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Abstract: The carbon sequestration capacity of wetland vegetation determines carbon stocks and
changes in wetlands. However, modeling vegetation carbon sequestration of herbaceous wetlands is
still problematic due to complex hydroecological processes and rapidly changing biomass carbon
stocks. Theoretically, a vegetation index (VI) time series can retrieve the dynamic of biomass
carbon stocks and could be used to calculate the cumulative composite of biomass carbon stocks
during a given interval, i.e., vegetation carbon sequestration. Hence, we explored the potential
for mapping vegetation carbon sequestration in herbaceous wetlands in this study by using a
combination of remotely sensed VI time series and field observation data. This method was
exemplarily applied for Poyang Lake wetland in 2016 by using a 16-day Moderate Resolution Imaging
Spectroradiometer (MODIS) enhanced vegetation index (EVI) time series. Results show that the
vegetation carbon sequestration in this area was in the range of 193–1221 g C m−2 year−1 with a mean
of 401 g C m−2 year−1 and a standard deviation of 172 g C m−2 year−1 in 2016. The approach has
wider spatial applicability in wetlands than the currently used global map of vegetation production
(MOD17A3) because our carbon estimation in areas depicted by ‘no data’ in the MOD17A3 product
is considerable, which accounts for 91.2–91.5% of the total vegetation carbon sequestration of the
wetland. Thus, we determined that VI time series data shows great potential for estimating vegetation
carbon sequestration in herbaceous wetlands, especially with the continuously improving quality
and frequency of satellite VI images.

Keywords: herbaceous wetlands; vegetation carbon sequestration; enhanced vegetation index time
series; Poyang Lake wetland

1. Introduction

Vegetation carbon sequestration is the amount of carbon that can be sequestered by vegetation
during a given interval. It is the main carbon input of ecosystems [1]. Monitoring and reporting
vegetation carbon sequestration in wetlands are important tasks [2] because climate change has become
an indisputable fact [3,4], and the wetland carbon pool is one of the most important carbon sinks in
regional ecosystems [5].
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Extensive studies were conducted to estimate vegetation carbon sequestration in wetlands on
various spatial scales. At a site scale, scientists collect data at a sufficient number of intervals to capture
variation in biomass carbon stocks; the positive differences across annual collection dates are referred
to as the yearly carbon sequestration of plants. For example, Pierfelice et al. [6] calculated the monthly
fluctuations in biomass carbon stocks at three wetland sites in South Carolina in 2010–2012 to estimate
the yearly vegetation carbon sequestration. Peregon et al. [7] monitored the maximum and minimum
seasonal weights of biomass carbon stocks in Western Siberia and used their difference to estimate
the vegetation carbon sequestration. Caplan et al. [8] summed the daily turnovers of biomass carbon
stock simulated by an empirical plant growth model to yield the vegetation carbon sequestration
in Edgewater, MD, USA. Additionally, the eddy covariance technique is also widely used on small
spatial scales to calculate the levels of vegetation carbon sequestration [9]. It measures the covariance
between fluctuations in vertical wind velocity and the CO2 mixing ratio, which produces estimations
of RE (ecosystem respiration) and NEE (net ecosystem exchange) and hence the vegetation carbon
sequestration [9].

For larger regional scales, vegetation carbon sequestration can be measured using two methods as
follows: (1) extrapolating the field-measured carbon sequestration values up to a large region according
to a vegetation map [7,10] and (2) utilizing satellite data-driven models based on ecophysiological
process theories [11,12]. The accuracy of the former depends mainly on the number of categories
displayed on the vegetation map [7,10]. Moreover, the spatial extrapolation method ignores the
individual differences in the growth rate of the same species due to microenvironmental conditions [13].
For the satellite data-driven ecophysiological process models, the coarse meteorological data usually
limit the spatial resolution [14]. Parameterizing these empirical relationships in ecophysiological
processes over wide-ranging climatic and vegetation types is also problematic [15–17]. For example,
the most widely used global-scale estimation of vegetation production, termed MOD17A3 [18,19],
contains significant errors because of the use of coarse resolution weather data and the ‘Look-Up
Table’-based ecophysiological inputs [17,20].

To avoid uncertainties in the spatial extrapolation method and ecophysiological process models,
several scholars have attempted to use simple models based entirely on remote sensing data to estimate
vegetation carbon sequestration on regional scales [21–23]. A significant correlation was found between
field-measured vegetation carbon sequestration and a remotely sensed vegetation index (VI) in various
environments. For example, Rahman et al. [22] revealed a strong correlation between vegetation carbon
sequestration and enhanced vegetation index (EVI) in areas with wide-ranging vegetation types in
North America. Sjöström et al. [23] found that EVI correlates well with estimated vegetation carbon
sequestration on a site-by-site basis across various African ecosystems. Almost all these insight studies
revealed that a straightforward, remotely sensed per-pixel input regression model shows potential
to become an alternative method for estimating vegetation carbon sequestration on a regional scale.
However, vegetation carbon sequestration is the cumulative value of biomass carbon stocks in a given
interval. These studies only used a few VI images acquired at a particular time to retrieve the annual
vegetation carbon sequestration and had ignored the dynamic nature of biomass carbon stocks.

Moreover, the current estimation methods for vegetation carbon sequestration are not suitable for
herbaceous wetlands on small and large scales. On a small scale, the method of estimating vegetation
carbon sequestration with high-frequency observations of biomass carbon stock is impractical in
herbaceous wetlands, especially for the remote, inaccessible and dangerous locations [24,25]. On a
regional scale, most satellite data-driven models are based on ecophysiological processes in terrestrial
environments (forests and farmlands) [11,12,14–17]. Thus, these models cannot assess the key factors,
such as the hydraulic forces of flooding and drawdown, which control the carbon cycle of wetland
vegetation [26,27]. Additionally, the rapid changes in biomass carbon stocks in herbaceous wetlands
have limited the practical use of current remote sensing-based regression models [21–23] because they
utilize only small amounts of VI images acquired during specific periods throughout the growing season.
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Theoretically, a VI time series at a sufficient number of intervals can directly provide consistent
temporal comparisons of biomass carbon stocks on a regional scale. By utilizing a high-frequency
VI time series to retrieve the rapid dynamics of biomass carbon stocks in herbaceous wetlands over a
year, we could accurately estimate their yearly vegetation carbon sequestration. However, the feasibility
of this assumption has long been limited by two issues. The first is the ability of VIs in estimating
biomass carbon stocks, and the second is the frequency of VI time series in describing the continuous
dynamics of biomass carbon stocks. Fortunately, recent research advances about these two issues have
made the assumption feasible.

Firstly, the ability of VIs in estimating biomass carbon stocks is improving. VI is generated on the
physical basis of the difference of plant leaves in reflectance in the red and near infrared (NIR) bands in
optical remote sensing and has been widely used to evaluate biomass carbon stocks. Over 40 VIs have
been developed during the past two decades [28–30], such as the normalized difference vegetation
index, soil adjusted vegetation index, atmospherically resistant vegetation index, and EVI [31–33].
These VIs have improved the accuracy of biomass carbon stock estimation to varying degrees, especially
for EVI. Additionally, with the development of hyperspectral remote sensing and infrared remote
sensing, some new VIs such as Hyp_NDVI have been proposed [34]. These VIs are calculated from
the red edge and NIR shoulder domains and can more accurately estimate biomass carbon stocks
at full canopy cover than the standard red/NIR indices [34–36]. However, the use of fine spectral
resolution sensors (more than 100 bands) is heavily limited in terms of cost, availability, and complexity
of processing the high dimensional data, especially in wetlands covering large areas [36]. In summary,
the atmospheric- and soil-corrected VIs generated from the moderate-spectral-resolution sensors,
such as the EVI, are the most common and well-tested methods for biomass carbon stock estimation
over a large wetland region.

Secondly, the improvement in the revisit frequency of the satellite missions allows the VI time series
to capture further details of biomass carbon stock fluctuations [37,38]. For example, daily observations
of VI are available provided by the Moderate Resolution Imaging Spectroradiometer (MODIS)
instruments with a spatial resolution of 250 m (https://modis.ornl.gov). With a 30 m spatial resolution,
Landsat satellites can achieve a 16-day revisit period. Moreover, Sentinel satellites can achieve a
5-day revisit period with a spatial resolution of 10–20 m (https://www.sentinel-hub.com). However,
only high-frequency observations can obtain enough cloud-free VI images due to the cloudy and
rainy weather for most herbaceous wetlands. For example, the 16 day Landsat product only captured
five cloud-free images in 2009 in the largest freshwater wetland in China, i.e., the Poyang Lake
wetland. Although the cloud contamination also causes disturbances in the daily MODIS VI time series,
such noises have been greatly reduced in the 16 day maximum value composite products synthesized
from the daily MODIS VI images, i.e., MOD13Q1 [39]. Additionally, various noise-reduction methods for
reconstructing high-quality VI time-series data sets have been formulated, applied, and evaluated in the
last two decades [40–43]. These methods can be broadly divided into four groups: (1) threshold-based
methods such as the best index slope extraction algorithm [44]; (2) Fourier-based fitting methods [45]
such as Sellers et al.’s [46] fast Fourier transform method; (3) asymmetric function fitting methods
such as the double logistic method [43]; and (4) alternative filtering techniques such as the adaptive
Savitzky-Golay filter [41]. Most of these methods have good performances, and the reconstructed
VI time series are of high quality and have been further used in many aspects, such as detecting
long-term land-use/cover changes [47], monitoring the phenological dynamics of vegetation [48],
and classifying vegetation or land cover types [49].

In view of the continuous improvements of the quality and frequency of satellite VI time series
currently, we tested our assumption of measuring vegetation carbon sequestration by a reconstructed
VI time series and field observation data in a typical herbaceous wetland of Poyang Lake, China in this
study. Specifically, we selected the 16 day MODIS EVI time series data set of 2016 in this wetland as
the original VI time series. The Savitzky-Golay filter then reconstructed a new high quality EVI time
series from the original one. The new reconstructed EVI time series along with its corresponding field
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vegetation data subsequently estimated the dynamics of biomass carbon stocks. This estimation was
then used to calculate the cumulative composite of biomass carbon stocks in the year, i.e., the vegetation
carbon sequestration in 2016. The accuracy of this method was evaluated by comparing it with the
results of previous studies and the current global vegetation productivity map, i.e., the MOD17A3,
in this wetland.

2. Materials and Methods

2.1. Study Area

Our study area was the Poyang Lake wetland (115◦49′ E–116◦46′ E, 28◦24′ N–29◦46′ N) at the
southern bank of the middle reaches of the Yangtze River, China (Figure 1a). The climate in this region
is typically warm (annual mean temperature ranging from 16.5 to 17.8 ◦C), humid (annual mean
precipitation ranging from 1400 to 1700 mm), and prone to monsoons (annual water level amplitude
averaging up to 11 m) [50]. Thus, the water regime of Poyang Lake follows a typical seasonal variation
with the lake water rising in spring, flooding in summer, retreating in autumn, and drying in winter.
The summer flood season generally lasts from June to September when the lake covers an area of
3800 km2 and inundates most of the low-lying alluvial plains surrounding the lake [51]. The prolonged
inundation period provides inability for the trees to survive in this wetland. Thus, Poyang Lake is a
typical herbaceous wetland [52].

The biota of this wetland shows a clear belt structure along the coastline due to its topography
and water regime gradients [52]. Two types of herbaceous vegetation, i.e., semiaquatic emergent tall
vegetation (composed mainly by Phragmites spp.) and emergent aquatic vegetation (composed mainly
by Carex spp.), colonize the lake borders at various elevations (Figure 1c) [26,27].

The Phragmites community, which mainly includes Phragmites spp. and Triarrhena lutarioriparia L.
Liu, is the most abundant vegetation type in the semiaquatic emergent tall vegetation zone. These plants
colonize the high wetland areas, which can be flooded for at most 2 months in a year [53]. The growing
season of plants in this zone begins in early spring, peaks in summer, and ends in late autumn.

The Carex community, which mainly includes Carex cinerascens K
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et Vaniot, and Carex unisexualis C. B. Clarke, is the most abundant in the emergent aquatic vegetation
zone. These plants colonize the low wetland areas, which can be flooded for up to 160 days [53].
Therefore, the growing season of plants in this zone is divided into two stages by the long-lasting
summer floods. The first stage happens in spring before the summer flooding, and the second occurs in
autumn after the summer flooding. In summer, the plants in the Carex community become completely
inundated and go into a dormancy phase.

Figure 1b is the land cover map of Poyang Lake wetland in 2016 that was remotely interpreted by
Dai [54]. This figure identifies the two main kinds of herbaceous plants and shows their distribution
across the entire wetland.

2.2. Data Collection and Processing

The VI time series-based method for estimating vegetation carbon sequestration in our study can
be divided into five distinct steps, i.e., (1) preprocessing of the EVI time series and field observation data;
(2) performing regression analyses between EVI values and the field-observed biomass carbon stocks;
(3) retrieving the dynamics of biomass carbon stocks throughout the year by using the preprocessed
EVI time series via the best estimation model; (4) estimating the annual vegetation carbon sequestration
by using the retrieved dynamic of biomass carbon stocks; and (5) assessing the accuracy of the method
by comparing it with other studies and the currently used global map of vegetation production
(MOD17A3).
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Figure 1. Poyang Lake wetland. (a) Location of the Poyang Lake wetland; (b) land cover map of
the Poyang Lake wetland in 2016 interpreted by Dai [54]; and (c) aerial view of a typical coastline
with Phragmites community and Carex community changing with elevation from high to low on the
marsh areas.

2.2.1. Vegetation Index Time Series Data and Preprocessing

The VI time series used in this study was the 23 scenes of MODIS EVI images acquired in 2016
and fully covering the Poyang Lake wetland. These scenes are extracted from the MODIS vegetation
indices (NDVI and EVI) product suite (MODIS\Terra Vegetation Indices 16-Day L3 Global 250 m,
MOD13Q1) produced on 16 day intervals [39]. An EVI time series should follow a smoothing cycle of
growth and decline with the growth of plants within a year. However, clouds or poor atmospheric
conditions usually depress the EVI values in the EVI time series. Thus, we performed three steps in
our data preprocessing to generate a high-quality EVI time series with great temporal consistency.

1. Firstly, the images were coregistered and subset to the Poyang Lake wetland. The summary
quality layer of MOD13Q1 was used to remove the low-quality values in the EVI images.

2. Then, we used a seasonal-trend decomposition method to further remove the outliers in the
remaining values of the EVI time series from the aspect of temporal consistency. For further
details, please refer to Cleveland et al. [55].

3. Next, we interpolated the discarded values in the abovementioned two steps via a Savitzky-Golay
filter [56]. This filter is a simplified least squares-fit convolution for smoothing and computing
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the derivatives of a set of consecutive values. This filter has been widely used for VI time series
reconstruction and showed great superiority over other methods [41–43].

Figure 2 illustrates the processing effect of the above three steps. The preprocessed EVI time series
identified and corrected most of the noise. The general pattern of seasonal changes in the preprocessed
EVI time series became evidently clear.
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(EVI data from the test pixel at 29◦10′0” N, 116◦0′0” E).

2.2.2. Field Sampling Plots

We used two sources of field-measured vegetation data in this study. One was the 86 plots
(Source A in Figure 3) we gathered from the four subregions in the wetland during 24 November
to 3 December 2016. The samples were collected from both the two main vegetation communities
in this wetland, i.e., Phragmites community (6 samples) and Carex community (80 samples), and are
located in all four different kinds of bottomlands, including littoral land of the main lake (41 samples),
inflow river delta (14 samples), sublakes (24 samples), and small islands (7 samples). The other data
were the 32 plots discussed in Wu et al.’s [57] study (Source B in Figure 3 gathered in northwest
Poyang Lake wetland in September, October, and November during 2008–2011 coinciding with the
satellite overpass).

In our survey, aboveground biomass in a 1 m × 1 m plot was harvested by clipping the plants at
the soil level at each site. Wet biomass was weighed and then converted to dry biomass through a
proportionality constant, i.e., the water content factor (taken as 0.3 via a sample analysis). Next, the dry
biomass was converted to biomass carbon stock (g C m−2) through a carbon conversion factor ρ,
which was taken as 0.44 in grass ecosystems [8,58]. In Wu et al.’s [57] study, plant biomass yields were
also measured as the wet weight (g wet mass m−2). Thus, those records were also converted to biomass
carbon stock by using the water content factor and carbon conversion factor [59].

For each field sampling plot, a handheld GPS receiver (GPS 60, GARMIN, Olathe, KS, USA)
recorded the geographic coordinates, which were then used to extract the corresponding EVI values
from the coincident MODIS EVI image by the ExtractValuesToPoints tools in ESRI ArcGIS 10.2
(Esri, Redlands, CA, USA). Sample points with the same sampling time and falling in the same MODIS
pixel were averaged to coincide with the corresponding single MODIS EVI value. Through this process,
56 records can be finally used to train and verify the biomass carbon stock estimation model.
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Figure 3. Sampling locations in field survey. (a) Location of the typical inflow river delta and its
14 samples; (b) location of the littoral land of the main lake and its 41 samples; (c) location of the
typical sublakes and its 24 samples; and (d) location of the typical small islands and its 7 samples
(the background image is a false color composition of the Landsat 8 image with the band 5, band 4,
and band 3 to red, green, and blue, respectively).

2.2.3. Biomass Carbon Stock Modeling

The biomass carbon stock estimation models were developed based on the regression analysis
between the remotely sensed EVI and the field-observed biomass carbon stocks. All records were
plotted in one scatter plot because of the limited small sample size (56 records). Records from
different data sources were differently marked to check the consistency of the EVI-biomass carbon
stock relationships at different acquiring times. Additionally, records from different data sources were
used to intercalibrate each other in the biomass carbon stock modeling.

We tested four regression models, including the power law model (y = a·xb), exponential model
(y = a·ebx), simple linear regression model (y = a·x + b), and polynomial model (y = a·x2 + b·x + c), to fit
the curve according to the shape of the scatter plot. The ordinary least squares method was used to
estimate the parameters of all four models, whereas the coefficient of determination (R2) was utilized
to compare the errors of these models. The best fitting model was used to reconstruct the dynamics of
biomass carbon stock throughout the year from the EVI time-series images.

2.2.4. Estimating the Annual Vegetation Carbon Sequestration

Basing on the reconstructed time profile of biomass carbon stock throughout the year, we calculated
the annual vegetation carbon sequestration of each pixel via Equation (1). As a result, the sum of
positive differences in biomass carbon stocks across collection dates during the year was determined.

CSQ =
22∑

t=1

kt, kt =

{
Bio.Ct+1 − Bio.Ct , if Bio.Ct+1 − Bio.Ct > 0

0 , otherwise
(1)
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where CSQ is the abbreviation of vegetation carbon sequestration and t is the varying integer that
denotes the date of biomass carbon stock analysis. Given the 23 EVI images per year for the 16 day
MODIS EVI time series data, the range of t is from 1 to 22. kt is the positive difference in biomass
carbon stocks between adjacent dates, which is calculated by Bio.Ct, the biomass carbon stock observed
at time t.

3. Results

3.1. Quality of the Processed EVI Time Series

The processed and raw EVI curves at 60 randomly selected pixels were compared to evaluate
the quality of our preprocessed EVI time series. We also compared the reconstructed EVI curves
by using the Savitzky–Golay filter and two other time series filtering methods, i.e., the asymmetric
Gaussian method [42] and the double logistic method [43], to further examine the performances of the
Savitzky–Golay filter. Only the results of 12 test pixels are shown in Figure 4 due to space limitations.

For the pixels of high quality, the processed EVI values of the Savitzky–Golay filter were closest to
the original EVI values among those of the three methods. For the pixels of low quality, i.e., the excluded
outliers, the processed EVI values of the Savitzky–Golay filter had the smoothest transition from
neighboring points among those of the three methods. Thus, the Savitzky–Golay filter was the
most effective for constructing EVI time-series data sets in this area among all of the three methods.
By interpolating those excluded outliers by the Savitzky–Golay filter, we successfully identified
and corrected most of the noisy points and generated a high quality EVI time series with great
temporal consistency. Moreover, the processed EVI time profiles successfully captured the phenological
variations of the two main vegetation types in Poyang Lake wetland. Specifically, plants in the
Phragmites community ‘peak’ once in summer (Nos. 1–4), whereas plants in the Carex community
‘peak’ twice in spring and autumn (Nos. 5–12).

3.2. Modeling of Biomass Carbon Stock Estimation

Results of single regression analyses among all the EVI and field-observed biomass carbon stocks
are illustrated in Figure 5, wherein the records from different data sources were differently marked.
The best fit (R2 = 0.80, RMSE = 39.86 g C m−2) was obtained through the quadratic polynomial
regression model (Model 4: y = 978.80x2

− 54.07x + 67.11, n = 56; Figure 5d). Moreover, the results
indicated no significant change in the relationship between the field-observed biomass carbon stock
and EVI at multiple data acquisition times (p < 0.01). Thus, we determined that in view of the greatly
improved quality and temporal consistency of the EVI time series, the EVI-biomass carbon stock
records obtained at different times in one regression model could be used to retrieve the annual
dynamic of biomass carbon stock in this wetland with stable land-use and land-cover conditions.

To validate the quadratic polynomial model for biomass carbon stock estimation, we conducted an
experiment to determine whether or not the independent samples from data source A and data source
B would calibrate each other. Specifically, we established two models by using two sets of data via
the well-fitting quadratic polynomial regression method as shown in Figure 6. The model established
by data source A (data source B) was marked as model A (model B), which used the remaining data,
i.e., the samples of data source B (data source A), for verification. The quadratic polynomial regression
model (Model 4: y = 978.80x2

− 54.07x + 67.11, n = 56), which was trained by all the samples, was also
illustrated in Figure 6 for comparison. As shown in Figure 6, the estimated biomass carbon stocks from
model A (model B) could explain more than 70% of the variance of biomass carbon stocks derived
from the ground survey in data source B (data source A; both R2 equal to 0.79), indicating that the
survey data from different dates could intercalibrate each other.
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(a) The relationship fitted by the power law model; (b) the relationship fitted by the exponential
model; (c) the relationship fitted by the linear regression model; and (d) the relationship fitted by the
polynomial model.
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3.3. Reconstructing the Annual Dynamic of Biomass Carbon Stocks

We utilized model 4, the most accurate quadratic polynomial regression model trained by all the
ground samples, for the strictly preprocessed EVI time series to estimate the inner-annual variations of
biomass carbon stock in Poyang Lake wetland in 2016 (Figure 7). From March until April, as time
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progresses the biomass carbon stocks increased gradually due to the sprout and rapid growth of
vegetation during mid-late spring. After reaching the maximum value in mid-April, the biomass carbon
stocks began to decrease, especially for the locations on the low-lying alluvial plains surrounding the
lake. This decrease is mainly attributed to the Carex community on low surfaces. This community
becomes dormant during early summer because water spreads over these surfaces and eventually
covers the plants. During the fall after the lake recedes and the surfaces are exposed, the plants in the
Carex community began their second growth period and grow vigorously. Thus, the biomass carbon
stocks of the wetland increased again and peaked at early November. Moreover, given that all plants
become dormant as winter approaches, the biomass carbon stocks of the wetland began to decrease
in December.
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3.4. Reported Annual Vegetation Carbon Sequestration from Different Biomass Carbon Stock Maps

In this section, the sum of the positive differences in biomass carbon stocks throughout the year,
i.e., the annual vegetation carbon sequestration of the wetland, was finally estimated based on the
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reconstructed time profile of biomass carbon stocks. The average carbon sequestration of Poyang Lake
wetland vegetation was 401 g C m−2 year−1 in 2016 with a standard deviation of 172 g C m−2 year−1

(Figure 8). Wide variations were observed in the vegetation carbon sequestration along the topographic
gradient depending on the microhabitat that resulted from the water level fluctuations. In the area
beside the central water surface, a widespread sparsely vegetated area was mixed with a mudflat due
to the strong flooding stress. Thus, the vegetation in this area can only sequester a small amount of
carbon. However, in the areas close to the edge of the wetland, the vegetation productivity rapidly
increased to extremely high levels due to the mitigation of long-term immersion. Thus, vegetation in
that area can sequester a large amount of carbon. The Nanjishan National Nature Reserve (NNNR)
and the Wucheng National Nature Reserve (WNNR) are the two high-productive regions within the
wetland and are located in the southwest and northwest parts of this area, respectively. The average
value of vegetation carbon sequestration in the east NNNR in 2016 was 501 g C m−2 year−1, and that of
the north WNNR was 750 g C m−2 year−1.
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4. Discussion

4.1. Accuracy Assessment of the Output of the VI Time Series-Based Method

Few field studies have measured vegetation carbon sequestration in Poyang Lake wetland due to
its dramatic water level fluctuations and high risk of Schistosoma infection [57]. Thus, a preliminary
evaluation of the estimate of the VI time series-based method was conducted in two ways, namely,
(1) comparing the results of previous studies for herbaceous wetlands in other areas of similar climate
conditions and (2) comparing the model with the currently used global map of vegetation production
(MOD17A3HGF Version 6 product).

4.1.1. Comparison of Vegetation Carbon Sequestration Estimates for Other Areas

We compared our vegetation carbon sequestration estimate in Poyang Lake wetland with those
from two other study sites in China, namely, East Chongming wetland [60] and Yancheng coastal
wetland [61], which are in a similar latitude with Poyang Lake wetland (Figure 1a). These estimates were
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obtained by in situ measurements and are summarized in Table 1. Besides, Table 1 also summarized
the carbon sequestration difference between the two main vegetation types in the Poyang Lake wetland
based on our estimates, which could help the cross-site comparison as well as to characterize the
carbon sequestration differences between communities. Importantly, we see that in our estimates
the regional average values of vegetation carbon sequestration are lower than the values extracted
at the field sampling plots. This is because the areas that can be involved in sampling are generally
with some distance from the water surface, thus they are easy to access and have a relatively high
carbon sequestration ability. This explains why the estimates by in situ measurement from other
studies are generally larger than our estimates for the whole wetland. For the sample-site values,
however, the estimate from the study of Mei and Zhang [60] merely shows a slight bias against
our estimate for Carex community (15 g C m−2 year−1). The estimate for the Herba suaedae site in
Yancheng coastal wetland from the study of Mao et al. [61] is also in line with our estimate for the
Carex community (9 g C m−2 year−1). However, the estimates of Mao et al. [61] for Scirpus triqueter and
Phragmites spp. sites are higher than our estimate for the Phragmites community and approximately
identical to the maximum value of our estimates, i.e., 1221 g C m−2 year−1. This phenomenon occurs
because the growth area of S. triqueter and Phragmites spp. shows high production in Yancheng
coastal wetland. Therefore, the in situ measurements of vegetation carbon sequestration at these sites
should approximate the maximum value of our estimates. Besides, the estimates of vegetation carbon
sequestration in a Sphagnum bog in Southern Manitoba, Northern Minnesota, and Northwestern
Ontario also support our estimates [62]. Their results revealed that there were wide variations in
vegetation carbon sequestration in wetlands, ranging from 90 to 1943 g C m−2 year−1, of which the
low-level vegetation carbon sequestration was found in depressions (90–310 g C m−2 year−1), and the
high-level values were found in ridges (370–800 g C m−2 year−1). In summary, our estimates are
consistent with the observations in other wetlands of similar climate conditions and within the range
of vegetation carbon sequestration established for herbaceous wetlands in previous studies.

Table 1. Estimates of vegetation carbon sequestration in previous studies.

Species Carbon Sequestration
(g C m−2 yr−1) Region Reference

Mixtures of Phragmites spp.
and Carex spp.

401 ± 172
(regional average)

Poyang Lake wetland EVI time series-based method

Phragmites community 669 ± 134
(regional average)

Carex community 259 ± 140
(regional average)

Phragmites community 745 ± 12
(sample-site value)

Carex community 495 ± 71
(sample-site value)

Scirpus mariqueter 510 (sample-site value) East Chongming wetland Mei and Zhang 2007 [60]

Herba suaedae 504 (sample-site value)

Yancheng coastal wetland Mao et al. 2009 [61]Scirpus triqueter 1330 (sample-site value)

Phragmites spp. 1290 (sample-site value)

4.1.2. Comparison to the Global Vegetation Production Map

To further evaluate our VI time-series-based method, we compared its estimates with those of the
MOD17A3 product (i.e., MOD17A3HGF Version 6 product) [18,19]. The MOD17A3 product is the most
widely used global vegetation production map produced by the Numerical Terradynamic Simulation
Group/University of Montana by using the radiation use efficiency concept [19]. Figure 9 shows the
MOD17A3 estimates in Poyang Lake wetland in 2016. This figure estimated that the vegetation carbon
sequestration yielded a mean of 366 g C m−2 year−1 with a standard deviation of 117 g C m−2 year−1.
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Comparison of the regional average values from the two estimates showed that our estimates were 8.7%
higher than the MOD17A3 estimates. Moreover, the standard deviation of our estimates was 31.9%
higher than that of the MOD17A3 estimates. This result showed that although the regional average
values of the two estimates were similar, the vegetation carbon sequestration along the topographic
gradient shows significant variation in the VI time-series-based image (Figure 8), whereas that
in the MOD17A3 image is difficult to discern (Figure 9). Additionally, another improvement of
our VI time-series-based approach compared to the MOD17A3 product is the much wider spatial
applicability in wetlands. Since we noted that the MOD17A3 product depicted 90% of the vegetated
area by “no data” in the Poyang Lake wetland. Vegetation in these areas sequestered 6.6× 105 t carbon in
2016 according to our estimates, accounting for 91.2–91.5% of the total vegetation carbon sequestration
of the wetland. Hence, we revealed that the MOD17A3 product dramatically underestimated the total
vegetation carbon sequestration of the wetland.
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Figure 9. Vegetation carbon sequestration of Poyang Lake wetland in 2016 estimated by MOD17A3.

The MOD17A3 map has a resolution of 500 m. After resampling our estimate map to 500 m
(by averaging the 250 m pixels in each 500 m pixel), we exhibited a scatter plot to compare the
two estimations pixel-by-pixel (Figure 10a). The most high-density region is near the line of y = x,
revealing a positive correlation between the estimates of the VI time-series-based model and MOD17A3
product. However, the scatter plot also showed that the MOD17A3 estimates underestimated the
vegetation carbon sequestration at midrange and highly productive sites compared with our estimates
(as shown by the Lowess fitting line). This phenomenon occurred because the 500 m MOD17A3 image
smoothened the high values in the highly productive patches less than 0.25 km2 and surrounded by a
mudflat or water surfaces. However, the 250 m map produced by the VI time-series-based method can
successfully capture those high values. At the less productive sites, i.e., the wide land–water transition
area, the MOD17A3 estimates had no values because the algorithm treated this area as perennial inland
fresh water. Actually, the land-water transition area is covered by sparse vegetation and spreads
over a larger area than the dense vegetation area in Poyang Lake wetland. Thus, the histogram
of the MOD17A3 estimates (Figure 10b) was almost in a normal distribution, whereas that of our
estimates (Figure 10c) was deflecting to the left. In summary, the VI time-series-based method could
adequately capture both the coverage and fine spatial details of vegetation carbon sequestration in this
herbaceous wetland.
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4.2. Uncertainty Issues in the VI Time-Series-Based Method

The VI time-series-based method in this study directly estimated the vegetation carbon
sequestration of Poyang Lake wetland from the dynamics of biomass carbon stocks. The finding is
consistent with the results from other similar herbaceous wetlands and the currently used global map
of vegetation production (MOD17A3). However, as mentioned in the Introduction section, the accuracy
of its estimates was inevitably affected by two important factors, namely, the time resolution of the
VI time series and the accuracy of the biomass carbon stock estimate.

For the time resolution of the VI time series, only VI time series at a sufficient number of intervals
can capture all the positive differences in biomass carbon stocks across different times because as plants
grow, litter biomass carbon stocks fluctuate frequently. To date, satellite remote sensing has provided
abundant high-frequency observations to monitor biomass carbon stocks. However, the VI time series
of higher frequency need more ground reference data to retrieve, which are often restricted by the
cost and complexity of field works, especially for large wetlands such as the Poyang Lake wetland.
Thus, the ideal monitoring frequency of biomass carbon stocks for estimating annual vegetation carbon
sequestration should correspond to the growth cycle of vegetation, thus it can capture all the important
phenological changes of plants. In our studies, the time interval of the MODIS gridded vegetation
indices product MOD13Q1 was 16 days, capturing the general seasonal variations in biomass carbon
stocks in this region. We did not try the VI time series of other frequencies, such as the weekly or
monthly VI time series. Through the deepened understanding of the details of vegetation phenology
changes in the region, an appropriate temporal resolution of the VI time series may be proposed to
make the VI time-series-based method more accurate and efficient than it was in this study.

The accuracy of the biomass carbon stock estimate in this study was also limited by many factors.
For example, we only used the survey data during September, October, November, and December to
simulate the relationship between EVI and the field-observed biomass carbon stocks. The effects of the
lack of a sample in other months when field data are unavailable were difficult to avoid. Although
we applied strict preprocessing to improve the temporal consistency of the EVI time series to make
up for this defect, the accuracy of the biomass carbon stock estimation and the performance of the
VI time series-based method could be improved when the survey data become abundant. Moreover,
the high density of vegetation in this herbaceous wetland presents a challenge for estimating biomass
carbon stocks accurately by remote sensing. In fact, the saturation problem associated with the use
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of VIs calculated from broad band sensors for biomass carbon estimation in high canopy density
vegetation is a well-known phenomenon due to the asymmetrical nature of the relationship between
biomass carbon stock and vegetation indices calculated from medium spatial resolution (10–100 m)
multispectral sensors by using NIR and red bands [28,34]. Therefore, the model for biomass carbon
stock estimation used in this study possibly underestimates the biomass carbon stocks at high observed
values. This condition explains why the errors were associated with extremely high biomass carbon
stock values in Figures 5 and 6. In recent studies, narrow band vegetation indices from hyperspectral
data or WorldView-2 (eight bands including red edge band and 2 m spatial resolution) are increasingly
utilized to estimate biomass carbon with high canopy density [35,36]. This condition enables the
accurate estimation of the biomass carbon stock at full canopy cover compared with the standard
red/NIR indices [34]. However, their applications will greatly increase the cost of the biomass carbon
stock estimate in the widespread Poyang Lake wetland. We believe that when this technology is widely
used, the costs will be reduced, the reflectance saturation problem will be minimized and the accuracy
of biomass carbon stock estimate will improve. Consequently, the VI time-series-based method for
annual vegetation carbon sequestration will also improve.

In summary, we revealed that the VI time-series-based method is a practical approach for
estimating vegetation carbon sequestration in herbaceous wetlands. Importantly, the method shows
great application potential with continuous improvements of frequency of satellite VI images and their
ability of retrieving biomass carbon stocks.

5. Conclusions

Estimating the large-scale vegetation carbon sequestration in a herbaceous wetland via the satellite
data-driven ecophysiological process models is a great challenge because ecophysiological processes
in these environments are complex and changeable. Basing on the cumulative composite of biomass
carbon stocks, we described herein a simple but intuitive VI time-series-based approach to estimate
the vegetation carbon sequestration in herbaceous wetlands. By applying the VI time-series-based
method to a 16 day MODIS EVI product in Poyang Lake wetland in 2016, we reached the following
conclusions: (1) The vegetation carbon sequestration of Poyang Lake wetland during 2016 was
in the range of 193–1221 g C m−2 year−1 with a mean of 401 g C m−2 year−1 and a standard
deviation of 172 g C m−2 year−1. (2) The estimations from our VI time-series-based method were
close to those obtained for two other wetlands with a similar latitude to our study area and were
consistent with the current global maps of vegetation production (MOD17A3) in this area. Moreover,
our VI time-series-based method allows estimates in extensive vegetated areas depicted by ‘no data’ in
the MOD17A3 product, which substantially reduced the uncertainty of vegetation carbon sequestration
estimate in the Poyang Lake wetland. This study revealed that a high frequency, high-quality VI time
series could be used to estimate the carbon sequestration of plants in herbaceous wetlands.
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