., Persian Leopard and wild goat) in the Hyrcanian Forests World
Heritage makes the area as a great concern to be preserved form human activities, deforestation,
and logging (https://whc.unesco.org/en/list/1584/). Providing such continuous and cost-time effective
forest stand estimations might enhance and assure the habitat conservation in such forest.

Therefore, the objectives of the present study are as follows: (i) to analyse the significance of
the different variables using Sentinel-2 bands, indices, and topographic features derived from PALSAR
data in forest characteristic mapping; (ii) to exploit four ML methods (namely BART, generalised
linear model (GLM), SVM, and KNN) for mapping the characteristics of temperate forests; and (iii) to
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evaluate the accuracy of the BART method for modelling the basal area, stem volume, and stem density
of the forest trees using the root mean square error (RMSE), mean absolute error (MAE), and R-squared
(R?) values.

2. Study Area and Materials

2.1. Study Area

The chosen study area was a portion of the forests in northern Iran that is adjacent to the Caspian
Sea—one of the national environmental treasures that needs to be preserved. It is very significant
to regularly and remotely monitor this entire region for sustainable forest and natural resources
management. The area is located at 36°28'08”-36°14'18"N and 52°07’39”-51°22’29”E and covers a
part of the forests of Noor County, Mazandaran Province, with altitude variations from 26 to 1636 m
and the study area is about 287 km? (Figure 1).

The average annual rainfall in the region is about 997 mm; besides, the region has a humid
climate, and the average recorded temperature here is 16.4 °C. Geologically, it is mostly covered by
conglomerate rock, sandstone and limestone, and calcareous marlstone. The study area includes
15 districts, including mixed and uneven-aged specimens, of Oriental beech (Fagus orientalis), common
hornbeam (Carpinus betulus), Persian maple (Acer velutinumy), Persian ironwood (Parottia persica
(DC.) C. A. Mey.), checker tree (Sorbus torminalis L.), chestnut-leaved oak (Quercus castaneifolia),
Caucasian alder (Alnus subcordata C.A.Mey.), Cappadocian maple (Acer leatum C.A.Mey.), wild cherry
(Prunus avium L.), peach (Prunus persica), wych elm (Ulmus glabra L.), and English yew (Taxus baccata L).
In more than 90% of study area, we have different tree layer, for example the first layer covered by
dominant tree including chestnut-leaved oak (Quercus castaneifolia), Oriental beech (Fagus orientalis) in
over story and in second layer we have the peach (Prunus persica) and common box (Buxus hyrcana) in
the third layer.
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Figure 1. General location of the study area: (a) Iran; (b) location map; (c) The Hyrcanian forests
including sample plots; (d) Sentinel-2 images (Red Green Blue (RGB) bands).
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2.2. Ground Controls (GCs), Data, and Sample Plots

The forest inventory dataset provided by the Iranian Forests, Range and Watershed Management
Organization for 287-km? area included 1200 sample plots, each with an area of 1000 m? was used.
A sampling method, in northern Iran, with a 150 * 200 m network has been conducted. In each plot,
the diameter at breast of the trees above 7.5 cm and the type of species were measured and determined.
The spatial error of each plot is about 3 m. Then, the stem density in each plot, which is expressed as
the number of tress per unit area (ha), was estimated [41]. The basal area which defines the average
area (m?) per ha that was occupied by the tree stems at breast height was calculated from the DBH [27].
As the actual stem or the trunk of a tree is not an exact cylinder, we used a specific volume table to extract
the stem volume or the volume of the wood/tree trunk according to the various tree species, locations,
DBH, and height [42]. That table was also provided by the Iranian Forest, Range, and Watershed
Management Organization. Finally, the sample plots were fed into the ML algorithms for training
and testing [6]. Table 2 presents the minimum, maximum, and average measures of the sample plots
for the forest stand variables.

Table 2. Mean, minimum, maximum, and standard deviation of the main forest variables for all plots
in the study area.

Descriptive Statistics

Stand Variables Minimum Maximum Mean SD

Basal Area (m?/ha) 63.35 125.29 9542  11.29
Volume (m3/ha) 138.4 371.10 256.07 41.67
Density (n/ha) 90 420.00 23227  62.10

2.3. Remote Sensing Data

For this study, freely available Sentinel-2 images (Level-2A product, bottom-of-atmosphere
reflectance, tile number T395XA, dated: 21 August 2019) were downloaded from the Copernicus Open
Access Hub (https://scihub.copernicus.eu/). As the study area is a part of the Hyrcanian mountain
forests, most of the Sentinel-2 images include a high percentage of clouds. Therefore, it was very
difficult to select an image with a low cloud percentage and for this reason, we only used the images
accessed on the desired date. Initially, 11 spectral bands ranging from the visible (443 nm) to shortwave
infrared (SWIR; 2190 nm) wavelengths were obtained from the Sentinel-2 data (Tables 3 and 4). The use
of the elevation data along with the spectral bands proved to be effective and provided more accurate
results in forest applications [6,23]. Therefore, the Advanced Land Observation Satellite (ALOS) Phased
Array type L-band Synthetic Aperture Radar (PALSAR) DEM with a spatial resolution of 12.5 m was
downloaded from the www.asf.alaska.edu website for the study area. ALOS is a Japanese satellite,
Manufactured by NEC, Toshiba, and Mitsubishi Electric.

3. Methodology

3.1. Overview

The acquired image data was first pre-processed for the required image corrections. Then, the RS
and ancillary datasets were used to compute the related features and indices using the workflow
illustrated in Figure 2. Next, the training sample data was utilised by the ML algorithms (BART, GLM,
SVM, and KNN) to model the most significant spectral bands and features using their feature selection
procedures. Finally, the accuracy assessment was performed by 10-fold cross validation against
the RMSE, MAE, and R? values.
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Figure 2. Framework of the proposed methodology.

3.2. Pre-Processing

Images with minimal cloud/haze from all bands (Sentinel-2 bands: 1, 2, 3, 4, 5, 6, 7, §, 8a, 11,
and 12) of 10, 20, and 60 m spatial resolutions were downloaded. The atmospheric correction of
the Sentinel-2 data was implemented at Level-2A by the provider (ESA- Copernicus Scientific Data
Hub). The Level-2A processing includes a scene classification and an atmospheric correction applied
to Top-Of-Atmosphere (TOA) Level-1C orthoimage products. Level-2A main output is an orthoimage
Bottom-Of-Atmosphere (BOA) corrected reflectance product (https:/sentinel.esa.int/web/sentinel/
user-guides/sentinel-2-msi/processing-levels/level-2). Besides, the digital numbers of the image were
converted to the TOA reflectance and the corrected reflectance product was obtained. Thereafter,
the pixel values of all 11 bands were further processed and modelled using the R software (version
3.6.0). To resolve the problem of multi-scale datasets, all spectral bands were re-sampled to 10 m spatial
resolution using nearest neighbours [43].

3.3. Feature Computation, Extraction, and Selection

For this research, some related attributes and features were extracted and calculated from spectral
bands, indices, and variables (related formulas are listed in Table 3). Therefore, feature selection was
utilised to select the most important contributors which could result in a more efficient classification
and lower computation [44].

3.3.1. Topographic Feature Computation

The topographic factors such as elevation, slope, and topographic solar-radiation index (TRASP)
were computed based on the 12.5 m DEM (Table 3). The TRASP was derived from the elevation
based on the aspect map and the values of 0 and 1 were used to indicate the cool, north-facing slope
and the hot and dry, south-facing slope, respectively [45,46]. All topographic variables resampled to
10m based on Sentinel-2A data.
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3.3.2. Indices and Band Extraction

The vegetation indices are useful for comparison with individual bands in forestry and hence,
the presence of multi-spectral sensors has revolutionised this concept [13]. Some vegetation indices
(Table 3) such as NDVI and difference vegetation index (DVI) have proved to be effective for forest
classification, mapping, and vegetation determination as a result of the reflectance enhancement in
the near infrared (NIR) bands and chlorophyll absorption in the red band [12,13,16].

Considering the narrow bands around the red edge on the Sentinel data, other vegetation indices
were applied by the researchers [16,17,47,48] including: transformed normalised difference vegetation
index (TNDVI), weighted difference vegetation index (WDVI), normalised difference index 45 (NDI45),
ratio vegetation index (RVI), infrared percentage vegetation index (IPVI), perpendicular vegetation
index (PVI), inverted red-edge chlorophyll index (IRECI), and pigment specific simple ratio (PSSRA).
The green-red vegetation index (GRVI) is another vegetation indicator that uses the green band instead
of the NIR to balance the saturation problems of the NDVI in dense forest areas [13].

Overcoming the problem of soil reflectance in low or medium forest canopy regions is a
challenge [36]. For the presence of bare soil without vegetation, the soil-adjusted vegetation
indices (i.e., soil-adjusted vegetation index (SAVI), modified soil-adjusted vegetation index (MSAVI),
and modified soil-adjusted vegetation index 2 (MSAVI2)) also provided promising results [13,22,47,49].
These indices utilise a soil-adjustment coefficient to compensate for the limitations of NDVI in various
land covers. Therefore, this research also used the following indices for the initial step: DVI, NDVI,
TNDVI, green normalized difference vegetation index (GNDVI), WDVI, NDI45, SAVI, MSAVI, MSAVI2,
GRVI, RVI, IPVI, PVI, IRECI, and PSSRA. The calculations of all deployed indices are presented in
Table 3 and were prepared using SNAP 5.0. Furthermore, the satellite images were imported as
RasterStack layers and the data was further processed in the statistical environment R (version 3.6.0).
Finally, the satellite images were clipped to the extent of the 2 x 2 km? study area for predicting
the forest stand characteristics.

Table 3. The variables and predictors: Sentinel-2 bands, vegetation and soil indices, elevation
derivatives, equations, and references.

Predictors Description Ref
Bl Coastal aerosol -
B2 Blue -
B3 Green -
B4 Red -
B5 Red-edge-1 (RE1) -
B6 Red-edge-2 (RE2) -
B7 Red-edge-3 (RE3) -
B8 Near infrared (NIR) -

BSA NIR plateau (NIRp) -

B11 Shortwave infrared (SWIR-1) -

B12 SWIR-2 -
DVI NIR - Red [13]
NDVI NTRTRed [15]
MSAVI R R % (1+1L) [50]
MSAVI2 ([2x NIR +1=sqrt((2x NIR +1)* =8 x (NIR - Red) )]} /2 [47]
GNDVI % [22]
IPVI NI [22]
IRECI RESRe [47]
DI (7]
PSSRA RE3/Red [47]
PVI sin(a) x NIR — cos(a) X Red [47]
RVI MR [47]
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Table 3. Cont.

Predictors Description Ref
(NIR—Red)x1.5
SAVI NIR+Red+0.5 [22]
NIR-Red
TNDVI JNRRed 105 [47]
WDVI NIR — Red x 0.5 [47]
Elevation Digital elevation model
g Vertical Height
ope arc tan Horizontal Distance
TRASP 1 - <L) spect=20)] [51]
Description: a=45°and L =1-2.12%x (NDVIx WDVI)

3.3.3. Feature Selection

The uses of the various indices and factors increases the dimensionality within the dataset which
necessitates proper feature selection to reduce the number of predictors and preserve only the relevant
variables that ensure maximum accuracy [52,53]. Feature selection is a technique to remove noise
and redundancy from the variables for timely, cost-efficient, and accurate performance, in addition to
overcoming the overfitting problems [54]. In this context, the recursive feature elimination (RFE) or
backward selection algorithm automatically filters the low-weight variables and removes them from
the model by the repetitive modelling process [52,55]. This study uses the R package ‘caret’ [55] for
feature selection and RFE, which is based on the Gini criterion with repeated 10-fold cross validation
and calculation of the RF model to rank the variables in the order of their importance, i.e., from the most
to least important predictors [52,53]. Then, the RFE results with the smallest error define the subset
of the variables and the least important variables are iteratively removed. The quantitative error is
measured against the percent increase in the mean square error and residual sum of squares (purities)
in the nodes (trees) of the forest model [53,56]. Thus, only the optimal parameters remain.

3.4. Machine Learning Methods

Machine learning methods are regarded as popular and advanced models among the research
communities. Their ability and flexibility of data modelling with a large set of variables together with
their learning schemes and control over the non-linearity in the datasets have been tested and proved,
especially in vegetation applications [38,57]. However, further investigations in terms of the various
challenges and limitations of the ML algorithms is required. Herein, we have used four ML algorithms
to detect the forest stand characteristics, which are described in the subsequent sections. In other
words, each forest attributes were modelled using four different machine learning methods.

3.4.1. Generalised Linear Model (GLM)

The generalised linear model is a parametric statistical ML method which works with the common
linear regression algorithm to handle linearity and simple relationship between the numeric datasets
using assumptions based on normal and Gaussian distributions [58,59]. The model represents
the continuous probability distribution for the random variables, and is still a widely used linear
method with easy implementation; it often demonstrates better accuracy on relatively small-sized
training datasets (observations) compared with the non-parametric algorithms [60]. Moreover, the GLM
is sensitive to the existence of correlated variables, and the insignificant factors might affect its result,
accuracy, and certainty [58]; GLM is explained by the following Equation (1):

f(y) =Co+C1Xg...... + Cn Xy (1) (1)

where y is the estimation probability of the forest stand characteristics, C; is the slope coefficient,
X; represents the predictors, and n is the number of total predictors used for the estimation [61,62].
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3.4.2. K-Nearest Neighbour (KNN)

This is a popular and simple non-parametric ML method for classification and univariate/
multivariate prediction that can be applied to a wide variety of non-linear variables [35,63]. To determine
the k closest neighbours in a training dataset, the target class is assigned to the variable. Typically,
the optimal k value for the datasets varies between 3 and 10 [64], and can be determined by
cross-validation. During the modelling, the Euclidean distance and variable weighting are calculated
according to the nearest target inversely to its distance [63]. At first, the Euclidean distance between
the training data (O;) and the feature to be predicted (P;) are calculated using Equation (2) [64,65]:

d
dj(P,0) = |}, (Pi = 0))? @)
i=1

where d is the dimension of the feature space, and P; and Oj are corresponding pixel or digital number
of training samples and variable to be classified (predicted), respectively.

3.4.3. Support Vector Machine (SVM)

The SVM algorithm is a non-parametric classification and regression technique with a non-linear
transformation that is based on the kernel function. It has been successfully used for forest species
and vegetation classification by some researchers [35,38,48]. It uses a statistical learning mechanism
to accurately handle the complexity and noise within the datasets [1,66]. Besides, SVM constructs a
hyperplane and then, the optimal separating hyperplane of each class/observation is identified by
the (small-sized) training dataset that mainly includes support vectors [1]. The hyperplane is defined
as follows [66]: ( b)

yi(w X x; +

s ®)
where w denotes the coefficient vector defining the hyperplane orientation in the feature space,
b defines the offset of the hyperplane from the origin and 6; refers to the positive slack variables.
Then, the optimisation is decided by the optimal hyperplane, as follows:

Minimise Zn: a;— % Zn: Zn: aiajyiy]-(xixj) 4)

i=1 i=1 j=1

n
Subject Zaiyj =0,0<4,<C (5)
i=1
where 4; represents the Lagrange multipliers, y; represents the predictions (stand variables: basal area,
stem volume, and density), and Cis the penalty parameter controlling the minimum error and maximum
margin. Then, the kernel function is applied as follows:

K(xiy) = (—)/Xi -X;)y >0 (6)

where y represents the gamma for radial basic function in the kernel, and X; is an input vector of
the predictors and variables (28 variables, e.g., B1, B2, NDVI).

3.4.4. Bayesian Additive Regression Trees (BART)

The BART is a non-parametric ML approach that offers flexibility in prediction and data
modelling [40,67]. It has the ability to handle missing data and improve accuracy, either by
modelling the missing data or adding a splitting criterion to deal with the missing values [37,67].
A prior distribution namely posterior distribution together with a likelihood function try to model
the uncertainty and probability of the predictions [37,40]. The ensemble regression tree structure
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in the Bayesian scheme combines the set of prior tree structures and leaf parameters defined by
the hyperparameters to strengthen the model [37]. Equation (7) describes the BART algorithm [37]:

yx Z T (xi..x) +e, e = Nn(O, o2 In) @)

The above equation shows that the sum of the trees model referring TM as the regression tree
structure; m defines the number of distinct trees formed by a set of x of k predictor variables; and M
describes the set of leaf parameters at the terminal nodes of the quantity b; such that the set of
parameters are described as: M; = {Iv‘t,lr U2, oo Ht,bt}/ and p; p, is assigned to x;.

3.5. Model Evaluation

For accuracy assessment and evaluation of the models, three quantitative measures (RMSE, MAE,
and R?) with 10-fold cross validation were adopted. The k-fold cross-validation method randomly
splits the inventory datasets into k number of equal folds or datasets [68]. According to the size of our
dataset, the number of the folds was selected as 10: the 10-fold cross-validation method is commonly
applicable to statistical learning algorithms with a computationally suitable learning fit [60]. Therefore,
in this study, each fold included 120 samples (as the total number of sample plots is 1200): the first
fold was considered as the validation data (for testing), and the remaining nine folds were used to
train the models and the mean squared errors were calculated 10 times [60]. Then, the cross-validation
process continued 10 times, such that every fold was utilised as the validation data and the remaining
nine for the learning process. Eventually, the 10 mean squared errors of the 10 runs were averaged by
each model for the forest characteristic estimations (stem volume, density, and basal area).

3.5.1. Root Mean Square Error (RMSE)

The RMSE measures the reliability of the estimations within the models and defines the error
between the actual and predicted values [27]: it uses the predictions of the model and the observations
from the inventory to compute the RMSE for an accurate assessment [69], using Equation (8):

L (0i-P)

E =
RMS N

®)
where O; represents the observed values (samples), P; represents the predicted values (i.e., basal area,
stem volume, or stem density), and N is the total number of samples. A lower RMSE value signifies
better performance of the model.

3.5.2. Mean Absolute Error (MAE)

The MAE was also used to evaluate the performance of the models and estimate the uncertainty
of the prediction. It defines the difference between the prediction and observation (sample) as
the mean [70]. It represents the average magnitude of the errors (mean absolute error) in a set of
predictions and testing data. This is also less sensitive to outliers than RMSE; MAE is calculated using
Equation (9) [71]:

Y. ,10; - Pjl ©)

N
where O;, P;, and N denote the observations (actual data), predictions (output), and the total number
of samples, respectively. A small difference between the prediction and observation in MAE certifies

MAE =

the certainty of the model.
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3.5.3. R-Squared (R?)

The Pearson coefficient squared (R?) is another method that was used to evaluate the accuracy of
the results [72]. The coefficient of determination is estimated using the following equation [20]:

L (0i-P)*

RP=1- —
Y ,(0;-0)

(10)

where O;, O, and P; represent the observed values from the inventory, the mean of the observed
variables (mean of basal area, stem volume, and stem density), and predicted variables from the ML
methods, respectively. The R? value varies from —1 to 1, indicating perfect negative correlation
(uncorrelated) to perfect positive correlation, respectively, between the two variables (i.e., observation
and prediction).

4. Results

We applied the four ML algorithms (BART, GLM, SVM, and KNN) to the most relevant datasets,
and estimated three forest stand characteristics, in the study area, namely the basal area (m?%/ha),
stem volume (m3/ha), and stem density (number of trees per hectare). The RFE or backward selection
algorithm used for variable selection. Table 4 presents the set (28 predictors) of spectral bands, ancillary
variables, and selected parameters for each forest stand variable by the RFE method. For instance,
to determine the basal area, B5, B6, BSA, B11, B12, IRECI, NDI45, PSSRA, elevation, slope, and TRASP
were selected by RFE.

Table 4. Sentinel-2A and DEM predictors and variables used in forest stand characteristics modelling.

Stand Characteristics

Predictors Resc(:lr;%iltl)lzl(m) Basal area Volume Density
Bl 60 - - -
B2 10 - - +
B3 10 - + +
B4 10 - - +
B5 20 + + -
B6 20 + + -
B7 20 - + +
B8 10 - + -
B8A 20 + - -
B11 20 + + +
B12 20 + + +
DVI 10 - - -
NDVI 10 - + -
MSAVI 10 - - +
MSAVI2 10 - -
GNDVI 10 - - +
IPVI 10 - - -
IRECI 10 + + +
NDI45 10 + - +
PSSRA 10 + + +
PVI 10 - - -
RVI 10 - + +
SAVI 10 - - -
TNDVI 10 - + -
WDVI 10 - - +
Elevation 125 + + -
Slope 12.5 + + -
TRASP 12.5 + + -
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The validations of the four ML algorithms are shown in Table 5. We observe that the BART
algorithm presented a higher R? value (0.48) for basal area, followed by GLM (0.41), SVM (0.40),
and KNN (0.36); however, all correlations exhibited a slightly low rate. For stem volume estimation,
both GLM and BART achieved high values of 0.59 and 0.54 followed by SVM (0.44) and KNN (0.38),
while for density prediction, GLM scored a slightly higher R? value (0.26), than BART (R? = 0.22),
SVM (R? = 0.19), and KNN (R? = 0.18). Primarily, the minimum R? values for all stand characteristics
were obtained by KNN, indicating lower positive correlation between the predicted and observed
data. Unlike the R? value which defines a relative measure of fit, the RMSE provides an absolute
measure of fit. Therefore, we calculated the RMSEs between the predictions and observations: the best
RMSE was achieved by BART for basal area and stem volume estimation with the values 8.12 m?/ha
and 29.28 m>/ha, respectively; meanwhile, GLM exhibited the best RMSE (53.12 n/ha) for stem density
prediction. Once again, KNN generally exhibited the highest RMSEs for all stand variable predictions,
indicating the worst performance. Finally, we also compared the differences between the predicted
and observed values using the MAE: the lowest MAE was achieved by BART for the basal area
(6.88 m?/ha) and stem volume (24.53 m3/ha) estimations, whereas the best MAE for stem density
estimation was achieved by GLM (43.87 n/ha). Consistently, the KNN method again produced the
highest MAE values for all predicted stand variables.

Table 5. Performance evaluation of the KNN, SVM, GLM, and BART.

Models
Stand Variables

KNN SVM GLM BART

R? 0.36 0.40 0.41 0.48

RMSE 9.00 8.75 8.42 8.12

2

Basal Area (m°/ha) MAE 7.55 7.31 7.18 6.88

%RMSE 10.2 9.8 94 8.8

R? 0.38 0.44 0.59 0.54

RMSE 31.74 31.43 29.32 29.28

3

Stem Volume (m°/ha) 26.50 26.14 24.78 24.53

%RMSE 12.1 12.01 11.9 11.9

R2 0.18 0.19 0.26 0.22

. RMSE 56.66 56.76 53.12 54.72

Stem Density (/ha) )\ ¢ 46.88 4591 43.87 45.08

%RMSE 243 23.6 23.1 23.4

Figure 3 shows the scatterplot and relationship between the two sets of data (predicted versus
observed); the scatterplot is the most commonly used method to graphically evaluate the model
prediction [73]. We observe correlation between the predictions (i.e., basal area, stem volume, and stem
density) on the Y-axis and the observations (sample/actual data) on the X-axis using BART, GLM,
KNN, and SVM with 10-fold cross validation. Ideally, there should be no bias from the 1:1 regression
line (diagonal), which indicates a perfect and accurate data modelling: the greater the deviation
and scattered values from the regression line, the more the random errors induced into the predictions
by the ML algorithms during the modelling. We observe that the patterns in the scatterplot mostly
show slopes from the lower left to upper right, centralised to the 1:1 line, indicating a positive increasing
correlation and linearity between the two sets of variables. A visual comparison of the scatterplots
shows that the maximum correlation (best fit) is steadily exhibited by BART, followed by SVM and GLM
in basal area detection. Meanwhile, the scatterplots of KNN suggested minimum correlation (weaker
goodness-of-fit) especially, for the density prediction.
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Figure 3. Scatterplots for the predicted vs observed values of basal area, volume, and density by 10-fold
cross validation of BART, GLM, KNN, and SVM.

Figure 4 presents the significance of the variables for basal area, stem volume, and stem density
estimations by each of the four ML models. Figure 4a highlights the significance of the elevation data
and the insignificance of TRASP for estimating basal area by all models; we observe that while using
GLM, the other factors exhibit a relatively lower influence on the basal area prediction, while the B6,
B12, and B11 bands are the effective factors, after elevation for SVM and KNN. Similarly, Figure 4b
indicates the importance of elevation for the stem volume estimation by the GLM, SVM, and KNN
models, while B6 is the most important predictor for BART. Once again, TRASP is observed to be the
least significant predictor for all models; besides, TNDVI and B7 also do not contribute much to the
BART model. On the other hand, Figure 4c shows that the most important factor for stem density
prediction by BART and GLM is the B12, followed by the B7 band. It is obvious that MSAVI, WDVI,
and IRECI play significant roles while B2 and B4 are the least important predictors for stem density
estimation by SVM and KNN modelling.
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Figure 4. Significance of variables for each ML model for predicting: (a) basal area, (b) stem volume,

and (c) stem density.
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Figure 5 shows the mapping of the forest stand characteristics by BART, GLM, KNN, and SVM.
We observe that the BART and SVM models exhibit a similar pattern in basal area detection, while
KNN does not produce coverage values less than 60 m?/ha. On the other hand, GLM achieves more
maximum and minimum values of the basal area, stem volume, and stem density than the other three
models. Overall, we observe that the stand characteristics detection and distribution by BART, GLM,
and SVM are similar, while that of KNN has a very different appearance.

52100

BART SVM GLM KNN

521030 52110 52100°E 521030°E 52°110E 52100 521030 S2110E

52°1030°E 52110°E

Basal Area (m?/ha)

) NPy, ok
AT ) R ik

521030°E 52110°E

Stem Volume (m3/ha)

Stem Density(n/ha)

Figure 5. Mapping of the forest stand characteristics using BART, GLM, KNN and SVM in a 2 X 2 km?
study area.

5. Discussion

The main objective of the present study was to determine the potential of the multi-spectral sensors
in Sentinel-2 and the topographic variables derived from PALSAR in predicting the most common forest
stand variables required for sustainable forest management. The RFE dimensionality reduction was
used to quantitatively measure the variables. The Gini regression automatically calculated the weight
of variables according to the relevance of spectral bands, their derivatives, and predictors based on
the training dataset. Each forest stand attribute takes advantages of the most informative predictors in
different way thus, the RFE weighting system recorded different results (predictors) for the feature
selection. Four ML algorithms namely the BART, KNN, SVM, and GLM were used to model the forest
characteristics. The results showed that the multi-spectral sensors of Sentinel-2 and topographic
variables derived from PALSAR data are valuable sources for mapping the stand volume, basal area,
and stem density in temperate forests. The results of the accuracy assessment using R?, RMSE, and MAE
for the four ML methods showed that BART was the most accurate and reliable algorithm to predict
the basal area and stem volume. Besides, GLM performed slightly better than BART in stem density
prediction considering the three aforementioned evaluation criteria. A comparison of these results with
other studies would provide an understanding of the technical efficiency, although the wide range of
variations in the forest landscapes, forest structures, and scale of studies must also be considered. We
compared our results with those reported by Noorian et al. [27] which showed similar accuracy levels
among the forest structural attributes; of these, the estimation of the basal area was the most reliable
and certain (exhibiting the lowest RMSE) followed by stem volume and finally, tree density. Although
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they used datasets from various satellites, i.e., from 0.68 (Quickbird panchromatic band) to 30 m
(Landsat-5 TM and ASTER) resolution, their accuracies ranged in a pattern similar to ours. Moreover,
the authors had used the summer data from three different satellites together with CART modelling.
As mentioned earlier, this could also raise the argument over the time specification of the imagery for
precise forest monitoring and attribute estimations. In terms of using combined satellite images for
forestry applications, Mauya et al. [74] reported the high performance of Sentinel-1 (SAR), Sentinel-2,
and their combinations to predict the growing stock volume in the small-scale forest plantations of
Tanzania. Similarly, Vafaei et al. [75] provided reasonable results for the above-ground bio-mass
estimation in the Hyrcanian forests of Iran, using different ML algorithms and a combination of
the Sentinel-2A and the ALOS-2 PALSAR-2 data.

Regarding the accuracy assessment, our results indicated the different accuracies for the estimation
of the forest stand attributes by the different ML methods. Based on the R? values, GLM and BART
were more accurate only in stem volume estimation, while the other ML methods exhibited a lower
goodness-of-fit. In addition, the lowest R? value was generated by the KNN method for all three
stand characteristics; this confirms the existence of noise in the sample data, to which KNN is more
sensitive [23]—a reason for the weakness of the KNN model could be the altitude variations in the study
area (ranging from 26 to 1636 m). Essentially, for all ML models, the goodness-of-fit level decreased
from stem volume to basal area and finally, to stem density, suggesting that data modelling is generally
more fit for stem volume estimations than the other forest variables. The low R? value were observed
by several studies and reported by [27]. Valbuena et al. [76] quoted from several researchers that
lower R? value is not always an indicator for lower accuracy of predictions. Fatehi et al. [77] also
experienced very low R? value especially for stem density estimation using digital terrain model of 1-m
grid (airborne laser scanning) and multi-spectral image of 30-m resolution (imaging spectroscopy) to
predict tree density and forest productivity in a heterogeneous Alpine landscape. The authors came to
conclusion that low R? was due to the presence of small and diverse tree species and mentioned stem
density was dependent on the mixture of different species, structures, and non-homogenous canopy.
Using this kind of dataset is challenging to estimate stem density and it might be more applicable to
obtain higher accuracy within homogenous forest area. The presence of various species [27] in our
study area (around 80 woody species such as Fagus, Carpinus, Tilia, Parrotia persica etc.) could be
another reason behind low R? value, and it suggest to examine it in other places.

Regarding the classifier performance in terms of RMSE, the BART algorithm exhibited the best
performance for estimating basal area and stem volume, with values of 8.12 (8.8%) and 29.28 (11.9%),
respectively, while GLM exhibited a higher RMSE (8.42 m?/ha (9.4%) for basal area and 29.32 m3/ha
(11.9%) for stem volume) than BART, but lower than those of SVM and KNN. However, GLM generated
the lowest RMSE values (53.12 n/ha (23.1%)) for stem density predictions, followed by BART (54.72 n/ha
(23.4%), KNN (56.66 n/ha (24.3%)), and SVM (56.76 n/ha (23.6%)). The same pattern was also
observed for the MAE evaluation method. Therefore, BART can be considered as a certain model
and the best fit for forest stand characteristics, followed by GLM and SVM; consequently, KNN was
the method with least accuracy and certainty. On the other hand, the BART method took greater
advantage of some predictors (i.e., B5, B6, B12, IRECI, and slope, as shown in Figure 4a,b) than
GLM, SVM, and KNN, and hence, achieved higher accuracy. Apart from the different modelling
strategy of BART, the different weighting of the predictors and variables also contributed to its
higher accuracy in basal area and stem volume prediction. Furthermore, the choice of parametric
algorithms such as GLM demonstrated better performance and interpretation of this linear method
against some of the non-parametric algorithms [60]. Hence, GLM (as a parametric algorithm) had
outperformed the non-parametric algorithms such as SVM and KNN, but not BART. This could be
because there was not enough sampling and inventory data to train the SVM and KNN models,
as non-parametric methods inevitably require more sample data to obtain higher accuracy [60].
Thus, while Maponya et al. [8] and Vafaei et al. [75] claimed that the SVM was a great choice for
vegetation classification, owing to its ability to handle high dimensional data with less training sample
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plots, our research confirmed its weakness against the BART model. At the same time, it also proved
the ability of non-parametric BART algorithm to handle and model the variables, even with small-sized
training datasets, while SVM and KNN underestimated the predictions of the forest characteristics.
Moreover, the BART algorithm is insensitive to multi-collinearity and can simultaneously model a
large number of predictors. Thus, we demonstrated the advantages and capabilities of the BART model
and compared it with the other ML methods to explore the strengths and limitations of both parametric
and non-parametric approaches. The magnitude of the reliability among all ML models confirmed that
the predictors and datasets were not sufficient for stem density prediction. This raises more arguments
and concerns regarding the choice of datasets for stem density prediction and counting the number
of trees per acre. Our findings suggest further exploration of the stem density prediction and its
lower accuracy. During August, the forests in Iran have very low visible reflectance values because of
the closed canopy and limited background and soil reflectance [36]. As the leaf density decreases in
the fall season, the reflectance values would increase in November. However, the Sentinel data we
used was dated 21/8/2019, when the canopy was full and dense; therefore, the number of trees per
hectare could not be properly estimated there, and as a result, the stem density estimation was the least
certain prediction by all ML algorithms. It recommends to acquire and stack all seasonal images for
more complete information extraction as it was deployed by [26].

The variables were ranked according to their significance, and the results indicated that the role of
elevation data was outstanding for both basal area and stem volume predictions. This is consistent
with the research by Luther et al. [11] that emphasised on the importance of topographic data for better
performance and accuracy of predictions. In addition to elevation data, the B12, B5, and B6 bands
were the most influential predictors for the BART model. Similarly, the significance of the B6 and B12
bands was also highlighted by the SVM and KNN models. On the other hand, TRASP was the least
significant attribute, and the prediction of the basal area and stem volume using this factor (the cool,
north-facing slopes to hot, dry south-facing slopes) was not as accurate as the other factors.

Besides, the different weighting strategies of the ML algorithms could be responsible for
the different rankings of the predictors, as suggested by Sothe et al. [13]: they used the RF algorithm to
rank the significance of the variables (Sentinel-2 bands) and reported slight differences in the contribution
of each predictor, which was different from our ML ranking system. The significance of the variables
was similar in SVM and KNN, suggesting parallel modelling by both methods. Therefore, adopting a
proper ranking system and modelling algorithm could directly affect the final estimations, and our
findings emphasised on exploiting and comparing different algorithms for one particular application.
We also observed conflicts in the significance of the variables for the stem density estimation by
the four ML algorithms. This indicates that MSAVI, WDVI, and IRECI which were the most important
predictors for SVM and KNN seemed to be insignificant and moderate factors for BART and GLM,
respectively. Similarly, the B12 band had the most significant impact on the BART and GLM methods,
while it was ranked as a moderate predictor by the SVM and KNN algorithms. For stem density, GLM
moderately weighted almost all the predictors, which could be a reason for its being the most successful
algorithm for this prediction. However, the differences between the variable ranking amongst the ML
algorithms while predicting stem density suggested that the priority of the predictors could not be
clearly determined.

Considering all vegetation and soil indices for this study, the efficiency and effectiveness of
the predictors still requires further investigation, examination, and negotiation, as there was no
considerable ranking of their significance (except IRECI) for the accuracy and performance of any
algorithm. The lower contribution of the vegetation indices as data which is complementary to that
from Sentinel-2 was in agreement with the study by Sothe et al. [13]. As mentioned earlier, IRECI was
calculated from NIR, Red, Red-edge-1, and Red-edge-2, and our findings reflected the effectiveness
of the chlorophyll index and consequently, the narrow bands of the Sentinel around the red edge for
vegetation application; once again, this finding was consistent with the research by Sothe et al. [13].
Furthermore, the time of the imagery as well the season were observed to contribute to the insignificance
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of the soil indices, because the area was mostly covered by the vegetation, while soil and bare land were
not substantial. Among the Sentinel bands, we observed that B12 (SWTR-2) and B6 (Red-edge-2)
for basal area, B6 for stem volume, and B12 and B7 (Red-edge-1) for stem density were the most
significant bands, although they display a 20-metre spatial resolution, which is coarser than the other
bands. In general, these are extremely weighted (by more than 60%) and significantly contribute to
the modelling and predictions. In other words, the use of Sentinel-2 bands was successful for the forest
stand predictions.

Thus, our findings suggested the use of BART rather than KNN for this specific application;
this was in agreement with the study by Varvia et al. [57], which reported that the Bayesian method
exhibits better RMSE value than KNN in the total basal area and volume estimation. Hence, the BART
algorithm seems to be a perfect option in forestry, where heterogeneity and spatial autocorrelation
structures exist and might involve inconsistencies in the linearity, homogeneity, and independency of
the variables [41]. Varvia et al. [57] also mentioned the notable bias in Bayesian modelling in the stem
density estimation; this could be another reason for the lower certainty in stem density prediction by
BART. Further investigation is required to comprehensively link the lower stem density accuracies of all
aforementioned ML algorithms. To put it briefly, the use of very high resolution RS data might provide
more accurate estimation of forest characteristic [27] while open source, freely available, and medium
resolution (e.g., Landsat 5 TM with 30 m-resolution) data proved to be popular, comparative and effective
in estimating the forest attributes for sustainable management [27,48]. Almost all forests occupy
the wide region and excessive urbanization and climate change necessitate continuous and regular
observation of the forest characteristics; using very high spatial resolution, airborne and drone based
hyper-spectral and Light Detection and Ranging (LiDAR) data are functional but not cost and time
effective neither reachable by every sector, planner, and decision maker. With respect to time revisiting
and the level of accessibility and reliability of Sentinel-2 data time series, this mission seems viable.

6. Conclusions

Out of the 28 initial predictors in this study, six variables were filtered and eliminated by RFE to
avoid duplication, poor quality, and irrelevant contribution to the modelling and the specific forest
application. According to RFE, the ML models exhibited different choice patterns for the different
forest stand characteristic predictions. The use of computer science and Earth observation for forest
applications, which involve vast areas and various datasets, mainly requires an accelerated process.
Therefore, the application of RFE before data modelling is suggested not only to avoid heavy
calculations involving the available big RS data but also to improve the performance of sensitive
algorithms (e.g., GLM) that use the correlated datasets. A large number of features suggest that
the usefulness of other robust feature selection techniques (e.g., neural networks based on removing
input layers and keeping the most relevant features) to be compared with RFE to measure its efficiency
during training for higher performance, and data and time reduction. An analysis of the factor
significance for the ML models revealed that elevation data was the most important factor for both
basal area and stem volume prediction by all ML models. We also observed that KNN and SVM
exhibited an almost similar pattern in ranking the variables for stem density prediction. Furthermore,
IRECI resulted in the enhancement of the vegetation reflectance and was confirmed to be effective in
detecting both canopy bio-physical properties and stem volume using the BART algorithm. Our findings
also emphasise the effectiveness of the narrow Sentinel bands around the red edge for the forest
stand characteristics, especially considering the Sentinel data availability; besides, the precise choice
of the imagery date plays a major role in improving the final accuracy of the variable estimation.
In addition, we demonstrated that the use of higher resolution bands might not necessarily improve
the estimation accuracy; instead, the use of the most informative bands related to the application as
well as proper algorithm and variable modelling are outstanding and notable for better prediction.
Owing to the promising accuracy of BART, the stem volume prediction exhibited a perfect positive
correlation with the testing dataset, while the relatively lower R? values indicated that the sample
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data (training and testing) was noisy and required more precise sampling and inventory for obtaining
superior results, which is a suggestion for future works. It is expected to obtain higher R? in less
heterogeneous forest where the more homogeneity is represented within the tree species. The result
of our research with basic forest measurements could be beneficial at a broader scale for change
detection after natural hazards (e.g., wildfire), ecosystems change, forest inventory, forest productivity
monitoring, growth estimation, and wildlife habitat and nesting studies in vast forest especially
mono-dominant forests to promote fast decision making, timely treatment, and proper mitigation.
Such data and results have the potential application for forest categories and diversity studies at
global scale. Categorizing the forest with large patches dominated by a single family tree species
might raise concern regarding human activities and wildlife change in that region. Lower R? values
form similar study might lead the future research on productive dispersal and spread of heavy seed
by the animals within a forest in every corner and could be an indicator for forest species diversity,
natural wildlife activities, and biodiversity restoration [78]. Besides, the Sentinel data was obtained
in August, a time of the year when the tree coverage is densest; hence, the trees were not accurately
separable to facilitate their proper counting. This might raise concerns regarding the data preparation
prior to the application and indicate the importance of selecting the appropriate time of imagery for
obtaining more accurate estimations of the forest stand characteristics. The lower visible reflectance
values during August and the increase in the reflectance values during November (i.e., the fall season)
when the leaf density decreases is a debatable concept. Therefore, further investigations are required
to fully determine the significance of the vegetation and soil indices for forest variable predictions.
Future works could investigate Sentinel time series during different seasons to compare the accuracies
of the forest stand characteristics and identify the best season for obtaining more certain and accurate
predictions. Temperate Forests are more often misty and cloudy especially in higher altitude where
cooler temperature exists. The open Earth data observation provided by the European Space Agency
(ESA) and Sentinel satellites is frequently delivered at satisfactory narrow spectral bands, spatial
and temporal resolution particularly for forest management. Long term forest monitoring at low cost
and the time of computation on medium resolution imagery would enable us to use more time series
data to have cloud free and more informative images from the temperate regions. The robust algorithm
such as BART which proved its ability to handle wide range of datasets and variable to estimate
stand forest characteristics accurately seems a reliable and fast option. Yet, the BART algorithm should
be comprehensively examined over other variables and data to understand its limitations and strengths.
Therefore, our future investigations would focus on additional observed characteristics and spatial
heterogeneity in forests by exploiting and developing the BART method.
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