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Abstract: The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission
with the MIRAS (Microwave Imaging Radiometer using Aperture Synthesis) L-band radiometer
provides global soil moisture (SM) data. SM data and products from remote sensing are relatively new,
but they are providing significant observations for weather forecasting, water resources management,
agriculture, land surface, and climate models assessment, etc. However, the accuracy of satellite
measurements is still subject to error from the retrieval algorithms and vegetation cover. Therefore,
the validation of satellite measurements is crucial to understand the quality of retrieval products.
The objectives of this study, precisely framed within this mission, are (i) validation of the SMOS
Level 1C Brightness Temperature (TBSMOS) products in comparison with simulated products from
the L-MEB model (TBL-MEB) and (ii) validation of the SMOS Level 2 SM (SMSMOS) products against
ground-based measurements at 10 significant Iranian agrometeorological stations. The validations
were performed for the period of January 2012 to May 2015 over the Southwest and West of Iran.
The results of the validation analysis showed an RMSE ranging between 9 to 13 K and a strong
correlation (R = 0.61–0.84) between TBSMOS and TBL-MEB at all stations. The bias values (0.1 to 7.5 K)
showed a slight overestimation for TBSMOS at most of the stations. The results of SMSMOS validation
indicated a high agreement (RMSE = 0.046–0.079 m3 m−3 and R = 0.65–0.84) between the satellite SM
and in situ measurements over all the stations. The findings of this research indicated that SMSMOS

shows high accuracy and agreement with in situ measurements which validate its potential. Due to
the limitation of SM measurements in Iran, the SMOS products can be used in different scientific and
practical applications at different Iranian study areas.

Keywords: passive microwave; L-band radiometry; SMOS; brightness temperature; soil moisture;
validation; Iranian in situ soil moisture

1. Introduction

Surface soil moisture is one of the most significant quantities in the hydrological cycle [1]. It plays
a key role in scientific and practical applications such as hydrological modeling [2], numerical weather
forecasting [3], flood forecasting [4], drought monitoring [5], water resources management [6],
land surface, and climate models assessment, etc. [7] at the local and regional scales. Surface soil moisture
is highly variable in space and time [8] due to the spatial heterogeneity of soil properties, topography,
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rainfall, evapotranspiration [9], and vegetation characteristics. However, direct measurements of
ground-based soil moisture are only available at point scale, and measuring this parameter at large
scales is significantly costly, time-consuming and, consequently, sparse in most regions. Therefore,
these measurements are not practicable for long periods and over wide areas [10].

In recent years, this issue has been overcome using microwave satellite sensors, both active
and passive, onboard operational satellites, for measuring soil moisture in different environmental
conditions under various vegetation covers [11,12]. L-band (1–2 GHz) microwave radiometry is
the most suitable approach to retrieve surface soil moisture [1,13] because it is very sensitive to soil
moisture sensing. L-band has a lower atmospheric attenuation and an increased transmissivity in
vegetation than higher microwave frequencies (C and X-band) [13–15]. Another important advantage
of soil moisture retrievals at L-band is that the microwave emission originates from deeper in the soil
(~5 cm). In contrast, C-band and X-band emission originates from the top 1 cm or less of the soil [13].
The Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the Global Change Observation
Mission (GCOM)-W1 satellite was launched in May 2012 by the Japan Aerospace Exploration Agency
(JAXA) to provide soil moisture at C-band and X-band with grid resolutions of 10 km and 25 km [16,17].
The Advanced Scatterometer (ASCAT) is a C-band (5.255 GHz) active microwave remote sensing
instrument onboard the Meteorological Operational (METOP) satellite series to provide global soil
moisture data sets with a spatial resolution of 25 or 50 km [18]. Synthetic aperture radar (SAR) provides
medium to high resolution mapping of soil moisture in all weather conditions. Sentinel-1 mission
provides SAR data at C-band that can be used to retrieve and map temporal changes of soil moisture
underneath vegetation cover [12,19,20].

The European Space Agency (ESA) and the National Aeronautics and Space Administration
(NASA) have developed respective L-band spaceborne missions to monitor global surface soil moisture
over land surfaces that are now operational. NASA launched the Soil Moisture Active Passive
(SMAP) satellite in January 2015 carrying an L-band radar (1.26 GHz) and a passive radiometer
(1.41 GHz) to provide global monitoring of soil moisture and freeze/thaw [13]. However, the radar
instrument stopped working on 7 July 2015 and the SMAP mission continues with its radiometer
instrument [21]. Sentinel-1A/Sentinel-1B SAR data was found most suitable for combining with the
SMAP radiometer data thanks to its nearly similar orbit configuration, thus allowing overlapping of
their swaths with a minimal time difference, a key feature/requirement for the SMAP active-passive
algorithm, and being able to obtaining disaggregated brightness temperature, and thus soil moisture
at a much finer spatial resolution of 3 km and 1 km at global extent [22]. Previously, in November 2009,
ESA had launched the Soil Moisture and Ocean Salinity (SMOS) satellite carrying the first L-band
(1.4 GHz) radiometer to provide global soil moisture data over land surfaces and ocean salinity over the
oceans [15]. A new innovation of SMOS is the Microwave Imaging Radiometer by Aperture Synthesis
(MIRAS) sensor—that is, an L-band 2-D passive microwave interferometry radiometer to provide
multi-angular and full polarization brightness temperature measurements with an average ground
resolution of 43 km over the field of view (35 km at center of field of view) [23]. The SMOS Level 2
soil moisture algorithm was developed to retrieve soil moisture values (Level 2 SM products) from
multi-angular brightness temperature (Level 1C products) with an accuracy of 0.04 m3 m−3 every
three days [15,23]. Thus, the validation of SMOS products is very important to determine the accuracy
and the quality of retrievals before being used for different applications. Several recent studies have
validated SMOS products in comparison to ground-based in situ observations at a global scale [24–29]
and over local and regional scales such as Canada [30,31], the United States [32–37], Europe [37–44],
Africa [42,45], and Australia [17,46], and some research has been carried out in Asia such as over the
Tibetan Plateau [47,48], Pakistan [49], and China [50,51] that represents the accuracy and the quality of
SMOS products. However, very few calibration and validation activities have been done for SMOS
products in Iran.

Due to the limited water resources in Iran, there is always a problem of agricultural water supply in
most regions. Therefore, availability of regional soil moisture data is essential for the purpose of water
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resources management, hydrological modeling, and monitoring of droughts. However, in situ soil
moisture measurements are currently and operationally taken at only a few agrometeorological stations
over Iran, and only for short and discontinuous periods. Due to the scarcity of ground-based soil
moisture measurements and scattered agrometeorological stations, the SMOS soil moisture products
can be used for different applications. Therefore, the objectives of this research are:

(i) Validation of the SMOS Level 1C Brightness Temperature data products in comparison with the
simulated brightness temperature data using of a radiative transfer model (L-MEB model) [52].

(ii) Validation of the SMOS Level 2 Soil Moisture data products through a comparison with
ground-based in situ soil moisture measurements at agrometeorological stations.

These validations were carried out for the period from January 2012 to May 2015 over the
Southwest and West of Iran.

2. Materials and Methods

2.1. Study Area

The study area is located in the West and Southwest of Iran within latitude from 28◦20′ to 35◦15′ N,
and longitude from 46◦20′ to 54◦30′ E. The West and Southwest of Iran is one of the most important
agricultural areas of the country, through which Iran’s longest river, the Karun River, flows and in
which the largest storage dams and numerous modern irrigation networks are located [53].

The study area can be basically divided into two regions: plane lands and mountainous regions.
This region includes 10 agrometeorological stations from the Islamic Republic of Iran Meteorological
Organization (IRIMO) which monitors soil moisture data and other climate parameters. In the whole
study area, the elevation ranges from about sea level (27 m) to the highest point at about 5770 m.
The mean elevation of the selected stations is 1314 m above sea level (m.a.s.l.). In most climate
classifications, Iran is generally considered as a semidry or even as a dry country. So, although different
stations are located in different climatic areas, the general climate could be considered as semiarid.
The geographic coordinates and location of these stations are shown in Figure 1 and Table 1, respectively.
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Table 1. Geographical coordinates of agrometeorological stations.

Station Code Station Name Latitude (◦N) Longitude (◦E) Altitude (m.a.s.l)

S1 Ahvaz 31◦18′0” N 48◦36′0” E 12
S2 Darab 28◦48′0” N 54◦17′60” E 1098
S3 Jahrom 28◦30′0” N 53◦30′0” E 1082
S4 Zarqan 29◦48′0” N 52◦42′0” E 1596
S5 Farokhshahr 32◦17′60” N 50◦53′60” E 2085
S6 Najafabad 32◦36′0” N 51◦23′60” E 1636
S7 Silakhur 33◦42′0” N 48◦53′60” E 1497
S8 Sarableh 33◦47′60” N 46◦36′0” E 1045
S9 Sararud 34◦17′60” N 47◦17′60” E 1362
S10 Ekbatan 34◦53′60” N 48◦36′0” E 1730

2.2. Ground-Based In Situ Measurements

The International Soil Moisture Network (ISMN) is a centralized data hosting facility that collects
and harmonizes in situ soil moisture measurements from various operational networks around the
world. The ISMN is an important data base to validate and develop satellite-based soil moisture
retrievals [54]. Unfortunately, a significant problem is the limited in situ soil moisture measurements
and the absence of ISMN stations in Iran. In this research, to validate the SMOS brightness temperatures
and soil moisture observations against ground-based observations, 10 IRIMO agrometeorological
stations were used that included measurements of the following parameters: effective soil and
vegetation temperatures (air temperature or canopy temperature measured at 5 cm above soil surface
level (◦C), soil temperature at depths 5 and 50 cm (◦C), soil moisture at depth 5 cm (m3 m−3), soil texture,
soil bulk density (g cm−3), etc.

IRIMO is under the direction of the World Meteorological Organization (WMO) and subject
to its rules and standards. The implementation of the WMO Integrated Global Observing System
(WIGOS) relies on the standardization of meteorological and related observations, aiming at uniformity
in the practices and procedures employed worldwide and at better accuracy of the observations.
WMO prescribes that certain quality control procedures must be applied to all meteorological data and
at all stations. Based on WMO standards, IRIMO has applied the data quality control procedures for all
agrometeorological stations. All instrumental errors are reported, and related observations have been
omitted from the specific station report. Therefore, we used the ground-based in situ observations
after IRIMO’s quality control protocol and procedures.

IRIMO has two types of agrometeorological stations including automatic and traditional stations.
Time domain reflectometry (TDR) sensors are used to measure soil moisture (at depths 5, 10, 20, 30,
50, 70, and 100 cm) on a daily scale at the agrometeorological automatic stations with an accuracy
of 1% volume. Gravimetric techniques are used to measure soil moisture (at depths 5, 10, 20, 30, 50,
70, and 100 cm) on a weekly basis (two or three times) at the traditional agrometeorological stations
with an accuracy of 1 mg in weight; the SM sample unit was then transformed from gravimetric
(mg mg−1) to volumetric (m3 m−3). In situ measurements from traditional and automatic stations
were used to validate the SMOS product. The difference between in situ observations from traditional
and automatic stations depends on the accuracy of the measurement method and of the instruments.
The characteristics and land cover of the selected stations are shown in Table 2.
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Table 2. Characteristics and land cover of agrometeorological stations.

Station
Code Station Name Station Type SM Type Texture Cover Type Soil Bulk

Density

S1 Ahvaz Automatic Volumetric Silty-Clay Desert 1.3
S2 Darab Automatic Volumetric Clay-Loam Grassland 1.6
S3 Jahrom Automatic Volumetric Clay-Loam Grassland 1.4
S4 Zarqan Traditional Gravimetric Clay-Loam Grassland 1.6
S5 Farokhshahr Automatic Volumetric Silt Grassland 1.4
S6 Najafabad Automatic Volumetric Sandy-Clay-Loam Grassland 1.5
S7 Silakhur Automatic Volumetric Silt-Loam Grassland 1.2
S8 Sarableh Traditional Gravimetric Sandy-Clay-Loam Grassland 1.6
S9 Sararud Traditional Gravimetric Clay-Loam Grassland 1.3

S10 Ekbatan Traditional Gravimetric Sandy- Clay Grassland 1.4

2.3. SMOS Satellite and Products

SMOS is the ESA second Earth Explorer opportunity mission developed as part of ESA’s Living
Planet Program and it is the first space mission specifically dedicated to measuring global soil moisture
over land surfaces [1,23]. The SMOS radiometer measures the radiation emitted from the earth’s
surface at the L-band frequency (1.4 GHz). The emissivity at L-band is related to the moisture content
in the first few centimeters of soil (typically 5 cm). The 2-D interferometric radiometer is a Y-shaped
instrument with three 4.5 m arms which consist of 69 elementary antennas along the arms to measure
brightness temperature (TB) at incidence angles between 0◦ to 60◦ and for dual or full polarization.
The SMOS satellite has a polar sun-synchronous orbit with ascending overpass time at 06:00 and
descending overpass time at 18:00 local solar time at the equator, and a mean altitude of 758 km from
the Earth [1,15,23].

SMOS satellite data products are generated in several levels: ESA produces data products Level 0
to Level 2, and data products from Level 3 to Level 4 are generated by CNES (Centre National
d’Etudes Spatiales, France) and CDTI (Centro para el Desarrollo Tecnológico Industrial, Spain) [1,23,55].
SMOS Level 1C and Level 2 SM products are organized in the Discrete Global Grid (DGG) system
which is the ISEA 4H9 grid (quasi equal-area cells all around the globe) with equally spaced nodes at
14.989 km [23].

The SMOS Level 1C Full Polarization Land Science measurements product (MIR_SCLF1C) is
organized in the DGG system and each point contains several TBs at the top of the atmosphere (in the
reference frame of the SMOS antenna) and associated geophysical parameters for each grid points [56].
The SMOS Level 2 Soil Moisture User Data Product (MIR_SMUDP2) contains retrieved soil moisture,
optical thickness, physical temperature, TB computed at 42.5◦, and dielectric constants [57]. In this
research, we evaluated the SMOS Level 1C Brightness Temperature (TBSMOS) and Level 2 Soil Moisture
(SMSMOS) from SMOS MIR_SCLF1C and SMOS MIR_SMUDP2 products, respectively. The version of
products used in this study is V620, in Earth Explorer format, with an oversampled resolution of about
15 km.

2.4. The SMOS Level 2 SM Algorithm

The SMOS Level 2 SM algorithm is an operational algorithm to produce soil moisture maps.
This algorithm is based on an iterative approach which minimizes a cost function computed from the
root mean square difference between SMOS observed TBs (Level 1C products) data at the antenna
level and modeled TBs data by L-MEB radiative transfer model over a range of incidence angles.
The soil moisture (Level 2 SM products), vegetation optical thickness and other geophysical variables
are iteratively retrieved by using the algorithm for each node of DGG [23,52,58].

Validation of satellite remote sensing products is very important, specifically for the SMOS mission
due to the unique features of this satellite [33]. So, in the present study, two algorithms were used
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for the validation of TB SMOS and SM SMOS from MIR_SCLF1C and MIR_SMUDP2 data products,
respectively. In the following, the methodology used in these algorithms is explained in detail.

2.4.1. L-MEB Radiative Transfer Model Formulation

The L-MEB (L-band Microwave Emission of the Biosphere) model is a forward model in the
SMOS L2 algorithm which has been specifically developed to simulate L-band microwave emission
over land surfaces. The L-MEB is the result of comprehensive studies of modeling approaches of
passive microwave emission from different land cover types, which is accurate and simple enough for
operational use at global scale; therefore, L-MEB is the main reference model to simulate brightness
temperature. The L-MEB model is based on a zero-order radiative transfer equation (τ-ωmodel) in
which the main equation of L-MEB is as follows [59,60]:

TB(θ, P) = esTsγ+ (1−ω)(1− γ)Tc + (1−ω)(1− γ)Tc(1− es)γ (1)

where TB is the total TB that depends on the incidence angle (θ) and polarization (P). TB is obtained
from the sum of three terms: (1) the soil emission, (2) the direct canopy emission, and (3) the canopy
emission reflected by the soil back through the canopy. In this equation, the subscript ‘s’ refers to soil
and ‘c’ indicates the canopy. The variable T is the thermodynamic temperature, e is the emissivity,ω is
the single scattering albedo of the canopy and γ represents the canopy transmissivity [60].

A pixel of SMOS with the spatial resolution of 43 km over the field of view contains different
surface types and so the TB in the L-MEB model is the sum of various classes of emitters [55,56]. In this
research, the cover type of selected stations is mainly low vegetation (grassland) and bare soil (desert);
in the following, the details of emission from low vegetation and bare soil are presented.

2.4.2. Bare Soil Radiometric Modeling

The brightness temperature of bare soils (TBGP) is a function of soil emissivity (eGP) and of effective
soil temperature (TG) as [57]:

TBGP(θ) = eGP(θ).TG (2)

where the subscript ‘P’ represents polarization (vertical or horizontal), ‘G’ represents Ground and ‘θ’ is
the incidence angle relative to the nadir. eGP is obtained from soil reflectivity (ΓGP) [57]:

eGP(θ) = 1− ΓGP(θ) (3)

ΓGP can be calculated from the Fresnel coefficients as a function of the incidence angle (θ) and the
effective soil dielectric constant for smooth soil surfaces. The effective soil dielectric constant is
computed by dielectric mixing models with main input parameters such as soil moisture (m3m−3),
effective soil temperature (TG, K) and soil properties. More details about dielectric models are described
in [52,57]. TG is generally assumed to be independent of polarization and is computed by the following
formulation [23,58]:

TG = Tsoil_depth + Ct
(
Tsoil−surf − Tsoil_depth

)
(4)

where Tsoil_depth is the deep soil temperature (50 to 100 cm), Tsoil_surf is the surface soil temperature
(0 to 5 cm), and the Ct parameter which depends on the frequency band and soil moisture
(Ct = 0.246 at L band).

2.4.3. Low Vegetation Radiometric Modeling

The SMOS mission uses the τ−ωmodel to account for the effects of vegetation which attenuate
soil emission and contribute to the emitted radiation. This model uses vegetation optical depth (τP)
and single scattering albedo (ωP) to parameterize vegetation attenuation properties and scattering
effects within the canopy layer, respectively [23,25,57]. In the τ−ωmodel, Wigneron et al. [52] assumed
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thatωP is equal to zero and the effective soil and vegetation temperatures are equal (TG = Tc = TGC)
and they presented a simple model to compute the radiative effects of vegetation at L-band as [57]:

TBP =
(
1− γp

2 ΓGP

)
TGC (5)

where TGC is the effective ground–canopy temperature, ΓGP is soil reflectivity, and γP is the vegetation
transmissivity which can be computed from τp and the incidence angle (θ) as [57]:

γP = exp(−τp / cos θ) (6)

2.5. Validation of SMOS Brightness Temperature and Soil Moisture Data

In this study, we developed two algorithms based on the L-MEB model to validate TBSMOS and
SMSMOS data. The details are as follows.

2.5.1. Validation of TBSMOS Data

Validation of TBSMOS data from MIR_SCLF1C products in the horizontal (H) and vertical (V)
polarizations was done through a comparison with simulated TBs data obtained from the L-MEB
model [52]. The flow chart of the TBSMOS data validation procedure is shown in Figure 2 and, in the
following, details of modeling TBs and validation steps are described. The TBSMOS data was filtered
and data with RFI was removed from the analysis. We used SMOS data quality information from ESA
Earth Online webpage https://earth.esa.int/web/guest/-/data-quality-7059. To collocate satellite data
with ground-based measurements, collocation between the SMOS MIR_SCLF1C data and implied
stations was done in space and time. In this study, the time difference between in situ ground-based
data and satellite data was considered less than 2 h, and the distance difference between satellite data
and stations was considered less than 10 km. For that, the TBSMOS data was selected being nearest to
the geographic location of the corresponding stations.

The L-MEB model simulates TBs for various incidence angles using geophysical variables (such as
soil moisture, soil temperature, and canopy temperature), soil texture properties, and the radiative
transfer parameters. L-MEB simulates L-band surface TBs at the top of atmosphere (TOA) in the Earth
reference frame [61]. In this context, Wigneron et al. [52] have developed various terms of the L-MEB
equation (Equation (1)) as an algorithm (L-MEB functions) for practical application of modeling TBs in
H and V polarizations at incidence angles 0◦ to 60◦, and being Dobson’s, the dielectric mixing model
which was used in this work.

Generally, the signal of the microwave sensors is affected by the incidence angle; the sensitivity to
soil moisture decreases as incidence angle increases. In addition, the attenuation of vegetation and the
effect of surface roughness are minimized at lower incidence angles. Therefore, lower incidence angles
are optimal for sensing soil moisture [56,62]. In this study, based on the principle described above
and in order to increase the accuracy of modeling brightness temperature, the L-MEB functions were
particularized to simulate TBs only at lowest incidence angles. The ground-based in situ measurements
(such as air temperature or canopy temperature measured at 5 cm above soil surface level (K);
soil temperature at depths 5 and 50 cm (K); soil moisture at depth 5 cm (m3 m−3); soil properties
collected from IRIMO stations; and the lowest incidence angles extracted from MIR_SCLF1C products
were used as input values for modeling brightness temperature.

In this study, the main limitations in the current application of L-MEB model were related to the
assumptions for the vegetation structural parameters related to vegetation optical depth and to soil
roughness. For both sets of parameters, we accepted the default values assumed in the L-MEB model.

As mentioned above, the L-MEB model provides TB simulations at the TOA in the Earth reference
frame (H/V polarization) whereas the SMOS MIR_SCLF1C products contain TB observations at the
TOA in the antenna polarization reference frame (X/Y polarization). In order to compare the satellite
TBs and simulated TBs data sets, TBSMOS data sets were transformed from the antenna reference frame

https://earth.esa.int/web/guest/-/data-quality-7059
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(TBx SMOS, TBy SMOS) to the Earth’s surface reference frame (TBH SMOS, TBV SMOS) by using an algorithm
(XY2HV) [63] developed by CESBIO (Centre d’Etudes Spatiales de la BIOsphére) team and geometric
and Faraday rotations data from SMOS MIR_SCLF1C products.
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2.5.2. Validation Algorithm for SMSMOS Data

In this the model, the validation of the SMOS soil moisture retrieval data (MIR_SMUDP2 products)
was conducted based on comparisons with the ground-based soil moisture measurements. The flow
chart of the validation algorithm for SMSMOS data is shown in Figure 3. The SMOS satellite provides
global surface soil moisture at a depth of about 0–5 cm [15] and in volumetric units (m3 m−3). Therefore,
in order to validate the satellite data, in situ volumetric soil moisture measurements (m3 m−3) collected
from all agrometeorological stations were used.

In some cases, during active or following recent rainfall events, the SMOS soil moisture retrieval
algorithm tends to overestimate soil moisture as relative to ground measurements, which is related to
the contributing depth of the SMOS satellite sensor [30,33]. The temporal variation of soil moisture is
between 0.30 and 0.23 m3 m−3 at the first 100 mm soil depth, which soil moisture generally decreased
due to evaporation and redistribution at this depth. At a depth of 300 mm, soil moisture varied
between 0.50 and 0.47 m3 m−3. This small change in soil moisture could be due to the high clay content
of the soil or the fact that there were no plant roots to extract the soil water. At a depth of 600 mm,
soil has less soil moisture than at shallow depths since the applied water did not reach this depth.
The soil moisture is constant at around 0.21 m3 m−3 a depth of 600 mm [64]. According to the field and
laboratory analysis of [64] it should be accepted that SM values should be lower than 0.5 m3 m−3 and,
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therefore, all SM values above 0.5 m3 m−3 should be excluded. Consequently, in this study, in order
to increase the accuracy of the SMOS validation data, if rainfall occurred at the station during a day,
the corresponding soil moisture measurements were excluded from the analysis. Examination of SM
measurements showed that the SM values were below 0.5 m3 m−3 at all stations after excluding data
related to the rainfall days.

In the SMSMOS validation algorithm, the collocation of SMOS MIR_SMUDP2 data with stations
was done. Again, the SMOS data was selected based on close geographic proximity to the stations and
close temporal proximity to the time measurements at the stations.
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2.6. Evaluation Methods

To evaluate TBSMOS and SMSMOS data in comparison with simulated TBs from the L-MEB model
(TBL-MEB) and ground-based in situ soil moisture (SMIn situ) data, respectively, four statistical metrics
were used. The root-mean-square error (RMSE, (Equation (7)), the mean bias, (Bias, (Equation (8)),
the standard deviation, (Std, (Equation (9)), and the Pearson correlation coefficient, (R, (Equation (10)),
as follows [14]:
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where Si is the SMOS satellite data (TBSMOS/SMSMOS); Mi is the simulated or in situ data
(TBL-MEB/SMin situ); N is the total number of observations; σS is the Std of TBSMOS/SMSMOS data;
and σM is the Std of TBL-MEB/SMin situ.

Taylor diagrams have also been used to represent three different statistical metrics: the correlation
coefficient (R), the centered RMSE (cRMSE), and the standard deviation (Std) on two dimensional
plots to graphically describe how closely the satellite data (TBSMOS/SMSMOS) matches the simulated
TBL-MEB/ observed SMin situ.

In a Taylor diagram, the radial distance from the origin is proportional to the Std, the azimuthal
positions indicate the correlation between the satellite data and the observed data, and the cRMSE
between the two data sets is the distance to the point on the x-axis marked as “observed”. The satellite
data that matches the observations data closely will lie nearest the point “observed” on the x-axis.
The R, cRMSE and Std are related by the following Equation [65]:

cRMSE2 = σS
2 + σM

2
− 2σSσMR (11)

3. Results and Discussion

3.1. Validation Results for the SMOS Brightness Temperature

Based on the improved L-MEB model in this study, the simulation of L-band brightness temperature
(TBH L-MEB, TBV L-MEB) was done for each station from January 2012 to May 2015. The final TBSMOS

validation algorithm outputs were the series of TBH L-MEB and TBV L-MEB data with collocated TBH SMOS

and TBV SMOS data from MIR_SCLF1C products at the 10 stations.
The summary of statistical results of the comparison between TBSMOS and TBL-MEB for H and V

polarizations are shown in Tables 3 and 4. The results of Table 3 show that the RMSE values between
the TBH SMOS and TBH L-MEB data varied from 9.17 K to 12.88 K. For the Darab, Ahvaz, and Najafabad
stations, the TBH SMOS data showed the lowest RMSE values, but for the Farokhshahr and Ekbatan
stations, the TBH SMOS data have the highest RMSE values.

The results in Table 4 indicate that the RMSE values of 9.68 K to 12.91 K were found between
the TBV SMOS and TBV L-MEB data. The lowest RMSE values of the TBV SMOS data are found over the
Ahvaz, Darab, and Najafabad stations, whereas the TBV SMOS data showed the highest RMSE values
over the Sarableh, Farokhshahr, and Ekbatan stations.

Results of Tables 3 and 4 revealed that the cRMSE values of TBH SMOS data were between 9.10 K
and 11.94 K, and the cRMSE ranging between 9.50 K and 12.38 K were found for the TBV SMOS

data. The positive values of bias in Table 3 indicate a slight overestimation of the TBH SMOS data
for most of the stations (Ahvaz, Darab, Jahrom, Zarqan, Silakhur, Sarableh, Sararud, and Ekbatan),
whereas the TBH SMOS data with the negative values of bias have a slight underestimation over the
Farokhshahr and Najafabad stations. According to the bias values of the TBV SMOS (Table 4), a slight
overestimation is found for the Ahvaz, Darab, Jahrom, Zarqan, Farokhshahr, Sarableh, Sararud,
and Ekbatan stations. The TBV SMOS data with the negative biases have an underestimation over the
Najafabad and Silakhur stations.
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Table 3. Statistical results of the TBH SMOS compared to TBH L-MEB at the stations.

Station
Code

Station
Name

RMSE (K) cRMSE (K) Bias (K) R
Standard Deviation (K)

TBH SMOS TBH L-MEB

S1 Ahvaz 9.61 9.35 1.42 0.81 16 12
S2 Darab 9.17 9.1 0.10 0.76 15 11
S3 Jahrom 10.39 10.33 1.16 0.79 18 15
S4 Zarqan 11.95 11.73 3.83 0.79 17 10
S5 Farokhshahr 12.32 11.45 −2.16 0.61 15 11
S6 Najafabad 9.95 9.76 −2.02 0.81 18 15
S7 Silakhur 10.85 10.76 1.46 0.69 16 11
S8 Sarableh 11.31 11.08 2.40 0.80 16 19
S9 Sararud 11.25 10.55 4.07 0.83 23 21

S10 Ekbatan 12.88 11.94 6.08 0.70 17 12

Table 4. Statistical results of the TBV SMOS compared to TBV L-MEB at the stations.

Station
Code

Station
Name

RMSE (K) cRMSE (K) Bias (K) R
Standard Deviation (K)

TBV SMOS TBV L-MEB

S1 Ahvaz 9.68 9.66 0.35 0.84 19 16
S2 Darab 9.54 9.5 0.08 0.78 16 13
S3 Jahrom 11.45 11.4 0.07 0.74 17 15
S4 Zarqan 10.73 10.17 3.58 0.8 18 15
S5 Farokhshahr 12.66 11.16 5.45 0.72 20 14
S6 Najafabad 9.71 9.73 -2.68 0.82 18 16
S7 Silakhur 11.36 10.99 -2.98 0.65 16 9
S8 Sarableh 12.63 12.38 2.65 0.83 21 24
S9 Sararud 11.9 10.36 6.11 0.8 20 23

S10 Ekbatan 12.91 11.76 7.45 0.75 20 14

Figure 4 shows the result of the comparison between TBSMOS and TBL-MEB values (both H and V
polarizations) for Ahvaz station (as an example of station with the highest agreement) in the form of
a scatterplot.
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Figure 4. The scatterplots of the TBSMOS against the TBL-MEB for Ahvaz station. The left plot for H
polarization and right plot for V polarization.

The Taylor diagram provides a good way of graphically summarizing the closely matching
patterns in terms of R, cRMSE, and their Std [65]. The Taylor diagrams in Figures 5 and 6 illustrate
the statistics for the comparison between the SMOS TBs and Simulated TBs data sets for H and V
polarizations for all 10 stations. These diagrams reveal the strong correlation between the TBH SMOS
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and TBH L-MEB (R = 0.61–0.83), and between the TBV SMOS and TBV L-MEB (R = 0.65–0.84) data sets over
all stations.

The Taylor diagrams in Figure 5 show that the standard deviations of the TBH SMOS data are
close to the TBH L-MEB data at most of the stations (such as Ahvaz, Darab, Jahrom, Farokhshahr,
Najafabad, Sarableh, and Sararud) which indicates the same amplitude of variations. Additionally,
based on the standard deviation values shown in Figure 6, the TBV SMOS data have very similar
spatial variability with the TBV L-MEB data at the Ahvaz, Darab, Jahrom, Zarqan, Najafabad, Sarableh,
and Sararud stations.
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3.2. Validation Results for SMOS Soil Moisture

The validation of SMOS L2 soil moisture retrievals (MIR_SMUDP2 products) was done through
a comparison with ground-based in situ measurements collected at the stations using the SMSMOS

validation algorithm. This algorithm was run for all stations during the 2012–2015 period. The algorithm
outputs were the series of collocated SMOS satellite soil moisture (SMSMOS) data and the ground-based
in situ soil moisture measurements (SMin situ) correspondingly matching spatially and temporally.
Table 5 presents the results of the statistical metrics. RMSE, cRMSE, bias, correlation coefficient,
and standard deviation were used to assess the accuracy of the SMOS soil moisture products over the
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10 stations. The comparison between the satellite soil moisture retrieval data and the ground-based
measurements reveals that the RMSEs were from 0.046 to 0.079 m3 m−3 over the stations. The SMSMOS

data with the lowest RMSE (0.046 m3 m−3) at Ahvaz station is very close to the target accuracy of
the SMOS mission, namely RMSE = 0.04 m3 m−3. For the other stations, the SMSMOS data is highly
accurate and in agreement with SMin situ data. According to the results of cRMSE values shown in
Table 5, the cRMSE ranges of SMSMOS data were between 0.039 to 0.060 m3 m−3. The SMOS products
underestimate soil moisture with a slight negative bias in the Ahvaz, Zarqan, Farokhshahr, Ekbatan,
Sararud, and Sarableh stations, whereas SMOS products have a slight overestimation in the Darab,
Jahrom, Najafabad, and Silakhur stations, as it can be seen in Table 5. Over the Ahvaz station with
desert cover (bare soil), SMSMOS data have strong correlation (R = 0.83) with SMin situ data and have
the lowest RMSE (0.046 m3 m−3). However, SMSMOS data over the Sararud and Sarableh stations with
grassland cover have high correlation (R = 0.84, 0.82, respectively) with SMin situ data, while SMSMOS

data have high RMSE over Sarableh (0.079 m3 m−3) and Sararud (0.070 m3 m−3). Figure 7 shows the
result of the comparison between the SMSMOS and SMin situ values for Ahvaz station (as an example of
station with the highest agreement).

Table 5. Statistical results of SM SMOS compared to ground-based SM in situ at the stations.

Station
Code

Station
Name

RMSE
(m3 m−3)

cRMSE
(m3 m−3)

BIAS
(m3 m−3) R

Standard Deviation (m3 m−3)

SM SMOS SM in Situ

S1 Ahvaz 0.046 0.039 −0.026 0.83 0.050 0.026
S2 Darab 0.048 0.046 0.016 0.79 0.047 0.019
S3 Jahrom 0.050 0.048 0.017 0.77 0.048 0.028
S4 Zarqan 0.059 0.050 −0.031 0.80 0.059 0.070
S5 Farokhshahr 0.066 0.060 −0.032 0.67 0.058 0.040
S6 Najafabad 0.049 0.040 0.029 0.75 0.039 0.024
S7 Silakhur 0.053 0.044 0.040 0.65 0.042 0.016
S8 Sarableh 0.079 0.046 −0.095 0.82 0.069 0.088
S9 Sararud 0.070 0.059 −0.072 0.84 0.068 0.098
S10 Ekbatan 0.066 0.056 −0.061 0.77 0.055 0.027
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Figure 7. The scatterplots of SM SMOS against SM in situ for Ahvaz station.

The Taylor diagrams in Figure 8 show the statistical relationship between SMOS soil moisture
and ground-based in situ soil moisture measurements at a depth of 5 cm for the selected stations.
These diagrams show the strong correlation between the SMSMOS data and SMin situ data (R = 0.65–0.84)
at all stations. Based on the standard deviation values shown in the Taylor diagrams (Figure 8),
the pattern variations of SMSMOS data were closed to the ground-based measurements (SMin situ) at
most of the stations. The Taylor diagram of the Ahvaz station shows that SMOS satellite data with the
highest correlation (R = 0.83) and the lowest cRMSE (0.039 m3 m−3) have better agreement with the in
situ pattern than other stations. After Ahvaz, the SMSMOS and SMin situ values have high correlation over
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the Darab, Najafabad, Jahrom, and Zarqan stations (R = 0.79, 0.75, 0.77, and 0.080 m3 m−3, respectively).
In these stations, the SMOS data with the low cRMSE (0.046, 0.040, 0.048, and 0.050 m3 m−3, respectively)
and high accuracy (RMSE = 0.048, 0.049, 0.050, and 0.059 m3 m−3, respectively) are very close to the
SMin situ patterns (Taylor diagrams in Figure 8). The Taylor diagrams for the Ekbatan, Farokhshahr,
and Silakhur stations (Figure 8) show the strong correlation of the SMSMOS and SMin situ data (R = 0.77,
0.67, and 0.65, respectively) and the low cRMSE values (0.056, 0.60, and 0.44 m3 m−3). The SMSMOS

data have a high correlation with the SMin situ data (R = 0.84 and 0.82) over the Sararud and Sarableh
stations but high values of standard deviation and high RMSEs (0.070 and 0.079 m3 m−3) were found
for the SMSMOS data in these stations.

Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 20 

 

Farokhshahr, and Silakhur stations (Figure 8) show the strong correlation of the SMSMOS and SMin situ 

data (R = 0.77, 0.67, and 0.65, respectively) and the low cRMSE values (0.056, 0.60, and 0.44 m3 m−3). 

The SMSMOS data have a high correlation with the SMin situ data (R = 0.84 and 0.82) over the Sararud 

and Sarableh stations but high values of standard deviation and high RMSEs (0.070 and 0.079 m3 m−3) 

were found for the SMSMOS data in these stations. 

 

Figure 8. Taylor diagrams illustrating the statistics of the comparisons between SMSMOS and SMin situ 

data. 
Figure 8. Taylor diagrams illustrating the statistics of the comparisons between SMSMOS and
SMin situ data.



Remote Sens. 2020, 12, 2819 16 of 20

Usually, microwave satellite instruments, such as SMOS, provide global SM retrievals at coarse
spatial resolutions, so that SM products cannot be directly used for hydrological and agricultural
applications at regional and local scales. Surface soil moisture is scale invariant over regimes extending
from a satellite footprint to 100 m, such that this assumption can be used for downscaling satellite SM
products. The resolution of satellite SM products can be increased through the use of scale invariance
properties of soil moisture obtained from hydrologic simulations at hyper-resolutions of less than
100 m [66].

4. Conclusions

For the remote sensing of soil moisture, microwave radiometry at low frequencies (L-band) is the
most suitable approach to retrieve surface soil moisture at global scale. The ESA’s SMOS (Soil Moisture
and Ocean Salinity) satellite is the first space mission to measure global soil moisture over land surfaces
at L-band (1.4 GHz). Validation of SMOS products is crucial to determine the accuracy of retrievals
previously used for different applications. The objective of this paper was to assess the accuracy of
SMOS products (provided by ESA) over the 10 IRIMO stations in the Southwest and West of Iran for
the period 2012 to 2015.

Validation of TBSMOS data from Level 1C products was done through a comparison with the
simulated TBs data obtained from the L-MEB model. The radiative transfer L-MEB model was used
to simulate TBs with horizontal (H) and vertical (V) polarizations at the lowest SMOS incidence
angles over all the stations. The land cover at these stations was either bare soil or low vegetation.
Validation of the SMOS retrieved soil moisture data from Level 2 SM product was conducted based on
comparisons with in situ ground-based measurements.

The results of the validation between the simulated TB and the TBSMOS data sets showed an
RMSE ranging between 9 to 13 K for both H and V polarized channels. The bias ranges between 0.1 to
7.5 K which showed a slight overestimation for the SMOS measurements (both H and V polarizations)
compared with the simulated TB at most of the stations. A strong correlation was found between
the simulated TB values and the TBSMOS values (R = 0.61 to 0.84) at all stations. The results of SMOS
soil moisture validation revealed that the RMSE between the satellite soil moisture retrievals and
ground-based in situ measurements ranges from 0.046 to 0.079 m3 m−3 over the stations. These RMSEs
are close to the SMOS mission target accuracy of 0.04 m3 m−3. The SMSMOS data was in strong
agreement (R = 0.65–0.84) with the in situ soil moisture observations at all stations. According to
the results, the SMSMOS products tend to underestimate the soil moisture values with a slight bias
values ranging from −0.095 m3m−3 to −0.026 over most of the stations. Overall, the findings of this
investigation indicate that the SMSMOS data products are highly accurate and in agreement with in situ
data. Due to the scarce in situ SM measurements in Iran, the SMSMOS products can be used to derive
soil moisture estimations in the Southwest and West of Iran.

In this study, the important challenges were related to scattered agrometeorological stations,
data gaps at the stations, short and discontinuous periods of in situ soil moisture measurements, etc.
IRIMO could join ISMN and provide a continuous database with harmonized in situ soil moisture time
series from agrometeorological stations over Iran. It will be a very valuable database for the validation
of satellite soil moisture products over Iran making this available to all users. The analysis of satellite
data could also help to propose IRIMO new agrometeorological stations in unobserved areas where
the satellite shows significant SM variations.
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