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Abstract: The immense problem of missing satellite aerosol retrievals (Aerosol Optical Depth, (AOD))
detrimentally affects the prediction ability of ground-level PM2.5 concentrations and may lead to
unavoidable biases. An appropriate missing-imputation method has not been well developed to date.
This study developed a two-stage approach (AOD-imputation stage and PM2.5-prediction stage) to
predict short-term PM2.5 exposure in mainland China from 2013–2018. At the AOD-imputation stage,
geostatistical methods and machine learning (ML) algorithms were examined to interpolate 1 km
satellite aerosol retrievals. At the PM2.5-prediction stage, the daily levels of PM2.5 were predicted at a
resolution of 1 km, based on interpolated AOD and meteorological data. The statistical performances
of the different interpolation methods were comprehensively compared at each stage. The original
coverage of retrieved AOD was 15.46% on average. For the AOD-imputation stage, ML methods
produced a higher coverage (98.64%) of AOD than geostatistical methods (21.43–87.31%). Among ML
algorithms, random forest (RF) or extreme gradient boosted (XG-interpolated) AOD produced better
interpolated quality (CV R2 = 0.89 and 0.85) than other algorithms (0.49–0.78), but XGBoost required
only 15% of the computing time of RF. For the PM2.5 predicted stage, neither RF-AOD nor XG-AOD
could guarantee higher accuracy in PM2.5 estimations (CV R2 = 0.88 (RF or XG-AOD) compared to 0.85
(original)), or more stable spatial and temporal extrapolation (spatial, (temporal) CV R2 = 0.83 (0.83),
0.82 (0.82), and 0.65 (0.61) for RF, XG, and original). For the AOD-imputation stage, the missing-filled
efficiency depended more on external information, while the missing-filled accuracy relied more on
model structure. For the PM2.5 predicted stage, efficient AOD interpolation (or the ability to eliminate
the missing data) was a precondition for the stable spatial and temporal extrapolation, while the
quality of interpolated AOD showed less significant improvements. It was found that XG-AOD is a
better choice to estimate daily PM2.5 exposure in health assessments.
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1. Introduction

Since 1998, in China and India, industrialization, economic development, and a substantially
increasing energy demand has led to over five times and triple growth in China’s and India’s
coal-fired power, respectively [1]. Although accounting for 36% of the world’s population, they have
accounted for 59% of global disease burden attributable to fine-particulate pollution [2]. Many previous
epidemiological studies around the world have linked short-term PM2.5 exposure to emergency
hospital admissions and even deaths from acute or chronic illnesses such as asthma and stoke [3–7].
Despite such severe air pollution conditions and widely publicized concerns, there are sparse PM
monitoring stations, and this is a significant hurdle for assessing pollution exposure. Among the
7.5 billion people worldwide, only approximately 5.9 billion (approximately 80%) people live in
regions that are covered by available PM readings [8]. This is because of the high cost of building and
maintaining monitoring sites.

In recent years, there has been an increasing trend to use satellite aerosol optical depth (AOD) for
estimating ground-level PM2.5 concentrations. Compared with conventional monitoring, the lower cost,
higher coverage, and higher spatial resolution are advantageous, but the inherent drawbacks of AOD
are obvious and difficult to solve. The most critical issue is the high missing rate of satellite-retrieved
AOD, potentially related to orbit patterns, cloudiness, polar night, and surface reflectivity [9,10].
Kahn et al. [10] reported that the fairly low likelihood (approximately 15%) of successfully extracting
aerosol retrievals from satellite instruments is a global problem, and the high missing rate of aerosol
retrievals makes it impossible to estimate short-term PM2.5 exposure in continuous time series or most
time in the research period [11–13]. Furthermore, some reported daily PM2.5 measurements have
presented different distributions between AOD-missing days and other days [14]. Compared with
long-term pollution exposure, short-term health assessments rely more on integral temporal variations
in exposure. A drawback of satellite-based estimates is that they cannot represent the real distribution
of PM2.5.

For addressing this issue, AOD retrievals need to be imputed before estimating PM2.5 levels
where AOD is an important input variable. Multiple geostatistical approaches have attempted to
impute AOD. Some examples are inverse distance weighting, nearest neighbors, kriging, generalized
additive models or multiple imputation [15–17], but have achieved relatively low efficiency (missing
rate after interpolation approximately 30–50%) and quality (cross-validation R-square approximately
0.34–0.64). We previously proposed [8] a two-step (TS) interpolation (first using data from Terra
to estimate Aqua missing values, then inverse distance weighted interpolation (IDW) for second
step) to reduce the AOD-missing rates from 87.91% to 13.83%, and maintain a relatively satisfactory
performance (CV R-square = 0.76). However, the coverage needs to be increased further, and higher
efficiency of interpolations were also required, especially when the sample size increased with a higher
resolution in (Multiangle Implementation of Atmospheric Correction) MAIAC AOD (32 times with
resolution from 3 km to 1 km). Moreover, our previous method [9] was over-dependent on geostatistical
interpolation and ignored some influences of other external information such as meteorological data
and cloud fraction on the temporal dimension, which inevitably weakened the efficiency and accuracy
of imputation. This study endeavors to improve upon some weaknesses in the previous study.
Machine learning methods can assist with solving these problems due to their strengths in capturing
complex non-linear relationships and high dimension interactions [9,18]. We attempted to select
an optimal method by comprehensively comparing a variety of machine learning algorithms and
geostatistical approaches in imputing missing data of AOD.

After imputing missing data of AOD, we previously confirmed that the combined method
of non-linear exposure-lag-response model (NELRM) and XGBoost is superior to other nine ML
models at a large spatial scale (CV R2 = 0.86 vs. 0.54~0.83) [9], but it is still unknown how different
AOD-imputation methods will affect the accuracy of PM2.5 predictions.
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Using a 6-year MAIAC AOD with a resolution of 1 km, this study aimed to compare the statistical
performance of different geostatistical and machine learning (ML) algorithms at the AOD-imputation
stage and also assess the influence of different imputation methods on the PM2.5-prediction stage.

2. Materials and Methods

2.1. Materials

2.1.1. Satellite-Retrieved Product

A 1 km aerosol product covering China from 2013–2018 was acquired from the NASA Multiangle
Implementation of Atmospheric Correction (MAIAC) AOD (https://ladsweb.modaps.eosdis.nasa.
gov/) [19,20]. Compared with traditional retrieving algorithms, MAIAC can retrieve finer resolution
aerosol data from the Moderate Resolution Imaging Spectro radiometer (MODIS) Collection 6
(C6) [20–22], and can improve AOD correction during cloud and snow, which is the vulnerable
detection moment of a remote sensor [20]. Only the extracted AOD with a quality assurance flag will
be used [21–23]. In addition, a 16-day 1 km Enhanced Vegetation Index (EVI) product and MODIS
daily 5-km cloud fraction data (MOD06_L2) were obtained from the NASA website.

2.1.2. Daily Monitoring Data

Daily site-level PM2.5 measurements, collected by the tapered-element oscillating microbalance
method (China MEE, 2016) in mainland China during 2014–2018 were obtained from the China National
Environmental Monitoring Center. The start time of the study period was 2014 because the national
PM2.5 monitoring system was built in 2014 [9,24,25]. A total of 1605 monitoring sites in 385 cities are
shown in Figure S1A.

2.1.3. Meteorological Data and Land-Cover Data

Meteorological data, including the daily mean temperature, pressure, sunshine hours, water
vapor pressure, precipitation, relative humidity, wind speed, and wind direction, were obtained from
839 meteorological stations (Figure S1B) during 2013–2018. For further integration, the Universal
Kriging (UK) technique was employed to interpolate the daily site-level meteorological data into grid
cells with a resolution of 1 km. The 6-hour planetary boundary layer height (PBLH) from the National
Centers for Environmental Prediction (NECP) was daily averaged and resampled from 1 degree to
1 km grid cells [9].

2.2. Methodology

The general workflow for estimating daily PM2.5 exposure (including AOD-imputation stage and
PM2.5-prediction stage) is demonstrated in Figure 1.

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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Figure 1. Framework for short-term PM2.5 exposure estimation.

2.2.1. AOD-Imputation Stage for MAIAC AOD

To select the optimal missing-filled methods for MAIAC AOD, we compared all potential methods,
if the data required were available. These included different geostatistical interpolations [26–28],
two-step imputation previously proposed [9] and other ML interpolating methods, including random
forest (RF) [29], XGBoost (extreme gradient boosting) [30], support vector machine (SVM) [31], gradient
boost model (GBM) [32], generalized additive model (GAM) [33], Bayesian regularized neural network
(BRNN) [34], and least absolute shrinkage and selection operator (LASSO) [35]. The interpolation
methods are summarized in Table 1. In general, geostatistical algorithms mainly depend on using
spatial and temporal information in existing AOD data, while ML algorithms mainly use the complex
relationship between AOD and other external information.
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Table 1. Summary table of different interpolation methods at the AOD-imputation stage.

Methods Main Features Merits Demerits

Geostatistical Algorithms

TS [9] step I: mixed effect model
Step II: IDW using different satellite products more steps

ST Kriging [28] regionalize spatio-temporal variable to obtain
semi-variance for kriging

maximize use
spatio-temporal neighborhood

information

extensive computation for large
spatial and temporal scale

IDW [28] inversed distance weighted-average within
search radius easier and quicker to calculated less accurate for

complex spatial distribution

Kriging [28] using semi-variance to explore spatial
distribution within search radius commonly used not considering temporal variation

NN [28] nearest neighbors within search radius easiest and quickest to calculate less spatial variation

Machine Learning Algorithms

LASSO [35] L1 regularization term was used to penalize
nonessential or correlated features in model

prevent over fitting and ensure
generalization

difficult to capture complex
non-linear or interacting relationship

GAM [33] use smooth functions to describe the relationship fit non-linear relationship easier to over fit

GBM [32] an ensemble of weak prediction models, such as
decision trees.

optimized by negative gradient of loss
function.

over fitting and more computation
time

BRNN [34]
Bayesian Inference was used to regularize the

Maximum Likelihood in Neural Nets
(similar regularization in Ridge Regression)

more robust than standard
back-propagation nets

higher computation than L1
regularization

SVM [31] Using kernel to map data into higher dimension,
and then to fit the error within a certain threshold

produces higher accuracy with less
computation power

weaker extrapolating ability in data
with more noise

RF [29] a meta estimator with numbers of classifying
decision trees based on different sub-samples control the overfitting by sub-samples more computation time

XG [30] a weighted ensemble of weak prediction models
with regularized boosting and parallel processing

regularized boosting and parallel
processing less stable results in early stopping

TS (two-step interpolation), ST Kriging (spatio-temporal kriging with 50 km buffer), IDW (inverse distance
weighting with 50 km buffer), NN (nearest neighbors with 30 km buffer), LASSO (Least absolute shrinkage and
selection operator), GAM (generalized additive model), GBM (gradient boost model), BRNN (Bayesian regularized
neural network), SVM (support vector machine), RF (conditional inference random forest), and XG (extreme
gradient boosting).

Geostatistical algorithms require less information and can suit the situation without requiring
external information. In most cases, ML algorithms can provide a model for an entire study period,
but geostatistical algorithms need to be conducted separately for each day or at specified intervals
because they cannot provide a fixed model for the entire period. The parameter setting used in this
study (Table S1) was tuning by 10-fold cross-validation.

For the ML algorithms, the selected predictors among different ML methods remained consistent
to compare their performances objectively. All external information was selected by linear models
with statistical significance (P < 0.05) and low variance inflation (VIF < 5, checks for multi-collinearity).
The external information included PBLH, maximum ground surface temperature (Maxgst), precipitation
(rain), maximum atmospheric pressure (Maxpres), mean relative humidity (MeanRH), sunshine
duration (sunshine), mean ambient temperature (Meantemp), max/maximum wind speed (WS/MWS),
cloud fraction (representing the levels of cloud coverage) from MOD06_L2, AOD monthly missing
rate, EVI, and indicator variables such as longitude and latitude, altitude, day of the year, month,
year, and day of the week. It should be noted that the sample size of MAIAC AOD covering China
from 2013–2018 was too large (approximately 96,534,23 (numbers of grids) × 365 (days) × 6 (years)) to
train the missing-filled model, and therefore, 5000 grids were randomly selected for each day as the
modeling data (total sample size = 5000 (numbers of grids) × 365 (days) × 6 (years)). The external
information for each grid was extracted from the corresponding grid cell.

2.2.2. PM2.5-Prediction Stage

Due to natural geographical differences among the seven geographical regions in China such as
climate, terrain, and vegetation [9], a satellite-PM2.5 model was constructed separately for each region.
To alleviate the discontinued and less-certainty problem between the regions’ boundaries, the sites in
the neighboring province (Figure S2) were also included in the corresponding modeling region.

Our previous PM2.5 prediction model (a combined method of NELRM and XGBoost) [9] worked
well at a large spatial scale (CV R2 = 0.86) compared with other ML models (including random
forest), and therefore, this study retained a similar PM2.5 model structure. Here, the impacts of
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different interpolations at the AOD-imputation stage on PM2.5 predictive accuracy are mainly explored,
rather than improving PM2.5 model structure. The steps of the NELRM-XGBoost model have been
previously described [9] and will be introduced briefly. First, non-lagged variables X1 such as
land-related data, and potential lagged variables X2 such as original AOD, and meteorological variables
were selected in the NELRM [14], with statistical significance (P < 0.05) and low variance inflation
(VIF<5, checks for multi-collinearity). The optimal predictor combinations in different regions are
shown in Table S2). Additionally, a cross-basis Cb.X2 was constructed, explaining the lag effects,
with degree of freedom (df = 3) for natural cubic smooth function and maximum 0–1 lagged days
according to the 10-fold CV results. Finally, the weak learner fk(X1, Cb.X2) in XGBoost learning process
was built, which was optimized by the loss function Lk(θk), adjusted by a previous iteration, and the
regularizing term Ωk(θk), and hence, reducing model complexity for avoiding over fit. This is presented
as the following equation:

ŷ(t)i =
t∑

k=1

εγk fk(X1, Cb.X2) (1)

where Ŷ(t)
i denotes PM2.5 estimation in iteration t; γk and ε are the weight vector and the learning rate.

The setting in the satellite-PM2.5 model (Table S1) was optimized by maximizing the 10-fold CV R2 of
the XGBoost approach for estimating PM2.5.

2.2.3. Validation Stage

To better validate the performance of two stages, three kinds of 10-fold CV [14], were deployed,
including overall CV, spatial CV, and temporal CV. All 10-fold CV were repeated 20 times. The main
difference among them was randomly separating the dataset by observations, the location of sites,
and date.

The overall CV is a common measurement that represents the performance stability in modeling
dataset [13,23,36–38].

Spatial CV or spatial extrapolation is a more important indicator of prediction model of PM2.5,
because most predicted locations for exposure assessment do not have any observation due to the
limited numbers of sites (1605). For a better description of the spatial performance distribution, we also
conducted a Leave-One-Out-Cross-Validation (LOOCVsite), which leaves one site for validation each
time. The LOOCVsite results were further interpolated by UK into 1 km grids in China (interpolating
quality: CV R2 = 0.86), which simply represents spatial extrapolation in different predicted locations.

The temporal CV, or temporal extrapolation means the performance stability in different time points,
as the training and validating datasets randomly split by dates in each fold. Furthermore, the validation
analysis was performed in different months or years to examine the performance stability (Figure S3).

3. Results

3.1. Descriptive Statistics of MAIAC AOD and PM2.5 Concentration

From 2013 to 2018, the daily coverage of MAIAC AOD in China generally remained at an average
of approximately 15–16% (Figure 2). The highest coverage day was on 9 October 2013, reaching 33.22%,
and the lowest coverage day was 4.55% on 3 July 2018. June–July and January–February accounted
for 42.24% and 28.87% of the lower-coverage (≤10%) days, respectively, and more than 62.31% of the
higher-coverage (≥20%) days were from September–December. The median value of the observed
MAIAC AOD during the study period was approximately 0.31(interquartile range (IQR): 0.34).

From 2014 to 2018, the median PM2.5 concentrations reported by the monitoring sites gradually
decreased from 45.60 µg/m3(IQR = 43.89) to 32.14 µg/m3 (IQR = 30.34). The PM2.5 concentrations in
China were always higher in the cold season (October–March).
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3.2. AOD-Imputation Stage

Compared with the geostatistical interpolation methods (coverage after interpolation
approximately 21.43–87.31% for NN, Kriging, IDW, ST Kriging, and TS) (Table 2), the ML methods,
using the same external information, were more efficient in filling the gaps, with almost full coverage
(approximately 98.64%). The remaining missing data could not be fully eliminated due to the missing
rates of external information. Among these algorithms, the RF and XG methods outperformed
other algorithms (CV R2 = 0.89, 0.85, and 0.49–0.78 for RF, XG, and other algorithms, respectively).
Although the RF method was the most accurate, its computation time was longer than other ML
algorithms and most geostatistical algorithms. The XG method was less time-consuming, had better
performance, and higher coverage than our previous TS methods, although the accuracy was slightly
lower than RF. Similar results were obtained for spatial CV and temporal CV (Table S3). Among the
interpolations with higher accuracy (CV R2

≥ 0.7), we found the median AOD level always tended to
increase (from 0.31 to 0.44–0.65) after geostatistical or ML interpolation. Owing to the same coverage
in ML-interpolated AOD product (same external information for all ML algorithms), they had a more
similar interpolated AOD distribution than the geostatistical interpolation. In addition, the linear
correlation between interpolated AOD and PM2.5 weakened after the interpolation (Table S4).
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Table 2. Comparison of geostatistical and machine learning (ML) interpolation for MAIAC
AOD product.

Interpolation Method Coverage (%) Computation
Time a CV RMSE CV R2 CV MAPE (%)

Before Interpolation 15.46 \

Geostatistical Algorithms

TS 87.31 55:38:56.56 0.17 0.75 20.56
ST Kriging 67.73 128:56:43.56 0.17 0.78 20.36

IDW 45.22 45:35:28.39 0.18 0.65 21.35
Kriging 42.37 88:46:37.24 0.17 0.66 20.89

NN 21.43 15:39:27.93 0.19 0.49 25.38

ML Algorithms

RF 98.64 120:55:28.65 0.15 0.89 18.00
XG 98.64 18:00:38.20 0.15 0.85 19.06

SVM 98.64 19:04:47.64 0.17 0.72 19.41
BRNN 98.64 18:45:36.22 0.17 0.70 22.39
GBM 98.64 06:35:47.65 0.18 0.69 25.17
GAM 98.64 01:05:38.20 0.17 0.62 21.88

LASSO 98.64 01:18:30.23 0.19 0.49 28.03

TS (two-step interpolation), IDW (inverse distance weighting), ST Kriging (spatio-temporal kriging), NN (nearest
neighbors with 30 km buffer), RF (Conditional Inference Random Forest), XG (extreme gradient boosting, XGBoost),
SVM (support vector machine), BRNN (Bayesian regularized neural network), GBM (gradient boost model), GAM
(generalized additive model), and LASSO (least absolute shrinkage and selection operator); a tested by Windows 10
system in 3.4 GHz computer with 16 GB of RAM.

3.3. PM2.5 Predicted Stage

Six AOD-interpolation methods allowed relatively higher performances (with CV R2 after over 0.7),
and therefore, their interpolated AOD product was used to build the daily PM2.5 prediction model at the
second stage (CV R2: 0.83–0.88) (Table S5). It was found that using AOD products interpolated by XG
or RF (XG-AOD or RF-AOD) was beneficial to short-term PM2.5 prediction accuracy (CV R2: both 0.88),
and more accurate than when using original AOD data (CV R2: 0.85). We, therefore, further compared
XG-AOD and RF-AOD in different regions (Figure 3). Generally, PM2.5 prediction models using either
AOD product performed similarly and obtained CV R2 higher than 0.88 in most regions of China,
except for the northwest (approximately 0.77–0.78). Using XG-AOD was more stable (lower SD or
narrower 95% CI for CV R2) in the northwest. This was similar to spatial CV and temporal CV (spatial
(temporal) CV R2 = 0.83(0.83) for RF vs. 0.82(0.82) for XG), while the PM2.5 prediction model using the
original AOD had a less stable performance, with a spatial CV R2 of 0.65 and a temporal CV R2 of 0.61
(Table S6).
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3.4. Spatial and Temporal Cross-Validation

Due to the high demand of spatial extrapolation, a LOOCVsite analysis was conducted (Figure 4).
The results were similar while using two different interpolated AOD products at the PM2.5-prediction
stage. The model using RF-AOD performed slightly better than XG-AOD (median LOOCV R2 (RMSE):
0.81(14.68 µg/m3) vs. 0.78(15.07 µg/m3), respectively). Both were significantly better than using original
AOD (median LOOCV R2 = 0.56, RMSE = 24.48 µg/m3). The grids with higher accuracy (coverage rate
and LOOCV R2 > median level) were mainly located in the east of China, including Central, South,
East, North, and Northeast China. For temporal CV, the RF or XG interpolation strategy performed
significantly better than the original AOD, and they had similar temporal CV among different months
or years (Figure S3). The warm season (April–September) generally performed more poorly than the
cold season (November–March). The CV result was stable in different years.
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PM2.5-prediction models in China using RF-AOD (A1–A3), XG-AOD (B1–B3), and original AOD
(C1–C3).

To better clarify the performance of the interpolation methods, we specifically illustrated the
result under the worst condition during the study period, i.e., when the coverage of MAIAC AOD
was the lowest (4.55% on 3 July 2018) (Figure 5). The coverage of AOD could reach 96.25% for both
RF- and XG-interpolation (determined by the missing of external information), and median levels of



Remote Sens. 2020, 12, 3008 10 of 16

interpolated AOD changed from 0.18 to 0.53 (RF) and to 0.57 (XG). In the meantime, the coverage
of predicted PM2.5 increased from 4.12% to 95.46% (determined by the additional missing while
considering lag effect), and LOOCVsite R2 of predicted PM2.5 was 0.70 (original), 0.86 (RF), and 0.85
(XG). The median (IQR) levels of PM2.5 (µg/m3), estimated by MAIAC AOD, RF-AOD, and XG-AOD,
were 36.34 (22.26), 27.52 (25.68), and 26.32 (27.42), respectively.
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4. Discussion

This study developed a series of strategies for estimating daily PM2.5 exposure. This included
two stages; the AOD-imputation stage and the PM2.5 predicted stage. For the AOD-imputation stage,
and to resolve the difficult aspects of our previous two-step interpolation such as relatively tedious
steps and ignoring influences of external information [9], this study compared 12 different algorithms
and found ML algorithms (with external information) generally achieved higher coverage than
geostatistical algorithms (98.64% vs. 21.43–87.31%). The RF or XG interpolation among ML algorithms
also guaranteed a higher interpolated quality (CV R2 = 0.89 and 0.85) than other ML algorithms (CV
R2 = 0.49–0.72) or geostatistical algorithms (CV R2 = 0.49–0.78). However, XG interpolation can better
balance the computation time and performance. Compared with the model using original AOD,
the PM2.5 prediction model using XG-AOD not only guaranteed higher coverage (97.83% vs. 14.35%),
but also a better prediction performance (CV R2: 0.88 vs. 0.85) for the PM2.5-prediction stage.

The AOD model has provided optimism for high-coverage estimations of PM2.5 exposure to
compensate for the very low coverage of existing ground air quality monitoring sites. It was found,
however, that the AOD-missing rate was above 84% among the day-grid units in China during
2013–2018, and similar problems have been reported in different regions [14,39–41]. This raises debate
regarding whether the short-term estimation of PM2.5, based on retrieved AOD data, is more practical
for further research rather than data from the sites. For example, in China, PM2.5 predicted by MAIAC
AOD still maintains a higher resolution (1 km) and a higher coverage (approximately 96,534,23 grids)
than data from the sites (approximately 1605 sites), and the sites are more likely to be concentrated in
eastern China, which is densely populated due to economic and social reasons [40]. A similar situation
also exists in many developing countries and in high-income countries [42,43]. Missing observations
of MAIAC AOD also tend to be concentrated in specific areas due to uncontrollable factors such as
orbit patterns and cloudiness [9,10]. For example, in the lowest coverage day (3 July 2018) during the
study period, severe convective weather and heavy rainfall in coastal and central areas of China may
have led to such an absence. Furthermore, previous studies have suggested that a monsoon climate is
associated with more frequently missed observations. The large seasonal variations in the observed
aerosol data [17,44] due to more rainy or cloudy weather in the summer [45], means that regions with
a monsoon climate, which are concentrated in densely populated areas, are more susceptible to the
missing observation problem and therefore, appropriate AOD interpolation is a prerequisite before
using the AOD model for higher-coverage assessments of PM2.5 exposure.

Many attempts have previously been made to impute AOD-missing observations, but it remains
unclear which is the most optimal. We compared the performances of 12 approaches, including those
proposed here, and found ML algorithms using external information can fill more missing data
than geostatistical interpolation (approximately 98.64% vs. 21.43–87.31%). This was consistent
with previous assumptions [46–48], but the interpolation quality (CV R2: 0.49–0.89) varied widely in
different algorithms, with a similar range (CV R2 approximately 0.34–0.85) reported in previous different
studies [14–17,43,46–51]. The higher missing-filled efficiency of ML algorithms indicates that external
information can provide more information at the AOD-imputation stage, because the geostatistical
interpolation is over-dependent on spatial autocorrelation but ignores other influencing factors on the
temporal dimension [21]. Not all ML algorithms, however, can obtain higher interpolation quality than
geostatistical interpolation, and the varied interpolation quality suggests that the model structure, or
the ability to capture complex spatio-temporal relationships rather than external information, plays a
more important role in the accuracy of the AOD-filled process. Therefore, suitable ML algorithms were
selected by 10-fold cross-validation. Most geostatistical interpolations could not provide a fixed model
for the entire period, that is, they needed to be developed separately for each map slice at different time
points, and so tended to take a longer running time. Among different interpolations, the RF and XG
methods were the best two groups, with the highest CV R2 (0.89 and 0.85, respectively), but the time
consumption of the RF method was much longer due to parallel operation and different calculation
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methods. Furthermore, the RF method consumed more memory during computation. It is necessary
to tradeoff time consumption and interpolation quality if robust computing power is not available.

It was also found that the average AOD levels always rose after interpolation, irrespective of the
interpolating method used. This is consistent with the phenomenon that missing more frequently
occurs at high MODIS-AOD levels [52,53]. The aerosol hygroscopic growth during missing days
results from increased humidity from cloud or humid airflows [54,55]. Another potential reason is that
the surface reflectivity, cloudiness, or snow is always associated with over-exposure values [9,10], so it
tends to be eliminated during the preprocess of satellite sensors or systems. It was also found that PM2.5

levels on AOD-missing days were lower than those on non-missing days (36.0 µg/m3 vs. 39.0 µg/m3),
and this was partially due to shorter particle suspension time with heavy rainfall, convective weather
or snow [56], and higher missing rates in the warm season (April–September), with relatively lower
PM2.5 levels (Figure 2). This suggests that the relationship between AOD and PM2.5 after AOD
interpolation, becomes more complicated than a simple linear relationship [9]. This could explain why
AOD interpolation can lead to weaker linear correlations (0.43 to 0.31) (Table S4) but higher accuracy
in our PM2.5 prediction model, which can capture the complicated spatio-temporal variations (0.85 to
0.88) (Figure 3).

At the PM2.5 predicted stage, further discussion is required regarding how many benefits can be
obtained from different interpolated AOD products. Compared with non-AOD model, the imputed
AOD always improves the accuracy of PM2.5 estimation (CV R2

PM2.5 estimation = 0.77 vs. 0.83~0.88)
(Table S5), especially for XG and RF interpolations which had higher interpolating quality (CV R2

AOD imputation > 0.8). Furthermore, compared with RF-AOD and XG-AOD, the satellite PM2.5 model
using original AOD performed relatively poorly in spatial and temporal CVs (spatial (temporal) CV
R2 = 0.83(0.83) vs. 0.82(0.82) vs. 0.65(0.61)). The lower LOOCV R2 (=0.56) when only using original
AOD further proved its poorer spatial application to all mainland China because different missing
rates in different grids can increase the heterogeneity (or uncertainty) of predictions, and further
weaken spatial extrapolation to other grids. Furthermore, incomplete time series of AOD produced
for each grid also makes it more difficult to obtain an accurate prediction in any out-of-sample time.
Compared with the XG method, however, the higher accuracy of RF methods at the AOD-imputation
stage did not bring more benefits to the PM2.5-prediction stage. It indicated that the missing rate of the
AOD product, compared with the accuracy of the interpolated AOD product, is the key to spatial and
temporal extrapolation of the PM2.5-prediction stage.

Some limitations were present in this study. First, the complex relationships between AOD-missing
effect and PM2.5 may cause annual and regional differences, which need to be further analyzed in more
countries for a longer research period. Second, the AOD miss-filling approaches taken here are based
on using known predictors which are easily accessed and are frequently recorded in most areas and
therefore, some other chemical or physical features such as chemical composition in aerosol and sun
radiation were not considered in this study. Finally, the LOOCV result for all of China was interpolated
by UK, and therefore, some unavoidable bias due to the UK technique may be present. This result
provides an approximate assessment only for spatial dimensions.

5. Conclusions

This study proposed a XGBoost method to impute missing data of AOD based on some external
predictors. By comparing a variety of different imputation methods, XGBoost is confirmed to be a less
consuming-time choice, with almost full coverage, good missing-imputation quality, and consequently,
accurate prediction of PM2.5. In terms of practicality, our study provides some guidance, strategies,
and a tempo-spatially continuous PM2.5 dataset for future short-term health impact assessments in
epidemiological studies of air pollution.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/18/3008/s1,
Figure S1. Geographical distribution of PM2.5 monitoring sites (A) and meteorological stations (B) in mainland
China in 2015. Figure S2. Geographical locations of regions and provinces in China. Figure S3. The temporal
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CV performance (Proportion of sites with different CV R2) of daily Satellite-PM2.5 model in China with RF-AOD,
XG-AOD and Original AOD. Table S1. The optimal parameters selected in AOD-filled Stage and PM2.5
Predicted Stage. Table S2. Optimal combination of variables selected in different regions of China. Table S3.
The spatial and temporal CV of Geostatistical and ML interpolation for MAIAC AOD product. The comparison of
daily Satellite-PM2.5 model with AOD products interpolated by using interpolating methods (with CV R2 for
interpolation > = 0.7). Table S6. The spatial and temporal CV of using different interpolated-AOD product in
PM2.5 Predicted Stage.
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