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Abstract: Digital elevation models (DEMs) are the most obvious data sources in landslide susceptibility
assessment. Many landslide casual factors are often generated from DEMs. Most studies on landslide
susceptibility assessments rely on freely available DEMs. However, very little is known about
the performance of different DEMs with varying spatial resolutions on the accurate assessment of
landslide susceptibility. This study compared the performance of four different DEMs including
30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital
Elevation Model (GDEM), 30–90 m Shuttle Radar Topographic Mission (SRTM), 12.5 m Advanced
Land Observation Satellite (ALOS) Phased Array Type L band Synthetic Aperture Radar (PALSAR),
and 25 m Survey of Bangladesh (SOB) DEM in landslide susceptibility assessment in the Rangamati
district in Bangladesh. This study used three different landslide susceptibility assessment techniques:
modified frequency ratio (bivariate model), logistic regression (multivariate model), and random
forest (machine-learning model). This study explored two scenarios of landslide susceptibility
assessment: using only DEM-derived causal factors and using both DEM-derived factors as well
as other common factors. The success and prediction rate curves indicate that the SRTM DEM
provides the highest accuracies for the bivariate model in both scenarios. Results also reveal that
the ALOS PALSAR DEM shows the best performance in landslide susceptibility mapping using
the logistics regression and the random forest models. A relatively finer resolution DEM, the SOB
DEM, shows the lowest accuracies compared to other DEMs for all models and scenarios. It can
also be noted that the performance of all DEMs except the SOB DEM is close (72%–84%) considering
the success and prediction accuracies. Therefore, anyone of the three global DEMs: ASTER, SRTM,
and ALOS PALSAR can be used for landslide susceptibility mapping in the study area.

Keywords: landslide susceptibility; Bangladesh; digital elevation model; random forest; modified
frequency ratio; logistic regression

1. Introduction

Local terrain conditions, including terrain relief, hydrology, geology, and land use, are crucial for
the assessment of landslide susceptibility [1]. These local features are often termed as “causal factors” [2].
Identifying these causal factors is considered as the steppingstone of landslide susceptibility assessment.
Landslide susceptibility represents the likelihood of landslide occurrence in an area. It assumes
that future landslides may occur in previous landslide locations where the causal factors already
created conducive environments for triggering landslides [2–4]. Several natural and anthropogenic
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factors can trigger landslides, thus called ”triggering factors,” such as volcanic activity, groundwater
excavation, prolonged rainfall, rapid snow melting, hill cutting, deforestation, land-use change,
etc. [5–8]. Moreover, landslide susceptibility assessment relies on the characteristics of landslide
inventory—a detailed register of distribution and characteristics of past landslides [9,10]. Therefore,
the success of landslide susceptibility assessment largely depends on the selection of causal factors and
the quality of landslide inventories.

Landslide susceptibility can be assessed qualitatively or quantitatively [11]. Qualitative approaches
of landslide susceptibility assessment are based on experts’ judgments on causal factors. However,
the mathematical relationships between landslide locations and casual factors are utilized in quantitative
approaches [6]. Frequently, mixed methods and semi-quantitative methods are adopted to process
experts’ opinions in qualitative assessments. The widely-used methods in this domain are the analytical
hierarchy process (AHP) [12], fuzzy logic [13], and GIS-based AHP [14]. In bivariate techniques,
each causal factor is divided into a set of classes, and landslide locations are compared with each class.
Thus, the bivariate relationship is established between landslide occurrence and one factor-class at a
time [4]. The commonly used bivariate methods are frequency ratio, the weight of evidence, fuzzy logic,
evidential belief function, and statistical index [3,15]. In contrast, the multivariate statistical methods
determine the relationship between landslide occurrence and multiple causal factors. Examples of
multivariate methods are logistic regression, adaptive regression spline, general additive models,
and simple decision trees [16].

One of the limitations of bivariate and multivariate models is that they are constrained by
normality and collinearity assumptions. Compared to these models, machine learning-based models
are relatively less limited by these assumptions [17] and, therefore, can consider the nonlinear nature
of landslides [18]. Some argue that machine learning-based models such as the random forest, gradient
boosting, and support vector machines often outperform both bivariate and multivariate statistical
models [19,20]. While the selection of methods is essential, landslide susceptibility assessment also
depends on the types and quality of causal factors, mapping unit, and the scale of investigation [21].
Many causal factors are often derived from analyzing satellite imageries and topographic models,
including land cover, elevation, slope, aspect, and hill cut [7]. Thus, these derived causal factors are
often impacted by the spatial resolution of sources, geometric error, and instrument or sensor type.
In landslide susceptibility mapping, digital elevation models (DEMs) often replace topographic maps to
derive the most important causal factors (e.g., slope, topography, aspect). Moreover, many developing
countries may not have topographic maps. Thus, landslide studies from these countries usually rely
on the free of charge DEMs derived from remote sensors.

DEM is the digital representation of the earth’s surface. It is widely used in various research
areas in which topography plays an important role, such as hydrological modeling, geomorphological
analysis, and feature extraction, landslide susceptibility and hazard assessment, erosion susceptibility,
and glacier monitoring [22]. DEMs are often generated using data obtained from different remote
sensors, including optical imaging sensors, light detection, and ranging (LiDAR), and synthetic aperture
radar (SAR) [23]. The qualities of DEM-derived factors often depend on the spatial resolution of DEMs.
Therefore, the choice of DEM is important for the assessment of landslide susceptibility [1]. To this day,
a few attempts have been made to compare the performance of DEMs with different spatial resolutions
in landslide susceptibility assessment. For instance, Dietrich et al. [24] compared different DEMs and
found a similarity in performance irrespective of spatial resolution in identifying moderate landslide
class (see also [25]). They argued that the resolution of DEM might not be very important to represent
the slope failures. Similarly, Tian et al. [26] contended that finer resolution does not essentially lead to
higher accuracy in landslide susceptibility assessment (see also [1,27]).

These past studies further indicated that the performance of DEMs is context-dependent meaning
that the performance of a DEM in a region may not be assumed to be similar in another region [28–30].
They also argued that DEMs with fine spatial resolution may not necessarily have better performance
over coarse resolution DEMs. Therefore, it is an utmost need to have comparative assessments of DEMs
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in various contexts. We found that even though some parts of Bangladesh are vulnerable to landslides,
no study investigated the relative performance of different DEMs in landslide susceptibility assessments.
Against this backdrop, this study contextualized landslide susceptibility in Bangladesh and compared
the performance of different DEMs and modeling techniques. The study area is selected from
Bangladesh because the hilly southeastern parts of the country encounter landslides almost every year
that often claim tens of lives [31–34]. Because of unavailability of LiDAR, the majority of the landslide
susceptibility-related studies in Bangladesh used 30m Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), 30–90 m Shuttle Radar
Topographic Mission (SRTM), and 12.5 m Advanced Land Observation Satellite (ALOS) Phased Array
type L-band Synthetic Aperture Radar (PALSAR) to obtain various topographic factors [7,31,32,35].
Survey of Bangladesh (SOB) has developed a DEM (25 m) for the whole of Bangladesh and no study
has used this DEM in landslide susceptibility assessment. Therefore, the landslide susceptibility maps
in Bangladesh are influenced by the usage of different DEMs and which DEM provides the most
accurate susceptibility maps are largely unexplored [36]. As many causal factors are derived from DEM
datasets, the selection of appropriate DEM is crucial for landslide susceptibility assessment. This study
aims to compare the relative performance of four DEMs: ASTER GDEM (30 m), ALOS PALSAR
(12.5 m), SRTM (30 m), and Survey of Bangladesh (SOB) DEM (25 m). This study further aims to
compare three quantitative landslide susceptibility assessment techniques: modified frequency ratio
(bivariate method), logistic regression (multivariate method), and random forest (machine learning
method) [4,8,29,37].

2. Study Area

Rangamati, a hilly southeastern district of Bangladesh is selected as the study area because
of the regular landslide occurrences in this area. More than 100 people died, and 12,000 families
suffered losses due to landslides in this district [38]. Most landslides in Rangamati take place in three
upazilas (sub-districts): Rangamati Sadar, Kaptai, and Kawkhali [35]. As such, the study area is
narrowed down to these three Upazilas (Figure 1). The combined geographical area of these three
sub-districts is 1145 km2 and more than 40% of it is forested [39]. The geology of this area comprises
Dhihing, Dupi tila, Girujan clay, Bhuban, Bokabil, and Tipam sandstone (Figure A3f of Appendix C)).
The bedrock and soil structure of the areas are not stable, which makes the hills highly prone to
landslides [40]. Climatologically, this area falls under a tropical monsoon climate, and the annual
average temperature varies from a maximum of 36.5 degrees to a minimum of 12.5 degrees Celsius,
and annual rainfall is 2673 mm with mean humidity level 71.6% [39].
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Figure 1. Study area and landslide and non-landslide (pseudo-absence points) locations used
in modeling.

3. Synopsis on Data Utilization

3.1. Landslide Inventory

Landslide inventory records different information, including the exact location, size, type, time of
occurrence, causalities, trigger, and causes [2]. Rabby and Li [33] prepared and published [34] landslide
inventory of the Chittagong hilly area, Bangladesh. They used participatory field mapping to prepare
this inventory [41]. In our study, we selected 168 landslides from their inventory as it has been advised
to use more than one method in landslide inventory preparation [42], we analyzed available Google
Earth images on the Google Earth platform to map more landslides in the study area. We used the
method proposed by Rabby and Li [33] for Google Earth mapping and mapped 93 landslides that
occurred from January 2001 to January 2019. Therefore, in our study, we used a total of 261 (168 + 93)
landslide locations. The mean size of the landslide was 274.2 m2. The smallest and the largest
dimensions of the landslides were about 14.6 m2 and 3422.4 m2, respectively.

3.2. Landslide Causal Factors

In our study, we used a total of 15 causal factors (Table 1) to produce landslide susceptibility
maps (see Appendices A–C). Of these factors, seven factors were derived from DEM: elevation,
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slope, plan curvature, profile curvature, topographic wetness index (TWI), stream power index (SPI),
and aspect. As we are comparing the performance of different DEMs, we derived each of these factors
from four different DEMs: ASTER, SRTM, ALOS PALSAR, and SOB. The rest of the eight factors
namely land use/land cover, land use/land cover change, geology, distance from the road networks,
distance from the fault lines, distance from the drainage networks, rainfall, and normalized difference
vegetation index (NDVI) were collected from different datasets. Maps of different causal factors
had different resolutions, but for the convenience of comparison, we kept the 30 m resolution as the
standard for landslide susceptibility maps. In the following sub-section, we provide a brief overview
of the causal factors that we used in this study. We classify these factors into several classes primarily
using Jenks Natural Break method in ArcGIS 10.7, unless otherwise mentioned.

Table 1. Data source of the causal factors and resolution.

Causal Factor Type Data Source and Resolution

Elevation DEM based ASTER (30 m), SRTM (30 m), ALOS PALSAR (12.5 m)
and SOB (25 m) DEMs

Slope DEM based ASTER (30 m), SRTM (30 m), ALOS PALSAR (12.5 m)
and SOB (25 m) DEMs

Aspect DEM based ASTER (30 m), SRTM (30 m), ALOS PALSAR (12.5 m)
and SOB (25 m) DEMs

Plan curvature DEM based ASTER (30 m), SRTM (30 m), ALOS PALSAR (12.5 m)
and SOB (25 m) DEMs

Profile curvature DEM based ASTER (30 m), SRTM (30 m), ALOS PALSAR (12.5 m)
and SOB (25 m) DEMs

Topographic wetness index (TWI) DEM based ASTER (30 m), SRTM (30 m), ALOS PALSAR (12.5 m)
and SOB (25m) DEMs

Stream power index (SPI) DEM based ASTER (30 m), SRTM (30 m), ALOS PALSAR (12.5 m)
and SOB (25 m) DEMs

Rainfall Other Factors Bangladesh Meteorological Department (BMD) (1000 m)

Distance from the road networks Other Factors http://data.gov.bd/dataset/geodash (1000 m)

Distance from the drainage networks Other Factors http://data.gov.bd/dataset/geodash (1000 m)

Distance from the fault lines Other Factors Geological Survey of Bangladesh (GSB) (1000 m)

Normalized difference vegetation
index (NDVI) Other Factors Landsat 8 level 2 imagery (30 m)

Geology Other Factors Geological Survey of Bangladesh (GSB) (1000 m)

Land use/land cover Other Factors Landsat 8 level 2 imagery (30 m)

Land use/land cover change Other Factors Landsat 8 level 2 imagery, Landsat 5 imagery (30 m)

3.2.1. Elevation

A change in elevation can bring changes in geomorphology, vegetation, and rate of erosion in
an area and thus alters the landslide susceptibility [8]. We derived elevation from ASTER, SRTM,
ALOS PALSAR, and SOB DEMs (Figure A1a–d of Appendix A) and divided them into five classes
(see Table A1 of Appendix D).

3.2.2. Slope

The slope is one of the most critical factors of landslides. Generally, with the increase of
slope, shear stress increases, and therefore landslide susceptibility increases [43,44]. Like elevation,
we derived slopes from four different DEMs using the slope tool in ArcGIS 10.7 (Figure A1e–h of
Appendix A) and divided them into five classes using the Jenks natural break method (see Table A1
of Appendix D). We found different maximum slope values for different DEMs-ASTER (51.89º),
SRTM (61.24º), ALOS PALSAR (65.36º), and SOB (46.4º). As these values were different for the same
study area, the five classes of slopes (see Table A1 of Appendix D) were different.

http://data.gov.bd/dataset/geodash
http://data.gov.bd/dataset/geodash
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3.2.3. Aspect

The direction of precipitation, sunlight, and wind depend on aspect, and therefore it has effects
on the growth of vegetation, rate of erosion, and thickness of soil [45]. From the DEMs, four aspect
maps (Figure A1i–l of Appendix A) were prepared and were divided into ten classes (see Table A1 of
Appendix D).

3.2.4. Plan Curvature and Profile Curvature

Curvature is the rate of change of slope over time in an area. We used the four different DEMs to
produce four plan and profile curvature maps (Plan: Figure A2a–d; Profile: A2e–h of Appendix B).
Profile and plan curvatures were divided into three classes: concave, convex, and flat. Among these
classes, concave slopes are more prone to landslides because water cannot disperse equally on these
slopes [5].

3.2.5. Topographic Wetness Index and Stream Power Index

Topographic wetness index (TWI) increases with the decrease of the slope; therefore, it is inversely
related to landslide susceptibility [4,43]. Stream power index (SPI) represents the erosion power of
streams. SPI is directly related to slopes; in a steeper slope, SPI will be higher, representing more
erosion power while in a flat alluvial plain, SPI is low [45]. TWI and SPI maps were derived from four
DEMs using Equation (1) and Equation (2) (TWI: Figure A2i–l of Appendix B; SPI: Figure A2m–p of
Appendix B)

TWI = Ln
( A

tanα

)
(1)

SPI = A× tanα (2)

where, A = Area of a specific catchment and α = Slope gradient of the specific area. We divided TWI
and SPI into five classes (Table A1 of Appendix D)

3.3. Rainfall

The intensity and duration of rainfall controls the initiation of landslides [44]. We used the mean
annual rainfall of five weather stations of Bangladesh Meteorological Department (BMD) to prepare
the rainfall map using the Kriging interpolation method (Figure A3a of Appendix C). We later divided
it into five classes (Table A1 of Appendix D).

3.4. Distance-Based Causal Factors

Distance from the road networks, drainage networks, and fault lines were the three distance-based
causal factors in this study. We used the Euclidean distance tool in ArcGIS 10.7 to derive the distance of
landslides from the targeted features: road, drainage, and fault lines (Figure A3b–d of Appendix C) and
divided the distances into five classes (Table A1 of Appendix D). Distance from the road networks is
one of the most critical factors. The undercutting of slopes during road construction and the vibration
created by vehicles damage the slope stability [43]. Drainage network indicates the zone of erosion in
an area, and erosion is indirectly linked with the landslide susceptibility [4]. Fault lines indicate the
geomorphological discontinuity in an area. Near the fault lines, the shear strength of rock is minimum.
Therefore, areas near to the fault lines are prone to landslides [44].

3.5. Normalized Difference Vegetation Index (NDVI)

NDVI indicates the growth of vegetation and biomass of an area [46]. Generally, the probability
of the occurrence of the landslide on the naturally vegetated surface is lower than the bare lands [8].
We used Landsat 8 level 2 imagery of 11/10/2017 to prepare the NDVI map (Figure A3e) and divide it
into five classes (Table A1 of Appendix D).
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3.6. Geology

The strength of rock and soil permeability depends on the geology of an area. Therefore, geology
has an impact on landslide susceptibility [43]. In this study, we used the geological map (Figure A3f)
(1:100,000) of the Bangladesh Geological Survey (BGS). There are eight types of geologic formation
found here: Dihing and Dupi tila formation; Bokabil formation; Bhuban formation; Tipam Sandstone;
Valley alluvium and colluvium; Dihing formation, Girujan clay, and waterbodies.

3.7. Land Use land Cover

Land use/land cover and land use/land cover change are the two most crucial landslide causal
factors in the study area [35,47]. Ahmed [31] and Rabby and Li [33] found that the rate of change of land
use/land cover in our study area is high compared to other adjacent areas. In this study, we used two
Landsat imageries to analyze the land use/land cover change (Landsat 5: date of Acquisition: 24/12/1998;
Landsat 8: Acquisition Date: 29/11/2018). We used supervised maximum likelihood classifier to classify
the 1998 and 2018 images into four land use classes: bare land, vegetation, built-up, and water bodies
(Figure A3g of Appendix C). We later employed post-classification change detection techniques to
analyze the land use/land cover changes between 1998 and 2018 (Figure A3h of Appendix C).

4. Methodology

To compare the effects of four different DEMs: ASTER, SRTM, ALOS PALSAR, and SOB on landslide
susceptibility maps, we used a bivariate method: modified frequency ratio (MFR), a multivariate
method: logistic regression (LR) and a machine learning method: random forest (RF). We assessed two
scenarios: (a) considering only DEM-based seven causal factors in the models, and (b) considering all
15 causal factors, including the DEM-based factors, in the models. As we used three methods: MFR,
LR, and RF on four different DEMs under two scenarios, therefore, the outcome would be twenty-four
landslide susceptibility maps. For legibility, we used different acronyms in later sections (see Table 2).

Table 2. Acronyms used for different models.

Model Factors Considered DEM Acronym Used

Modified frequency ratio DEM-based 7 factors

ASTER
SRTM

ALOS PALSAR
SOB

MFR_ASTER_DEM
MFR_SRTM_DEM
MFR_ALOS_DEM
MFR_SOB_DEM

All 15 factors

ASTER
SRTM

ALOS PALSAR
SOB

MFR_ASTER
MFR_SRTM
MFR_ALOS
MFR_SOB

Logistic regression DEM-based 7 factors

ASTER
SRTM

ALOS PALSAR
SOB

LR_ASTER_DEM
LR_SRTM_DEM
LR_ALOS_DEM
LR_SOB_DEM

All 15 factors

ASTER
SRTM

ALOS PALSAR
SOB

LR_ASTER
LR_SRTM
LR_ALOS
LR_SOB

Random forest
DEM-based 7 factors

ASTER
SRTM

ALOS PALSAR
SOB

RF_ASTER_DEM
RF_SRTM_DEM
RF_ALOS_DEM
RF_SOB_DEM

All 15 factors

ASTER
SRTM

ALOS PALSAR
SOB

RF_ASTER
RF_SRTM
RF_ALOS
RF_SOB
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4.1. Training and Validation Dataset

We divided the 261 landslide locations randomly into training (75%) and validation (25%)
datasets. Bivariate MFR is a one-class classification method where non-landslide locations or absence
of landslides are not required [48]. On the other hand, for multivariate LR and machine learning-based
RF, the selection of non-landslide locations (pseudo-absence points) is essential [4]. Any place that
does not have landslide can be considered as non-landslide. We randomly selected 261 non-landslide
locations (Figure 1) (pseudo absence points) from the study area [49]. We split these non-landslide
locations into training (196) and validation (65) data sets. In total, we had 392 (196: landslide locations;
196: non-landslide locations) data points for training and 130 (65: landslide locations; 65: non-landslide
locations) data points for testing the LR and RF models.

4.2. Modified Frequency Ratio (MFR)

MFR is an improved version of the widely used frequency ratio (FR) method [35,50]. Lee and Talib [51]
proposed FR, which assesses the spatial relationship between the landslide locations and the landslide
causal factors [52]. In the FR method, each of the causal factors must be divided into subclasses or
categories; for example, in this study, we split slope into five categories using the Jenks natural break
method (Table A1 of Appendix D). We calculated the FR values using Equation (3), and later these FR
values of each of the subclasses of causal factors were used in the MFR model.

FRij =
Nij/N

Mij/M
(3)

where FRij = Frequency Ratio of jth Subclass of Factor i
Nij = Total area of the landslide pixels within the jth subclass of factor i
N = Total area of landslide pixels in the study area
Mi j = Total area of the pixels in the jth subclass of factor i
M = Total area of the study area
FR > 1 means association of landslides with that subclass. In other words, there is a probability of

occurrences of landslides in that subclass. FR < 1 means no association [53].
For calculating the MFR, then we normalized the FRs using Equation (4).

Rfij =
FRij∑

FRi
(4)

where Rfij = Relative frequency of jth subclass of factor i
FRij = Frequency ratio of the jth subclass of factor i∑

FRi = Sum of the frequency ratios of factor i
Later, we calculated the prediction rate (PR) using Equation (5). In the FR model, the overall

contribution of causal factors to the occurrence of landslides is not measured. Only the subclass wise
contribution is measured [6,50]. In MFR, we can measure the overall contribution because PR indicates
overall association of a causal factor. The lowest value of PR is 1 and the higher the PR value the
stronger is the association of causal factor with the landslides [6].

PRi =
(MaxRfi − MinRfi)

(MaxRfi − MinRfi)min
(5)

where PRi = Prediction rate of factor i
MaxRfi = Maximum relative frequency of factor i
MinRfi = Minimum relative frequency of factor i
(MaxRfi −MinRfi) min = Lowest difference between maximum and minimum relative frequency

of all the factors
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To calculate the landslide susceptibility ondex (LSI) and to produce the landslide susceptibility
maps Equation (6) was used

LSI =
∑n

i=1
Rfij × PRi (6)

where LSI = Landslide susceptibility index
Rfij = Relative frequency of jth subclass of factor i
PRi = Prediction rate of factor i
For landslide susceptibility mapping, we used the reclassify tool in ArcGIS 10.7 to reclassify the

categories of causal factors according to the Rf values. Later, we multiplied each of the reclassified raster
layers with the prediction rates and summed up to produce the final landslide susceptibility maps.

4.3. Logistic Regression (LR)

Logistic regression (LR) is one of the most widely-used multivariate statistical methods in
landslide susceptibility mapping [4,6,54–56]. An LR model predicts the presence of landslides using
the binary landslide data (presence and absence of landslides or landslides and non-landslides) and
their relationship with the landslide causal factors [56,57]. Here, landslide and non-landslide locations
are dependent variables, and causal factors are independent variables. These independent variables
can be numerical or categorical [4]. Equation (7) is used in LR model

Logit (Y) = ß1X1 + ß2X2 + ß3X3 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + ßiXi + e (7)

where Y = The presence of landslides
Xi = ith Causal factor
ßi = Regression coefficient of the ith causal factor
e = Error
We used Equation (8) to determine the probability.

P =
expY

1 + expY
(8)

We used the R software environment for the forward stepwise LR method. We multiplied the
raster layers of the statistically significant causal factors with the coefficients and summed up using
Equation (7) in the R software environment. Finally, we used Equation (8) to produce the landslide
susceptibility maps.

4.4. Random Forest Classification (RF)

The random forest method was developed by Breiman [58] and is an ensemble learning method [19].
Lately, the use of the RF method for landslide susceptibility mapping has increased due to its high
performance in predicting landslide locations [37,59].

This method uses bootstrapping techniques to generate a bunch of classification trees based
on subsets of observations [27]. There is high variance among the individual trees, and therefore
classification based on a single tree is unstable and prone to overfitting [37]. Random forest is improved
over commonly used tree-based methods, such as a decision tree or bagged tree because it decorrelates
the trees. RF uses ensembles of trees and lets each tree define the class membership, and finally,
the respective class is assigned based on the highest votes [27,37]. Since the bootstrapping method is
used, a set of data is not used in the model training stage and this set of data is known as out-of-bag
(OOB) [27]. These OOB data are used to calculate the mean decrease of accuracy and Gini coefficient [37].
The accuracy and Gini coefficient are used in variable selection and ranking [19]. They also provide
the statistical weights or variable importance of each of the predictors used in the model [27].

There are several advantages of using RF methods, such as rescaling and transformation of data
are not essential; missing data and outliers can be ignored [60]. Moreover, it can deal with both
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numerical and categorical data, and the use of a dummy variable is not required [37]. In this study,
we developed the Random Forest model in the R software environment using the “randomForest”
package [61].

4.5. Multicollinearity Diagnostics

In the LR model, multicollinearity can bring inaccuracies in variance and unsuitability in estimates.
On the other hand, in the RF model, it can affect the variable importance [62]. Therefore, multicollinearity
diagnostics: variance inflation factor (VIF) and tolerance were used before using the causal factors in LR
and RF models. Since VIF values were <10 and tolerance were <0.3, causal factors were independent
and were used in these two models [63]

4.6. Model Validation and Comparison

Success and prediction rate curves were used to test the performance of the susceptibility models.
The training data set was used for the success rate curve, and the validation data set was used for the
prediction rate curve [6]. “The area under the curve” (AUC) of success rate indicates how well the
model fits the training data while the AUC of prediction rate suggests how well the model will predict
future landslides [15,64]. AUC value ranges from 0–1 or 0%–100% and it can be grouped into the
following categories: 0.50–0.60 (fail); 0.60–0.70 (poor); 0.70–0.80 (fair); 0.80–0.90 (good), and 0.90–1.00
(excellent) [53]. We also used two non-parametric tests: Friedman and Wilcoxon Signed Rank test to
assess whether there are any significant differences in performances between the susceptibility [65–68].
Friedman’s test is used for multiple comparisons. This test determines whether there is any significant
difference in performance in multiple models [29], while the Wilcoxon Signed Rank test is used for
pairwise comparison of susceptibility models and, therefore, can indicate which models are significantly
different [68].

However, statistical performance assessments such as success and prediction rate curves cannot
show the level of agreement among the models. Therefore, we used convergent validation through the
coverage based cross-comparison [69,70]. The MFR gives landslide susceptibility index while LR and
RF provide the probability of landslides. We reclassified them into five susceptibility zones: very low,
low moderate, high, and very high using the Jenks natural break method. Later, we used the raster
calculator in the ArcGIS platform to subtract the reclassified model from one another. The outcome can
be any integer, but only “zero” will indicate the areas which were classified into the same susceptibility
zones by two compared models. We calculated the percentage of area under this “zero” class and this
percentage indicates the spatial convergence or agreement between two compared models [69].

5. Results

5.1. Susceptibility Assessment Using Modified Frequency Ratio (MFR)

We found that the prediction rates (PRs) of the slope, aspect, and elevation derived from three
DEMs (ASTER, SRTM, and ALOS PALSAR) are similar. The PRs for these three factors are around
2.25, 1.0, and 3.0, respectively (see Table A1 of Appendix D). Compared to these three DEMs, the SOB
DEM showed different PRs. Our analysis revealed that for slope, aspect, and elevation, the SOB
DEM-based PRs are 1.79, 2.37, and 2.41, respectively. We further found that with the increase of slope,
the probability of landslide increases. The relatively safer zones are in areas below 8º slope where
frequency ratio (FR) < 1. For ASTER, SRTM, and ALOS PALSAR DEMs, we found that the slope class
14–23º had the highest probability of landslides. However, for SOB DEM, the highest probability of
landslide is in the 8–14º slope class. In the case of TWI, we found that ALOS PALSAR DEM has the
highest PR (4.30) followed by ASTER DEM (PR = 3.19) and SOB DEM (PR = 1.61). For all the four
DEMs, the probability of landslides was higher in areas where TWI is less than 6. The SPIs derived
from four DEMs have lower PRs compared to other causal factors and the class-wise weight (FR values)
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showed the same sort of pattern. We further found that for plan curvature, ALOS PALSAR has the
highest PR (4.30), while for profile curvature, SRTM has the highest PR (4.68).

In general, we found no specific pattern of FR and PR values for these seven factors. We observed
that causal factors derived from either ALOS PALSAR or SRTM have higher PR values, and SOB has
the lowest PR among the four DEMs. The causal factors derived from different DEMs did not have a
significant impact on the FR and PR values of MFR. This finding is similar to the findings of Chang
et al. [29]. Most of the topographic factors are the first derivative of the DEMs other than the TWI
and SPI. Thus, for TWI, DEMs have more substantial impacts than other factors. It is because there
can be a small difference among the DEMs, and when the second derivative is used, these become
pronounced [29].

The class-wise FR values of the eight factors that are not derived from the DEMs are generally
similar; however, the PR values are different (see Table A1 of Appendix D). The causal factors derived
from the DEMs played a crucial role in determining the PR values for these eight factors. For ASTER
(0.141), SRTM (0.134), and ALOS PALSAR (0.139), the lowest difference was between the maximum
and minimum relative frequency of aspect. While for SOB (0.160), it was SPI. Since these values are
slightly different, it affected the PR values.

Landslide Susceptibility Maps (MFR)

We produced Landslide Susceptibility Indices (LSIs) of the four MFR models using Equation (6)
for DEM-based causal factors. The LSI of MFR_ASTER_DEM ranged from 994.6 to 8388.1. The LSIs for
MFR_SRTM_DEM LSIs for MFR_SRTM_DEM; MFR_ALOS_DEM and MFR_SOB_DEM ranged from
591.4 to 9458.8 and 527.8 to 10056.5 and 638.8 to 6130.0, respectively. LSI does not have a unit. It is the
product of relative frequency and prediction rate Equation (6), and both of these do not have units.
The greater the LSI, the greater is the landslide susceptibility, and the smaller the LSI value, the lower
is the susceptibility [35,44]. The ranges of LSIs indicate that MFR_SRTM_DEM and MFR_ALOS_DEM
models had a comparatively broader range than the rest of the two models. This happened because
of the variable FR and PR values. For ASTER DEM, the highest PR value was for plan curvature,
while for other DEMs it was for profile curvature (see Table A1 of Appendix D). For all DEM-based
factors, SOB had the lowest PRs among the four models and therefore it affected the LSIs. Later,
we used the same Equation (6) to produce four MFR models based on 15 causal factors. The LSI of
MFR_ASTER DEM ranged from 1613.00 to 20370.10. The LSIs for MFR_SRTM, MFR_ALOS, and SOB
DEMs ranged from 1314.40 to 22300.34 and 1234.95 to 22180.24 and 1995.7 to 17316.9, respectively.
The LSIs of MFR_SRTM and MFR_ALOS DEMs have a comparatively broader range than the rest
of the two models. The highest PR value for ASTER was 6.25 and for SOB, it was 5.64 (Table A1
of Appendix D) for distance to the road network, while for SRTM and ALOS PALSAR, it was 6.61
and 6.38, respectively. For other causal factors (Table A1 of Appendix D), SOB had the lowest PRs
among the four, and therefore LSI was the lowest. As mentioned earlier, the FR values varied for seven
topographic factors derived from four different DEMs, and these factors had impacts on the PR of
eight common factors. Ultimately these variations defined the LSI of the susceptibility maps.

Since different models had different LSIs, Rescale by Function tool in ArcGIS was used to normalize
the LSIs into a 0.0–1.0 scale. Later, we used the Jenks natural break method to classify the normalized
LSIs into five susceptibility zones: very low, low, moderate, high, and very high. Generally, the spatial
appearances of the landslide susceptibility maps have similarities with the map of causal factors that
have a higher contribution to landslides. In this study, this contribution is shown by PR and FR values
(see Appendices A–C). We found that the spatial appearance of seven causal factors derived from
SOB was different from the spatial appearance of seven causal factors derived from ASTER, SRTM,
and ALOS PALSAR. ASTER, SRTM and ALOS PALSAR based susceptibility maps (Figure 2a–c) show
a comparatively lesser percentage of area as very low or low susceptibility zones than the SOB-based
landslide susceptibility map (Figure 2d). However, the SRTM based map shows comparatively more
areas as high and very high susceptibility zones that the other maps. We found when all factors were
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considered, areas near to the road network are highly susceptible to landslides (Figure 3a–d), because
the PR values of the distance from the road networks were the highest.
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5.2. Susceptibility Assessment using Logistic Regression (LR)

For the DEM-based factors, the LR model detected two to five statistically significant factors
(see Table A2 of Appendix E). Elevation and slope were the two common statistically significant
causal factors for ASTER, SRTM, and ALOS PALSAR based models. Since the ALOS PALSAR based
model, the highest number of causal factors was chosen, DEM had the highest impact on the landslide
susceptibility map. Odds ratio (Table A2 of Appendix E) shows that slope was the most important
factor of landslides for ASTER and SRTM based models, while aspect came out as the most crucial
factor for ALOS PALSAR and SOB based models.

When all (15) causal factors were used, we found a total of four to eight statistically significant
causal factors (see Table A2 of Appendix E). Slope, elevation, SPI, and aspect were the significant
DEM-based causal factors for LR_SRTM and LR_ALOS based models. For LR_SOB, aspect was
the statistically significant DEM-based causal factor. When 15 causal factors were used, the model
assessed the interaction of DEM-based factors with the common eight factors. Therefore, when only
the DEM-based causal factors were used, some factors came out statistically significant (e.g., SPI for
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LR_ASTER_DEM). When all the factors were used in the LR_ASTER based model, SPI came out
insignificant. For LR_SRTM and LR_ALOS, three DEM-based causal factors were detected as statistically
significant; therefore, for these two landslide susceptibility maps, DEM would have more impact than
the LR_ASTER and LR_SOB susceptibility maps.

Landslide Susceptibility Maps (LR)

We used the Jenks natural break method to classify the probability of landslides into five zones:
very low, low, moderate, high, and very high. The spatial appearances of the LR_SOB_DEM model
(Figure 2h) have a different appearance than the other three maps. LR_SRTM_DEM (Figure 2f) and
LR_ALOS_DEM (Figure 2g) have an almost identical spatial appearance. While in LR_ASTER_DEM
models, the slope had a higher coefficient (ß = 0.26) (Table A2 of Appendix E) than the SRTM
(ß = 0.14) and ALOS PALSAR ((ß = 0.05). Therefore, in the LR_ASTER_DEM map, the areas with
steeper slopes, mainly in the mid-north and mid-south of the study area, were classified as high to
very highly susceptible. In LR_SRTM_DEM and LR_ALOS_DEM maps, these areas were classified
either as moderate or high susceptibility zones. In LR_SOB_DEM, only elevation and aspect were
two significant factors. Therefore, the susceptibility map took the shape of the map of these two factors
(see Appendix A).

When all (15) causal factors were used, the spatial appearance of LR_SOB (Figure 3h) was different
from the other three maps (Figure 3e–g). LR_SOB map was influenced by the distance from the fault
lines, distance from the road networks, and land use/land cover. Although aspect was a significant factor,
the coefficient value of aspect was similar to other significant factors, and distance from the fault lines
(ß = 1.07) (Table A2 of Appendix E) had a higher coefficient value than aspect. Therefore, most of the
study area was classified as low or very low susceptibility zones. In the LR_ASTER model (Figure 3e),
the slope had the highest coefficient (ß = 0.31) (Table A2 of Appendix E), and therefore, areas with
steeper slopes were classified as high or very high susceptibility zones. But in LR_SRTM and LR_ALOS
models, the slope had comparatively lower coefficient values than ASTER. As a result, some areas
were classified as moderate susceptibility zones in these two maps (Figure 3f–g). In LR_SRTM and
LR_ALOS susceptibility maps, common factors such as distance from the road networks and fault
lines, land use/land cover, and land use/land cover change did not have higher coefficient values than
the DEM-based causal factors. That is why, unlike LR_SOB, the spatial appearance of the susceptibility
maps did not follow the appearance of the maps of common factors.

5.3. Susceptibility Assessment using Random Forest (RF)

RF_ASTER_DEM, RF_SRTM_DEM, and RF_ALOS_DEM models detected (Figure 4a) slope and
RF_SOB_DEM model identified the aspect as the most critical factor. When all 15 factors were used
in the models, RF_ASTER and RF_SRTM (Figure 4b) detected slope and the rest of the two models
detected distance from the road network as the most important causal factor. For RF_ASTER, RF_SRTM,
and RF_ALOS, DEM-based factors such as elevation, TWI, and aspect had higher importance in the
models than the common factors. But in the RF_SOB model DEM-based factors had less importance
than the common factors. There is no similarity among the models in detecting the importance of
DEM-based causal factors. For example, In RF_SOB, the slope was ranked as one of the least important
factors, but for other models, it was ranked as the most important factor (Figure 4b).
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Landslide Susceptibility Maps (RF)

Like MFR and LR, we used the same method to classify the probability of landslides into five
susceptibility zones. The spatial appearance of the RF_SOB_DEM susceptibility map (Figure 2l) was
different from the susceptibility maps of the other three models (Figure 2i–k). For, RF_ASTER_DEM
(Figure 2i) areas in the mid-north to mid-south were classified as high or very high susceptibility zones.
While in RF_SOB_DEM and RF_ALOS_DEM the same areas were classified as moderate susceptibility
zones. In RF_ASTER_DEM, slope was the most critical factor. Similarly, in RF_SRTM_DEM and
RF_ALOS_DEM slope was the most crucial factor, but in these two models, the contribution of the slope
(Figure 4a) to the model is lesser than the RF_ASTER_DEM model. In RF_ASTER_DEM, the difference
of variable importance between slope and other factors was comparatively higher than the other
models, the effect of slope on the susceptibility map was visible.

RF_ASTER; RF_SRTM, RF_ALOS; and RF_SOB models (Figure 3i–l), spatial appearances were
different from each other. Since in the RF_SOB model, distance from the road networks was the most
crucial factor, areas near to roads were classified as high or very high susceptibility zones. Distance from
the road network was not ranked as the most critical factor in the other three models.
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5.4. Validation and Comparison of Landslide Susceptibility Maps

5.4.1. Success and Prediction Rate Curves

DEM-Based Causal Factors

When only DEM-based seven causal factors were used for MFR models, among all DEMs the
MFR_SRTM_DEM model gave the superior performance for both success (AUC = 80.73%) and
prediction (AUC = 77.37%) rate curves (Figure 5a,b). The MFR_SOB_DEM model appears to perform
the weakest in assessing success and prediction. The AUCs of success rate curves (Figure 5a) showed
that MFR_SRTM_DEM falls under the good category while MFR_ASTER_DEM and MFR_ALOS_DEM
fall under the fair category. But MFR_SOB_DEM falls under the poor category. AUCs of prediction
rate curves (Figure 5b) show that all models other than the MFR_SOB_DEM gave fair performances.Remote Sens. 2020, 12, x FOR PEER REVIEW  17  of  35 
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For LR, LR_ALOS_DEM outperformed the other three models (Figure 5c,d). LR_SOB_DEM
presented the weakest performance among the four models and thus fell under the fail category.
The AUCs of success and prediction rates (Figure 5c,d) show that the other three models are under the fair
category. For RF models, we got similar results as the LR model. RF_ALOS_DEM outperformed other
models, and RF_SOB_DEM was the least accurate model. RF_SRTM_ALOS_DEM and RF_SRTM_DEM
gave an almost similar performance.

All Causal Factors

We found that when all 15 causal factors are used, different models showed variable performances.
For the MFR model, the use of 15 causal factors decreases the predictive performance on an average by
5% of landslide susceptibility maps based on ASTER, SRTM, and ALOS PALSAR (see Figure 6a,b).
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However, for the SOB based model, it increased the performance by 3%. It indicates that for bivariate
models, DEM-based causal factors can give better prediction performance and use of non-DEM-based
factors can reduce the accuracy. Inclusion of more DEM-based causal factors and more landslide
locations may increase the accuracy of the models in the study area.

Remote Sens. 2020, 12, x FOR PEER REVIEW  17  of  35 

 

 

Figure 5. Success and prediction rate curves (seven DEM‐based factors): (a) MFR (success); (b) MFR 

(prediction); (c) LR (success); (d) LR (prediction); (e) RF (success); (f) RF (prediction). 

 

Figure 6. Success and prediction rate curves (15 factors): (a) MFR (success); (b) MFR (prediction); (c) 

LR (success); (d) LR (prediction); (e) RF (success); (f) RF (prediction). 

Figure 6. Success and prediction rate curves (15 factors): (a) MFR (success); (b) MFR (prediction); (c) LR
(success); (d) LR (prediction); (e) RF (success); (f) RF (prediction).

For the LR model, the use of 15 factors increased the accuracy of the model. For three global
DEMs success rates increased by around 5.0% but for SOB it increased by 21.7%. On the other hand,
prediction rates showed the same trend as for three global DEMs the increase of performance was
around 3.5% but for SOB it was 17.0%. It proves that the use of common factors increased the accuracy
substantially for SOB DEM.

Like the LR model, for RF models, the use of 15 causal factors increased the accuracy of the model.
For ASTER and SRTM the increase of the success rate was around 7%. For ALOS PALSAR the success
rate increased by 12.4%. Here again, SOB had the highest increase (22.6%) in success rate. The increase
in prediction rate was not as high as the success rate. For three global DEMs prediction rates increased
by around 2%–3% and for SOB the prediction rate increased by 10.1%. Machine learning algorithms
such as the random forest learn the behavior or the training data. Therefore, the increase of success
rate due to inclusion of new variables was high. Since machine learning algorithms learn the behavior
of the training data it fails to predict the validation or unknown data [60]. Therefore, in our study,
the increase of prediction rate is around 50% lower than the increase of prediction rate for RF models.

5.4.2. Spatial Comparison of Landslide Susceptibility Maps

Spatial convergence indicates how much area is classified into same susceptibility zones.
When seven DEM-based factors were used in the MFR model, MFR_SOB_DEM had 30% of spatial
convergence while the remaining DEMs had around 40% (Table 3). As we discussed before, the landslide
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susceptibility maps of MFR_SOB_DEM has a different spatial appearance (Figure 2d) than the
rest of the three susceptibility maps and these results (Table 2) support the previous discussion
of our study. For the LR models, Table 3 shows a similar trend. Spatial convergences of the
LR_ASTER_DEM, LR_SRTM_DEM, and LR_ALOS_DEM were around 44%, while the LR_SOB_DEM
showed approximately 19% of spatial convergence. For the RF models, Table 3 shows the similarities
with the findings of MFR and LR.

Table 3. Spatial comparison and convergence analysis of landslide susceptibility maps.

Factors Used Method Mapping DEM ASTER (%) SRTM (%) ALOS PALSAR (%) SOB (%)

DEM-based
factors

MFR

ASTER (%) 100.00 41.18 46.54 29.37
SRTM (%) 41.18 100.00 42.54 31.26

ALOS PALSAR (%) 46.53 42.54 100.00 30.83
SOB (%) 29.37 31.26 30.83 100.00

LR

ASTER (%) 100.00 44.34 47.50 18.33
SRTM (%) 44.34 100.00 48.59 18.84

ALOS PALSAR (%) 47.50 48.59 100.00 19.06
SOB (%) 18.33 18.84 19.06 100.00

Random forest

ASTER (%) 100.00 47.73 47.07 28.24
SRTM (%) 47.73 100.00 54.46 31.43

ALOS PALSAR (%) 47.07 54.46 100.00 31.46
SOB (%) 28.24 31.43 31.46 100.00

All factors

MFR

ASTER (%) 100.00 71.44 68.89 55.71
SRTM (%) 71.44 100.00 77.41 54.07

ALOS PALSAR (%) 68.89 77.41 100.00 51.68
SOB (%) 55.71 54.07 51.68 100.00

LR

ASTER (%) 100.00 52.01 51.11 30.89
SRTM (%) 52.01 100.00 55.56 36.46

ALOS PALSAR (%) 51.11 55.56 100.00 36.07
SOB (%) 30.89 36.46 36.07 100.00

Random forest

ASTER (%) 100.00 51.55 49.28 42.21
SRTM (%) 51.55 100.00 62.63 44.36

ALOS PALSAR (%) 49.28 62.63 100.00 47.02
SOB (%) 42.21 44.36 47.02 100.00

When all factors were considered for modeling, spatial convergence between the DEMs (Table 3)
increased around 40% for MFR models. While for the LR and RF models, the spatial convergence was
approximately 25% and 12%, respectively. In the MFR model, all causal factors were used, while in the
LR model, significant causal factors were used and in the RF model, 2–3 causal factors, for example,
profile and plan curvatures had comparatively low or no variable importance in the model.

The results of Friedman tests (Table 4) show that in both the scenarios (a. seven DEM-based causal
factors used, and b. 15 causal factors used) for MFR and RF models P < 0.05. It means at least one
of the landslide susceptibilities models had significantly different performance than the rest of the
models. While for LR models, when seven DEM-based causal factors were used, at least one of the
models was statistically different in performance than the rest of the models. When all factors were
used in LR models, there was no statistically significant difference in performance between the models.
Wilcoxon signed-rank test conducted the pairwise comparison. The results (Table 4) show that in
scenario two, the performances of landslide susceptibility maps produced using SRTM and ALOS
PALSAR did not have a statistically significant difference. Other than that, all the performances of
the MFR based landslide susceptibility maps were statistically (α = 0.008 after Bonferroni correction)
different from each other. When seven causal factors were used for LR models, the performance of
SOB based models was significantly different (Table 5) from all other models. But when all factors are
used, these differences become insignificant. It indicates that eight common factors overshadow the
effect of SOB based causal factors. In the MFR model, it did not happen since it did not consider the
interaction of causal factors.
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Table 4. Result of the Friedman Test for landslide susceptibility maps.

Factors Used Methods DEM Mean Rank Chi-Square P-Value

DEM-based factors

MFR

ASTER 2.29

135.71 0.00 *SRTM 2.94

ALOS PALSAR 2.68

SOB 2.10

LR

ASTER 2.56

45.24 0.00 *SRTM 2.55

ALOS PALSAR 2.19

SOB 2.70

RF

ASTER 2.61

44.24 0.00 *SRTM 2.28

ALOS PALSAR 2.74

SOB 2.37

All factors

MFR

ASTER 2.61

208.54 0.00 *SRTM 2.28

ALOS PALSAR 2.74

SOB 2.37

LR

ASTER 2.37

8.63 0.05SRTM 2.90

ALOS PALSAR 2.84

SOB 1.89

RF

ASTER 2.76

33.79 0.00 *SRTM 2.43

ALOS PALSAR 2.49

SOB 2.32

In the case of RF models, RF_ALOS_DEM (Table 5) was statistically different from the other
models. But when all causal factors were used the difference of performance became insignificant
for RF_SRTM model. RF used a more complex algorithm than the LR and MFR models. Therefore,
the Wilcoxon Signed-Rank test gave different results for RF models than MFR and LR models.
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Table 5. Comparison of landslide susceptibility maps based on three different DEMs using Wilcoxon
signed-rank test.

Factors Used Methods Pairwise Comparison Z-Statistics P-Value

DEM-based factors

MFR

ASTER-SRTM −8.82 0.00 *

ASTER-ALOS PALSAR −4.81 0.00 *

ASTER-SOB −6.81 0.00 *

SRTM-ALOS PALSAR −5.26 0.00 *

SRTM-SOB −10.48 0.00 *

ALOS PALSAR-SOB −8.60 0.00 *

LR

ASTER-SRTM 1.11 0.27

ASTER-ALOS PALSAR −1.49 0.14

ASTER-SOB −3.62 0.00 *

SRTM-ALOS PALSAR −2.55 0.01

SRTM-SOB −3.04 0.00 *

ALOS PALSAR-SOB −3.71 0.00 *

RF

ASTER-SRTM −0.42 0.68

ASTER-ALOS PALSAR −3.37 0.00 *

ASTER-SOB −7.06 0.48

SRTM-ALOS PALSAR −7.37 0.00 *

SRTM-SOB −1.79 0.73

ALOS PALSAR-SOB −6.14 0.00 *

All factors

MFR

ASTER-SRTM −7.91 0.00 *

ASTER-ALOS PALSAR −6.11 0.00 *

ASTER-SOB −10.58 0.00 *

SRTM-ALOS PALSAR −2.11 0.04

SRTM-SOB −12.84 0.00 *

ALOS PALSAR-SOB −11.56 0.00 *

LR

ASTER-SRTM −2.37 0.02

ASTER-ALOS PALSAR −1.59 0.11

ASTER-SOB −0.49 0.63

SRTM-ALOS PALSAR −0.53 0.60

SRTM-SOB −0.24 0.81

ALOS PALSAR-SOB −0.08 0.94

RF

ASTER-SRTM −2.66 0.01

ASTER-ALOS PALSAR −0.38 0.71

ASTER-SOB −4.64 0.00 *

SRTM-ALOS PALSAR −1.85 0.07

SRTM-SOB −1.96 0.05

ALOS PALSAR-SOB −4.18 0.00 *

* = Significant after Bonferroni correction (P < 0.008).
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6. Discussion

This paper evaluates the suitability of three available global DEMs: ASTER, SRTM, and ALOS
PALSAR and a local DEM: SOB for landslide susceptibility mapping in Rangamati district, Bangladesh.
Causal factors derived from ASTER and ALOS PALSAR DEM have been used in landslide susceptibility
mapping in different parts of the Chittagong hilly areas, Bangladesh [7,9,31–35]. Since the study areas
of these studies were different, we could not compare them to find out which DEM gives the best
accuracy in the prediction of landslide susceptibility [36]. Our study showed that three global DEMs
outperformed the local DEM in all three landslide modeling scenarios.

In the first scenario, only DEM-based causal factors were used in modeling and for MFR models,
MFR_SRTM_DEM outperformed the other three models. The difference of AUCs of both the success
and prediction rate curves between _SRTM_DEM and ALOS_DEM was around 3%, indicating a
similarity in predictions. For the processing of ALOS PALSAR DEM, SRTM GL1 data is used for
radiometric correction [71]. Therefore, the quality of ALOS PALSAR DEM depends on the quality
of SRTM DEM. SOB DEM-based MFR did not show a good performance for the study area and the
prediction performance can be improved when a more representative landslide inventory with more
landslide locations is used. We found that the ASTER DEM-based MFR model showed a weaker
performance than the other two open-source global DEMs. Our result is consistent with other studies
that utilized ASTER DEM [29,72,73]. It may happen because ASTER DEM contains many artifacts such
as the presence of peaks in the flat terrain, and it ultimately affects the landslide susceptibility map [29].
The poor performance of the SOB DEM can be attributed to the interpolation methods that were used
to extrapolate elevations from the available spot heights in the hilly parts of Bangladesh [74]. It affected
the accuracy and quality of DEM in the hilly parts of Bangladesh. On the other hand, for LR and RF,
ALOS PALSAR based models outperformed the rest of the models. Here, again the difference between
LR_ALOS_DEM and LR_SRTM_DEM was low for success and prediction. In all cases, SOB based
models gave the worst performance and causal factors derived from SOB DEM cannot explain the
landslide susceptibility of the study area. For example: In LR_SOB_DEM, the LR model used two
significant causal factors: elevation and aspect (Table A2 of Appendix E). The low coefficient (ß) values
of these two factors indicate that these two causal factors cannot adequately explain the landslide
susceptibility of the study area.

In the second, scenario, for MFR models, the use of 15 causal factors increased the prediction
accuracy for MFR_SOB. But for the other three models, it reduced accuracy. It indicates that causal
factors derived from three global DEMs were capable enough to explain the landslide susceptibility
of the study area. MFR is a bivariate model, and it does not consider the interaction of the causal
factors. Moreover, unlike LR and RF models, it does not require non-landslide (pseudo absence point)
in modeling [44]. When all causal factors were used, PRs of some of the common causal factors were
comparatively higher than the PRs of the DEM-based causal factors. For example, PRs of distance from
the road networks were around 6.00 (Table A1 of Appendix D), while PRs of the DEM-based causal
factors ranged from 1.00–4.43. Therefore, the higher PRs of the common causal factors overshadowed
the DEM-based factors [6,35,44]. On the other hand, the quality of the SOB DEM was poor and was not
capable of explaining the landslide susceptibility of the study area. That is why, in the MFR_SOB model,
the prediction accuracy increased, but the increase was very low. For LR and RF models, in second
scenarios, the prediction accuracy increased by 2%–3% for global DEM-based models, while for SOB
based models, it exceeded 10%. Both LR and RF models consider the interaction of causal factors,
and therefore, in these two models, the effects of common factors on prediction performance were
revealed better than the MFR models.

The findings of this study have similarities with other research where the suitability of different
global and local DEMs was evaluated for landslide susceptibility mapping [26–28]. In most of the
studies, ASTER DEM-based landslide susceptibility maps were outperformed by the other global
DEM-based landslide susceptibility maps. On the other hand, local DEM-based landslide susceptibility
maps have better prediction accuracy than the global DEMs [1,29]. In these studies, local DEMs



Remote Sens. 2020, 12, 2718 22 of 35

were mainly light detection and ranging (LiDAR)-based DEMs, which generally have very high
spatial resolution compared to global DEMs [29]. SOB DEM was prepared under the project titles
“Improvement of Digital Mapping System of Survey of Bangladesh”, where the main aim was to
prepare a 1:5000 scale DEM of major cities in Bangladesh. This SOB project prepared DEM for the
hilly areas of Bangladesh, including our study area using the local spot heights. Different interpolation
methods were used to prepare 25m DEM from these local spot heights [73]. Therefore, in hilly areas
of Bangladesh, the quality of SOB DEM is not good enough, and the application of this DEM in
geomorphological studies such as landslide susceptibility mapping can give questionable results
similar to what we got in our study. Our study also pointed out the importance of the preparation
of very high-resolution DEMs using LiDAR for the hilly areas of Bangladesh. It will help in various
geomorphological studies, including landslide susceptibility mapping. As we did not find a substantial
difference among global DEMs, any global DEM can be utilized for landslide susceptibility mapping in
Bangladesh in the absence of very high-resolution DEMs.

For an in-depth study, we utilized non-parametric tests. Chang et al. [30] used non-parametric
tests to detect a significant difference in performance in landslide susceptibility maps prepared using
different DEM-derived causal factors. Their study did not find any significant difference in performance
for two machine learning methods: RF and support vector machines. In our research, we did not
see any significant difference in performance for RF and LR based models. But for the MFR model,
we found a significant difference in performance. It indicates that the effect of DEM-based causal
factors on the performance of bivariate models is more than on the multivariate and machine learning
models. Thus, we suggest using multivariate and machine learning methods and any one of the global
DEMs for landslide susceptibility mapping in Bangladesh.

7. Conclusions

This paper assesses the effects of the DEM-derived causal factors on the landslide susceptibility
maps produced using the bivariate (e.g., MFR), multivariate (e.g., LR), and machine learning (e.g.,
RF) models. In this study, we tested two scenarios: a. susceptibility assessment with only seven
DEM-based causal factors; b. inclusion of other 8 causal factors along with DEM-derived factors.
The success and prediction rate curves showed SRTM DEM outperformed under an MFR model in
both scenarios. Our analysis revealed that ALOS PALSAR DEM provided the best prediction accuracy
while using both LR and RF models in landslide susceptibility mapping. For all models and scenarios,
the SOB DEM does not perform well compared to other DEMs.

The prediction accuracies of landslide susceptibility mapping using only DEM-derived factors is
low compared to the utilization of all casual factors. Although SOB DEM has a poor performance in
susceptibility assessment with only a DEM-derived factor, the accuracy is significantly improved when
other non-DEM-based factors are added. Therefore, we argue that causal factors derived from the
SOB DEM have limited influence in landslide susceptibility assessment for the study area. Besides,
for the LR and RF models, the use of all the causal factors increased the prediction performance.
Spatial convergence analysis showed that three global DEM-based models have similar accuracies and
performed far better than SOB DEM-based models. Therefore, we recommend that SOB DEM should
not be used for landslide susceptibility assessment in Bangladesh. Although ASTER DEM-based
models showed the weakest performance among three global DEMs, the difference of performance
was negligible. Therefore, we recommend any one of these three global DEMs can be utilized for
landslide susceptibility assessment in Bangladesh.

Our study also highlights that, for the MFR model, DEM had the highest impact on the accuracy of
landslide susceptibility assessment as Wilcoxon rank tests showed that the performance of susceptibility
maps was significantly different. For the LR and RF models, the effect of DEM was less significant.
We contend that while using the bivariate model, we must be careful about the quality of DEM.
Two scenarios in this study helped to understand the impact of DEMs in landslide susceptibility
assessment. Moreover, we used multiple metrics to evaluate the accuracies of susceptibility assessment
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including AUC, spatial convergence analysis, and non-parametric test. Although the use of one
performance measure is a common practice, the utilization of various measures helped this research to
understand the impacts of DEM and makes the conclusion robust.

The main limitation of our study is that we cannot ascertain if adding more DEM-derived factors
such as terrain roughness could improve the result. The impacts of DEM on landslide susceptibility
maps are not universal and may vary from place to place. Therefore, we cannot conclude that a specific
DEM can be better than others. Advanced machine learning and deep learning methods can be used
to check whether these algorithms can reduce the differences in prediction performance of landslide
susceptibility maps prepared using different DEM-derived causal factors.
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Figure A2. Landslide Causal Factors: (a) Plan Curvature (ASTER); (b) Plan Curvature (SRTM); (c) Plan
Curvature (ALOS PALSAR); (d) Plane Curvature (SOB); (e) Profile Curvature (ASTER); (f) Profile
Curvature (SRTM); (g) Profile Curvature (ALOS PALSAR); (h) Profile Curvature (SOB); (i) TWI (ASTER);
(j) TWI (SRTM); (k) TWI (ALOS PALSAR); (l) TWI (SOB); (m) SPI (ASTER); (n) SPI (SRTM); (o) SPI
(ALOS PALSAR); (p) SPI (SOB).
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Appendix D

Table A1. Spatial relationship between Causal Factors and Landslides.ASTER DEM; B= SRTM DEM;
C= ALOS PALSAR DEM D= SOB DEM.

Causal Factors Classes
Area
(%),
Aij

Atotal

Landslides
(%),
Nij

Ntotal

FR,
Nij/Ntotal
Aij/Atotal

RF,
FRij∑

FRi
MinRF MaxRF (MaxRF -

MinRF) PR

Aspect
(ASTER)

Flat 0.00 0.00 0.00 0.00

0.03 0.17 0.14 1.00

North 16.7 4.17 0.25 0.03

Northeast 11.5 11.46 1.00 0.11

East 11.3 17.71 1.57 0.17

Southeast 10.2 13.54 1.33 0.14

South 10.4 13.02 1.25 0.13

Southwest 13.1 18.23 1.39 0.15

West 12.1 7.81 0.65 0.07

Northwest 10.1 9.90 0.98 0.11

North 4.6 4.17 0.91 0.10
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Table A1. Cont.

Causal Factors Classes
Area
(%),
Aij

Atotal

Landslides
(%),
Nij

Ntotal

FR,
Nij/Ntotal
Aij/Atotal

RF,
FRij∑

FRi
MinRF MaxRF (MaxRF -

MinRF) PR

Aspect
(SRTM)

Flat 0.00 0.00 0.00 0.00

0.03 0.16 0.13 1.00

North 17.40 4.69 0.27 0.03

Northeast 10.99 10.42 0.95 0.10

East 11.19 16.67 1.49 0.16

Southeast 10.31 10.94 1.06 0.11

South 10.45 13.02 1.25 0.13

Southwest 13.45 20.31 1.51 0.16

West 12.31 11.98 0.97 0.10

Northwest 9.65 7.81 0.81 0.09

North 4.26 4.17 0.98 0.11

Aspect
(ALOS PALSAR)

Flat 0.00 0.00 0.00 0.00

0.03 0.17 0.14 1.00

North 17.81 4.69 0.26 0.03

Northeast 10.98 10.42 0.95 0.10

East 10.71 16.67 1.56 0.17

Southeast 10.71 10.94 1.02 0.11

South 10.35 13.02 1.26 0.13

Southwest 13.39 20.31 1.52 0.16

West 11.84 11.98 1.01 0.11

Northwest 9.92 7.81 0.79 0.08

North 4.29 4.17 0.97 0.10

Aspect
(SOB)

Flat 22.99 13.76 0.60 0.05

0.03 0.40 0.37 2.37

North 8.59 3.17 0.37 0.03

Northeast 8.73 5.29 0.61 0.05

East 7.25 3.17 0.44 0.04

Southeast 6.14 29.10 4.74 0.40

South 7.73 6.35 0.82 0.07

Southwest 12.35 11.11 0.90 0.08

West 12.03 11.11 0.92 0.08

Northwest 8.10 10.58 1.31 0.11

North 6.08 6.35 1.04 0.09

Elevation (m)
(ASTER)

<47 43.64 22.92 0.53 0.11

0.00 0.50 0.50 3.57

47–89 33.46 40.10 1.20 0.26

89–156 14.33 33.33 2.33 0.50

156–264 6.52 3.65 0.56 0.12

264–577 2.06 0.00 0.00 0.00

Elevation (m)
(SRTM)

<60 52.93 26.56 0.50 0.11

0.00 0.41 0.41 3.05

60–108 30.88 53.65 1.74 0.38

108–178 9.16 17.19 1.88 0.41

178–282 5.29 2.60 0.49 0.11

282–577 1.75 0.00 0.00 0.00

Elevation
(m)

(ALOS PALSAR)

<5 51.07 26.04 0.51 0.11

0.00 0.44 0.44 3.15

5–54 32.46 52.08 1.60 0.35

54–126 9.52 19.27 2.03 0.44

126–229 5.22 2.60 0.50 0.11

229–526 1.74 0.00 0.00 0.00
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Table A1. Cont.

Causal Factors Classes
Area
(%),
Aij

Atotal

Landslides
(%),
Nij

Ntotal

FR,
Nij/Ntotal
Aij/Atotal

RF,
FRij∑

FRi
MinRF MaxRF (MaxRF -

MinRF) PR

Elevation (m)
(SOB)

<56 52.90 32.11 0.61 0.14

0.05 0.43 0.38 2.41

56–111 24.38 45.79 1.88 0.43

111–174 13.96 20.00 1.43 0.33

174–248 4.91 1.05 0.21 0.05

248–498 3.86 1.05 0.27 0.06

Slope (º)
(ASTER)

<4 33.20 12.50 0.38 0.06

0.06 0.31 0.31 2.22

4–8 28.17 23.96 0.85 0.13

8–14 21.88 30.73 1.40 0.22

14–22 12.64 25.52 2.02 0.31

22–52 4.10 7.29 1.78 0.28

Slope (º)
(SRTM)

<3 32.81 8.85 0.27 0.04

0.04 0.33 0.28 2.12

3–8 30.18 26.56 0.88 0.15

8–14 21.92 37.50 1.71 0.28

14–22 11.59 22.92 1.98 0.33

22–61 3.51 4.17 1.19 0.20

Slope (º)
(ALOS PALSAR)

<4 32.64 5.73 0.18 0.03

0.03 0.34 0.31 2.25

4–9 28.63 27.60 0.96 0.16

9–15 22.79 36.46 1.60 0.26

15–23 12.29 25.52 2.08 0.34

23–65 3.65 4.69 1.28 0.21

Slope (º)
(SOB)

<2 60.16 48.68 1.50 0.45

0.07 0.35 0.28 1.79

2–4 22.75 28.04 0.81 0.16

4–8 11.49 20.63 1.23 0.24

8–14 4.50 1.59 1.80 0.35

14–46 1.10 1.06 0.35 0.07

TWI (ASTER)

<6 40.58 60.94 1.50 0.45

0.00 0.45 0.45 3.19

6–8 29.20 29.17 1.00 0.30

8–11 12.33 6.77 0.55 0.16

11–14 10.90 3.12 0.29 0.09

>14 6.98 0.00 0.00 0.00

TWI
(SRTM)

<6 45.22 71.35 1.58 0.54

0.00 0.54 0.54 4.03

6–8 26.17 23.96 0.92 0.31

8–11 10.29 3.65 0.35 0.12

11–14 12.04 1.04 0.09 0.03

>14 6.28 0.00 0.00 0.00

TWI
(ALOS PALSAR)

<6 44.46 76.04 1.71 0.60

0.00 0.60 0.60 4.30

6–9 29.03 18.23 0.63 0.22

9–12 9.11 3.65 0.40 0.14

12–15 15.41 2.08 0.14 0.05

>15 1.99 0.00 0.00 0.00

TWI
(SOB)

<8 24.42 29.63 1.21 0.29

0.04 0.29 0.25 1.61

8–11 32.60 36.51 1.12 0.27

11–14 22.74 20.11 0.88 0.21

14–17 17.03 13.23 0.78 0.19

17–32 3.21 0.53 0.16 0.04
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Table A1. Cont.

Causal Factors Classes
Area
(%),
Aij

Atotal

Landslides
(%),
Nij

Ntotal

FR,
Nij/Ntotal
Aij/Atotal

RF,
FRij∑

FRi
MinRF MaxRF (MaxRF -

MinRF) PR

SPI (ASTER)

<−3 37.02 38.54 1.04 0.24

0.06 0.30 0.24 1.67

−3–0 9.55 2.60 0.27 0.06

0–4 23.11 30.21 1.31 0.30

4–6 23.56 23.44 0.99 0.23

>6 6.77 5.21 0.77 0.18

SPI
(SRTM)

<−7 32.38 38.54 1.19 0.27

0.05 0.27 0.21 1.67

−7–−3 11.23 2.60 0.23 0.05

−3–−1 29.73 30.21 1.02 0.23

−1–2 20.94 23.44 1.12 0.25

>2 5.72 5.21 0.91 0.20

SPI
(ALOS PALSAR)

<−5 21.13 17.19 0.81 0.27

0.05 0.27 0.21 1.55

−5–−1 21.11 15.63 0.74 0.05

−1–3 25.19 26.04 1.03 0.23

3–5 25.87 34.90 1.35 0.25

>5 6.70 6.25 0.93 0.20

SPI (SOB)

<−6 4.37 3.17 0.73 0.16

0.14 0.30 0.16 1.00

−6–−2 9.28 6.88 0.74 0.16

−2–1 27.88 18.52 0.66 0.14

1–3.1 33.70 37.04 1.10 0.24

>3.1 24.77 34.39 1.39 0.30

Plan curvature
(ASTER)

Convex 37.16 38.54 1.04 0.43

0.05 0.52 0.47 3.29Flat 15.76 2.08 0.13 0.05

Concave 47.09 59.37 1.26 0.52

Plan curvature
(SRTM)

Convex 37.79 45.31 1.20 0.50

0.01 0.50 0.49 3.64Flat 15.81 0.52 0.03 0.01

Concave 46.41 54.17 1.17 0.49

Plan curvature
(ALOS PALSAR)

Convex 37.38 50.00 1.34 0.54

0.00 0.60 0.60 4.30Flat 17.39 0.52 0.03 0.01

Concave 45.22 49.48 1.09 0.44

Plan curvature
(SOB)

Concave 33.42 41.05 1.23 0.43

0.20 0.43
0.23

1.44Flat 25.42 14.74 0.58 0.20

Complex 41.15 44.21 1.07 0.37

Profile curvature
(ASTER)

Convex 35.56 50.00 1.41 0.57

0.05 0.52 0.46 3.28Flat 12.81 1.56 0.12 0.05

Concave 51.63 48.44 0.94 0.38

Profile curvature
(SRTM)

Convex 36.20 54.69 1.51 0.62
0.00

0.62 0.62 4.68Flat 13.89 0.00 0.00 0.00

Concave 49.91 45.31 0.91 0.38

Profile curvature
(ALOS PALSAR)

Convex 36.80 54.69 1.49 0.61

0.00 0.61 0.61 4.43Flat 14.60 0.00 0.00 0.00

Concave 48.60 45.31 0.93 0.39
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Table A1. Cont.

Causal Factors Classes
Area
(%),
Aij

Atotal

Landslides
(%),
Nij

Ntotal

FR,
Nij/Ntotal
Aij/Atotal

RF,
FRij∑

FRi
MinRF MaxRF (MaxRF -

MinRF) PR

Profile
curvature(SOB)

Convex 35.78 36.84 1.03 0.61

0.00 0.61 0.61 3.92Flat 23.17 12.11 0.52 0.00

Concave 41.05 51.05 1.24 0.39

Distance from the
drainage

Networks (m)

<1427 22.58 42.33 1.87 0.36 0.09
(A)

0.36
(A)

0.27
(A)

1.91
(A)

1427–2853 25.63 22.75 0.89 0.17 0.09
(B)

0.36
(B)

0.27
(B)

2.02
(B)

2853–4280 25.04 15.87 0.63 0.12 0.09
(C)

0.36
(C)

0.27
(C)

1.94
(C)

4280–5885 19.48 8.99 0.46 0.09 0.09
(D)

0.36
(D)

0.27
(D)

1.72
(D)>5885 7.26 10.05 1.38 0.26

Distance from the
fault lines (m)

<2358 24.62 30.16 1.23 0.30 0.00
(A)

0.33
(A)

0.33
(A)

2.33
(A)

2358–4715 26.28 35.45 1.35 0.33 0.00
(B)

0.33
(B)

0.33
(B)

2.46
(B)

4715–7191 23.73 27.51 1.16 0.28 0.00
(C)

0.33
(C)

0.33
(C)

2.37
(C)

7191–10197 18.72 6.88 0.37 0.09 0.00
(D)

0.33
(D)

0.33
(D)

2.09
(D)>10917 6.65 0.00 0.00 0.00

Rainfall (mm)

<2446 28.68 7.94 0.28 0.05 0.05
(A)

0.36
(A)

0.31
(A)

2.16
(A)

2446–2525 24.82 46.56 1.88 0.36 0.05
(B)

0.36
(B)

0.31
(B)

2.29
(B)

2525–2606 21.43 23.81 1.11 0.21 0.05
(C)

0.36
(C)

0.31
(C)

2.20
(C)

2606–2707 9.54 14.29 1.50 0.29 0.05
(D)

0.36
(D)

0.31
(D)

1.94
(D)2707–2864 15.53 7.41 0.48 0.09

Distance from the
road networks (m)

<1165 33.23 89.42 2.69 0.88 0.00
(A)

0.88
(A)

0.88
(A)

6.26
(A)

1165–2854 32.02 8.99 0.28 0.09 0.00
(B)

0.88
(B)

0.88
(B)

6.61
(B)

2854–4542 21.43 1.59 0.07 0.02 0.00
(C)

0.88
(C)

0.88
(C)

6.38
(C)

4542–6552 8.54 0.00 0.00 0.00 0.00
(D)

0.88
(D)

0.88
(D)

5.64
(D)6552–10250 4.78 0.00 0.00 0.00

NDVI

<0.1 0.06 0.00 0.00 0.00 0.02
(A)

0.36
(A)

0.34
(A)

2.41
(A)

0.1–0.2 73.55 70.26 0.96 0.10 0.02
(B)

0.36
(B)

0.34
(B)

2.54
(B)

0.2–0.3 18.40 0.00 0.00 0.00 0.02
(C)

0.36
(C)

0.34
(C)

2.45
(C)

0.3–0.4 5.37 14.87 2.77 0.29 0.02
(D)

0.36
(D)

0.34
(D)

2.17
(D)0.4–0.5 2.62 14.87 5.67 0.60
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Table A1. Cont.

Causal Factors Classes
Area
(%),
Aij

Atotal

Landslides
(%),
Nij

Ntotal

FR,
Nij/Ntotal
Aij/Atotal

RF,
FRij∑

FRi
MinRF MaxRF (MaxRF -

MinRF) PR

Land use/ land
cover

Vegetation 73.55 70.26 0.96 0.10 0.00
(A)

0.60
(A)

0.60
(A)

4.27
(A)

Water
bodies 18.40 0.00 0.00 0.00 0.00

(B)

0.60
(B)

0.60
(B)

4.52
(B)

Bare land 5.37 14.87 2.77 0.29 0.00
(C)

0.60
(C)

0.60
(C)

4.36
(C)

Built up 2.62 14.87 5.67 0.60 0.00
(D)

0.60
(D)

0.60
(D)

3.85
(D)

Land use /land
cover change

Water-vegetation5.31 2.05 0.39 0.01 0.00
(A)

0.23
(A)

0.23
(A)

1.60
(A)

Water-bare
Land 0.70 0.51 0.73 0.02 0.00

(B)

0.23
(B)

0.23
(B)

1.69
(B)

Water-built
up 0.25 0.51 2.02 0.05 0.00

(C)

0.23
(C)

0.23
(C)

1.63
(C)

Vegetation-bare
land 3.54 12.82 3.62 0.09

0.00
(D)

0.23
(D)

0.23
(D)

1.44
(D)

Vegetation-built
up 1.74 9.23 5.31 0.14

Built up-
vegetation 0.81 1.54 1.91 0.05

Built
up-bare

land
0.23 0.51 2.20 0.06

Bare
land-vegetation 2.09 7.18 8.65 0.23

Bare land-
built up 0.45 3.59 3.44 0.09

No change 84.88 62.06 0.73 0.02

Geology

Dihing and
Dupi Tila
formation

4.65 19.07 4.10 0.40 0.00
(A)

0.40
(A)

0.40
(A)

2.83
(A)

Boka Bil
formation 28.92 30.41 1.05 0.10 0.00

(B)

0.40
(B)

0.40
(B)

3.00
(B)

Bhuban
formation 8.97 16.49 1.84 0.18 0.00

(C)

0.40
(C)

0.40
(C)

2.89
(C)

Tipam
sandstone 12.41 27.84 2.24 0.22

0.00
(D)

0.40
(D)

0.40
(D)

2.56
(D)

Valley
alluvium

and
colluvium

0.46 0.00 0.00 0.00

Dupi tile
formation 14.73 3.61 0.25 0.02

Water
bodies 26.46 0.00 0.00 0.00

Girujan
clay 3.41 2.58 0.76 0.07
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Appendix E

Table A2. Coefficients of significant causal factors of DEM based: LR_ASTER_DEM; LR_SRTM_DEM;
LR_ALOS_DEM and LR_SOB_DEM and all factors based: LR_ASTER; LR_SRTM; LR_ALOS and
LR_SOB models.

Factors Used DEM Causal Factors ß Standard Error Wald Sig Exp(ß)

DEM based

ASTER

Elevation 0.06 0.01 29.72 0.00 1.06

Slope 0.26 0.03 78.02 0.00 1.30

SPI 0.08 0.04 5.28 0.02 1.09

Constant −6.99 1.06 43.10 0.00 0.00

SRTM

Slope 0.14 0.02 44.32 0.00 1.15

Elevation 0.04 0.01 15.93 0.00 1.04

TWI 0.04 0.01 12.09 0.00 1.04

Constant −4.70 0.50 86.89 0.00 0.01

ALOS PALSAR

Aspect 0.09 0.05 3.818 0.04 1.09

TWI 0.02 0.01 5.94 0.02 1.02

Slope 0.05 0.02 23.18 0.00 1.05

Elevation 0.05 0.01 18.17 0.00 1.05

Plan 0.05 0.03 3.33 0.07 1.05

Constant −6.77 1.40 23.35 0.00 0.00

SOB

Elevation 0.04 0.01 26.72 0.00 1.04

Aspect 0.05 0.01 23.21 0.00 1.05

Constant −1.68 0.25 47.05 0.00 0.19

All factors

ASTER

Elevation 0.08 0.02 26.61 0.00 1.087

Slope 0.31 0.04 58.81 0.00 1.37

Change 1 0.18 0.05 15.72 0.00 1.20

Drainage 2 0.07 0.02 11.96 0.00 1.07

Rainfall −0.04 0.02 4.24 0.04 0.96

Road 3 0.04 0.01 37.47 0.00 1.04

Constant −9.58 1.14 71.27 0.00 0.00

SRTM

Slope 0.16 0.03 42.52 0.00 1.175

Elevation 040 0.01 8.17 0.00 1.041

SPI 0.24 0.09 7.34 0.01 1.266

Land 4 0.08 0.02 20.74 0.000 1.080

Drainage 2 0.06 0.02 11.69 0.001 1.063

Rainfall −0.04 0.02 4.94 0.026 0.961

Road 3 0.03 0.01 27.71 0.000 1.025

Fault 5 0.08 0.03 9.82 0.002 1.082

Constant −14.59 2.58 31.91 0.000 0.000

ALOS PALSAR

Aspect 0.12 0.051 5.464 0.02 1.126

Slope 0.13 0.02 42.01 0.00 1.14

Elevation 0.06 0.01 16.97 0.00 1.06

Change 1 0.14 0.04 11.65 0.00 1.15

Drainage 2 0.06 0.02 13.48 0.00 1.06

Road 3 0.03 0.01 32.67 0.00 1.02

Constant −8.36 1.00 69.71 0.00 0.00

SOB

Aspect 0.05 0.01 12.13 0.00 1.05

Land 4 0.05 0.01 16.62 0.00 1.05

Fault 5 0.07 0.02 14.15 0.00 1.07

Road 3 0.03 0.04 80.38 0.00 1.04

Constant −5.05 0.64 61.70 0.00 0.01

1 = Land use/land cover change; 2 = distance from the drainage networks; 3 = distance from the road networks;
4 = land use/land cover; 5 = distance from the fault lines.
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