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Abstract: In an arid region, flash floods (FF), as a response to climate changes, are the most hazardous
causing massive destruction and losses to farms, human lives and infrastructure. A first step towards
securing lives and infrastructure is the susceptibility mapping and predicting of occurrence sites of FF.
Several studies have been applied using an ensemble machine learning model (EMLM) but measuring
FF magnitude using a hybrid approach that integrates machine learning (MCL) and geohydrological
models have not been widely applied. This study aims to modify a hybrid approach by testing three
machine learning models. These are boosted regression tree (BRT), classification and regression trees
(CART), and naive Bayes tree (NBT) for FF susceptibility mapping at the northern part of the United
Arab Emirates (NUAE). This is followed by applying a group of accuracy metrics (precision, recall
and F1 score) and the receiving operating characteristics (ROC) curve. The result demonstrated
that the BRT has the highest performance for FF susceptibility mapping followed by the CART and
NBT. After that, the produced FF map using the BRT was then modified by dividing it into seven
basins, and a set of new FF conditioning parameters namely alluvial plain width, basin gradient and
mean slope for each basin was calculated for measuring FF magnitude. The results showed that the
mountainous and narrower basins (e.g., RAK, Masafi, Fujairah, and Rol Dadnah) have the highest
probability occurrence of FF and FF magnitude, while the wider alluvial plains (e.g., Al Dhaid) have
the lowest probability occurrence of FF and FF magnitude. The proposed approach is an effective
approach to improve the susceptibility mapping of FF, landslides, land subsidence, and groundwater
potentiality obtained using ensemble machine learning, which is used widely in the literature.
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1. Introduction

Flash floods are a temporary overflow of rivers or valley plains as a natural response to unusually
heavy rains. They can cause damage to infrastructure and human life [1,2]. FF usually occur frequently
at narrow mountainous valleys (wadis), alluvial fans at the foot of mountainous and narrow coastal
areas as a response to climate change and intensive rainfall over an impermeable and an impervious
surface [3,4]. Globally, about one-third of the Earth’s surface (where more than 70% of the world
population reside), frequently experiences to flash flooding [5].

The UAE, including the study area, has not escaped this natural hazard since it experiences
several flash flooding on a regional scale. The northern part of the UAE recorded huge amounts of
rain between 9 January and 12 January 2020. The heaviest rainfall was 24 years ago in Khor Fakkan
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with 144 mm (5.66 inches) of accumulated rainfall (https://www.ncm.ae). In Ras Al Khaimah (RAK),
one woman was crushed to death after a wall collapsed during a violent storm.

In Ghalilah and Al Fahlain villages of the RAK, flash floods destroyed roads, farms and flooded
the village graveyard (Figure 1). Away from the mountainous areas, the cities of Sharjah and Dubai
have experienced monstrous floods consuming roads and vital areas such as Terminal 1 of Dubai
International Airport, shopping malls and Jabal Ali (https://www.ncm.ae). Flash flooding events solely
depend on several terrain and geohydrological parameters such as alluvial plain width, mountainous
valley width, altitude, topographic slopes, topographic curvature, steam density, topographic relief,
the angle of repose and, of course, the intensity of rainfall. The angle of repose or talus slope ranges
between 25 and 40 and depends upon the nature and type of the rocks and is directionally proportional
to the flash flood magnitude [6].
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These consequences can be controlled or, at least, reduced by constructing a regional and precise
susceptibility mapping and analysis [7] and calculating the angle of repose or talus for each hydrological
basin. Thus, building an accurate geohazard model and measuring flash flood magnitude over a
regional scale is one of the researchers and decision-makers important task [8]. Susceptibility can
be defined as a prediction of where the future hazardous event is likely to occur [9,10]. The wide
availability of free of charge remote sensing data and machine learning algorithms allowed researchers
to susceptibility map and predict flash floods over a regional scale efficiently and economically [11–14].

Several hydrological models have been developed using hydrological parameters such as rainfall
and runoff [15–19]. However, these techniques have been built based on a single dimension and
changeable parameters due to climate change and soil erosion. Additionally, these models lack sensitive
analysis and field observation. Other studies have been applied for FF susceptible mapping using the
data-driven and K-nearest neighbors (K-NN) [20–23], analytic hierarchy process (AHP) [24], frequency
ratio (FR) [25], firefly algorithm (FA) [26,27], feature selection method (FSM) [26], support vector
machine (SVM) [27] artificial neural network (ANN) [28], and weight of evidence (WoE) [29], and
decision tree (DT) [30,31].

A novel approach has been employed for flood susceptibility mapping [29–33]. Recently,
a comparative assessment of decision tree algorithms for susceptibility modeling has been performed [34–36].
Most of these studies have been focused on susceptibility mapping of FF using ensemble machine
learning or a comparative assessment of machine learning algorithms. However, these studies have
not focused on FF conditioning parameters such as alluvial plain width, valley width and basin slope.
Additionally, the magnitudes of FF has not been taken into considerations. This study aims to modify
a hybrid integration approach for flash flood susceptibility mapping in an arid region. Here, we first
performed a comparison between BRT, CART, and NBT models for FF susceptibility mapping for the
first time. The best FF susceptibility map was chosen and then modified by dividing it into seven
basins. Each basin has its own FF magnitude. The FF magnitude was calculated using four new FFCPs
namely alluvial plain width, valley width, basin gradient and mean slope. The proposed approach
represents an advancement step to modify predicted maps of FF, landslides, land subsidence and
groundwater potential produced using machine learning models. The modified approach can be of
great help to risk management specialists and geohazard prevention scientists.

2. Study Area

The study area stretches from longitude 54◦58′21′′E to 56◦29′42′′E and latitude 24◦33′45′′N to
26◦5′24′′N and has an area of about 11,871 km2. It includes the Emirates of Dubai, Sharjah, Ajman,
Umm Al Quwain, Ras al Khaimah and Fujairah (Figure 2). Most of the built-up area is concentrated on
coastal strips and waterfronts such as creeks and artificial lakes, while the agricultural area is limited
to the alluvial plains, wherever rainfall and paleochannels (wadis) are found.

The area is characterized by narrow alluvial coastal plains in the north-western and the eastern
parts of the study area with a width ranging from 2 to 5 km, reaching its maximum width at Falahyeen
and Al Dhaid villages (No. 9 and 19 in Figure 2). Lithologically, the upper streams (mountainous areas)
are dominated by the igneous and metamorphic rocks in the east and carbonate rocks in the north and
alluvial deposits at the foot of the mountainous areas [13]. The area has weather varying from hot and
humid during the summer and being warm during the winter (Figure 3a). The annual rainfall varies
from 30 mm in the south-eastern desert near the city of Dubai to 180 mm in the mountainous areas in
the north and east [37,38]. The maximum number of rainfall days over the study is four to six days
per month during the period from December to March (Figure 3b). The maximum daily precipitation
value is 1.2 mm during March (Figure 3c) (Giri and Singh 2015). The estimated annual rainfall over the
mountainous and coastal areas was about 97% of total rainfall over the NUAE [38].
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Figure 2. Elevation map generated from a DEM showing the location of the study area (white 
polygon), and main cities and towns of the study area (green stars). 

Figure 2. Elevation map generated from a DEM showing the location of the study area (white polygon),
and main cities and towns of the study area (green stars).

Hydrologically, the area is comprised of three aquifers: a carbonate, ophiolite, coastal, and an
alluvial. The aquifers are drained by several surface wadi courses. Their trends are common in
the NW-SE, NNW-SSE, NE-SW and NNE-SSW directions [39,40]. These features play an important
role in flash floods by accumulating rainwater from upstream and crash houses and farms in the
downstream [39].
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Figure 3. Monthly temperature and precipitation (a), number of days of rainfall (b), and daily
precipitation (c) over the NUAE including the study area.

3. Datasets and Methodology

The proposed approach can briefly be described as the following steps: (i) constructing a flash flood
inventory map (dependent variable), (ii) constructing flash floods conditioning parameters (independent
variables), (iii) spatially analyzing the relationship between each conditioning parameter and flash
flood events, (iv) optimal parameterization and flash flooding susceptibility mapping, (v) evaluating
the performance and assessing the accuracy of machine learning models, and (vi) dividing the area into
seven basins and calculating flash floods magnitude for each basin. A flowchart of the methodology
adopted in the current study is shown in Figure 4.
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3.1. Construction of Flash Floods Inventory Map (FFIM)

FFIM is an excellent indicator for FF susceptibility mapping. Here we used several sources
including Google searches, the Google Earth application and local reports of newspapers and weather.
These reports were collected and downloaded via the webpage of the National Centre of Metrology
webpage (https://www.ncm.ae/Radar_UAE_Merge). Since 1990, 61 flash flood events were reported
across the study area, and the most severe event happened between 9 and 12 January 2020 with 144 mm
(5.66 inches).

Most of the FF locations were reported to be distributed in the mountainous valleys, narrow
alluvial coastal plains and alluvial fans at the foot of the mountainous areas (Figure 2). These FF
locations were used as training datasets to investigate the spatial relationship between flash floods
conditioning parameters and flash flooding occurrence, to learn the machine learning models, and to
evaluate the performance and assess the accuracy of the three machine learning models.

3.2. Spatial Analysis and Construction of Flash Flood Conditioning Parameters

3.2.1. Construction of FFCPs

This study aims to map the susceptibly of flash floods and measure their magnitudes in an arid
mountainous region with a minimum number of essential FFCPs to reduce errors and computational
time and enhance the performance of the BRT, CART and NBT models [41,42]. Three types of FFCPs
were chosen based on their degrees of influencing FF occurrences namely terrain and geohydrology.
The terrain parameters include altitude, topographic slope, relief, topographic minimum curvature,
while the geohydrology parameters include lithology, stream network (wadi courses), stream density,
and distance from stream courses (Figures 5 and 6). Thematic maps of FFCPs such as altitude,
topographic slope, topographic relief, topographic curvature, and stream networks (wadi courses)
were generated from ALOS DEM with a spatial resolution of 30 m using raster surface of 3D analysis
and a hydrology of spatial analysis tools implemented in ArcGIS v.10.2 software. First, maps of altitude,
slope, relief and topographic curvature were calculated by importing a 30 m DEM, converting a DEM
into raster grid and applying raster surface to the raster grid. The range of altitude and relief from
100 m to 1800 m (m.s.l), the slope map classified into five classes: (i) 0◦–5◦, (ii) 5◦–15◦, (iii) 15◦–30◦,
(iv) 30◦–60◦, and (v) >60◦ and the range of curvature from −200 to 50. Second, stream network was
derived from a DEM using D8 algorithm implemented in hydrology tool. The algorithm starts by fill
gaps (central pixel with no data) and determines into which neighboring pixel any water in a central
will flow. After that, the flow direction and downhill slope of a central pixel to one of eight neighbors
was calculated. Then, flow accumulation was calculated followed by deriving major stream networks
using a threshold value of 45 [14]. This value was optimal to reveal the major stream networks in the
study area. After that, drainage basins were calculated using the calculated flow direction theme. Third,
distance from stream networks and the density of stream network were constructed using distance and
density of spatial analyst tools implemented in the ArcGIS v. 10.2 software. Fourth, the lithological
map was constructed from the Operational Landsat Imager (OLI) Landsat 8 acquired on 9 December
2019 (Path 160, rows 42 and 43) using maximum likelihood classifier (MLC) implemented in the Envi.
v. 4.5 software. The MLC was trained using 200 training datasets collected from scanned geological
maps at a scale of 50,000 collected from the UAE ATLAS. The ALOS DEM and Landsat 8 images were
downloaded from the USGS Global Visualization Viewer (GloVis) (www.glovis.usgs.gov) portal.

https://www.ncm.ae/Radar_UAE_Merge
www.glovis.usgs.gov
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3.2.2. Spatial Analysis

Altitude and topographic slope are the most important conditioning parameters for FF occurrences
as they control water flow, flow direction, surface runoff and infiltration rate [25,42]. Sites at a
lower altitude have a higher probability of FF where water flowing down from upper streams [43].
The topographic slope has a crucial influence on surface water flow, flow direction, runoff, infiltration
rate and FF occurrence. As topographic slope increases, runoff potential increases resulting in FF [44].
Topographic curvature has a similar influence on FF occurrence. Sites with negative values for
curvatures are zones of water accumulation and, thus, a higher probability of FF occurrence, while sites
with positive values for curvature are zones of water dispersion, and thus have a lower probability
occurrence of FF [25]. Lithology and its physical characteristics (e.g., porosity and permeability) strongly
influence infiltration rate, runoff potential, stream network distribution, and thus FF occurrence [29].
Other FF conditioning parameters such as stream density and distance from streams also play a
significant role in FF occurrence. As the distance from streams decreases, the probability of FF
occurrence increases [45]. Factors such as aspect, land use/land cover (LULC), NDVI, topographic
wetness index and index of the erosion power are secondary parameters and introduce bias and error
during the modeling process and can be ignored [12,46,47]. These various FFCPs were chosen based
on the geoenvironmental characteristics of the study area and used widely in this literature. These
parameters can help in detecting flash flood-affected areas from the surrounding areas since flash flood
occurrence is identified as varying greatly with the intensity of rainfall, altitude, slope and stream
network [48,49].

3.3. Background and Theories of Models

3.3.1. Boosted Regression Tree (BRT)

The BRT is an ensemble technique and differs statistically from traditional methods. The BRT
consists of machine learning and statistical techniques designed to improve the accuracy and the
performance of a single model by fitting a group of models before combining these models for
classification and prediction [50]. The BRT model merges regression from classification and regression
tree (CART) and boosting techniques to produce a combined modeling. Boosting is a technique
designed to enhance the performance of regression trees similar to model averaging [51]. However,
the BRT implements a stepwise process, where the models are fitted to a subset of the training dataset.
This subset used at every iteration of the model fit is stochastically chosen with no replacement.

The shrinkage parameter or learning rate determines the level of contribution for each tree to the
growing model, while the number of nodes in a tree (tree complexity) decides whether interactions are
fitted [52]. Then, these parameters determine the total number of trees required for prediction [53].

Elith et al. (2008) [53] described the model as the following steps:
1. Initialize weights to be equal wi = 1/n for m = 1 to iter classification Cm:
2. Fit classifier Cm to the weight data
3. Compute the weight or misclassification rate rm

4. Let the classifier weight
αm = log((1 − rm)/rm) (1)

5. Recalculate weights
wi = wiexp(αmI(yi , Cm)) (2)

6. Majority vote classification: sign [ΣM
m−1 αmCm(x)]

3.3.2. Classification and Regression Trees (CART)

The CART is one of the most common algorithms for the classification of data. It is resistant
to missing data, and its variables do not need to have a normal distribution [51,54]. It is a binary
recursive partitioning procedure capable of processing continuous and nominal attributes as targets
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and predictors and was developed by Friedman (1975) [55], Breiman (1984) [56], and Breiman and
Stone (1978) [57].

The algorithm has been successfully applied in medical applications to predict the value
of a dependent variable based on the different values of independent variables [58], economics
applications [59], photogrammetry [60], environmental protection [61], food science and chemistry [62,63],
landslide susceptibility mapping [64], and groundwater potential mapping [65]. Classification trees are
used when an independent variable is categorized, while regression trees are used when independent
is continues and to predict its value (Figures 5 and 6). The CART algorithm is designed as a sequence
of trees where the ends are terminal nodes. It consists of three elements: (i) rules of splitting data at a
node based on the value of one variable, (ii) stopping rules for deciding when a branch is terminal
and can be split no more, and (iii) a prediction for the target variable in each terminal node (Figure 7).
The major problem of building a valuable tree is finding the proper guidelines to prune the tree.
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At the first stage, classification is created and leads to producing a tree with several branches.
The number of branches of any tree depends on the degree of dispersion of data. The size of the tree
depends on specific parameters such as the minimum population in the successive nodes, the minimum
population of children, the maximum number of levels and the maximum number of nodes [51]. It is
worthy to note that there is no relationship between the size of the tree and the accuracy of classification.
The correct classification can be made by decreasing the overfiting of the training set.

The phase of cutting is created by generating the biggest possible trees and this process lies in
reducing the total number of leaves and tending to increase the accuracy of classification. The final
phase is the selection of a tree with a lower number of misclassifications and a higher accuracy. This
higher accuracy can be released with the application of cross-validation using Equation (3):

RE(d) = 1/(N
∑

(i=1) (yi − d(xi))2 (3)

where yi is the number of points in the testing set (real variable), xi is the number of points in the
testing set (variable classified with d model), N is the number of cases in a testing set. The results of
the predicted model were evaluated using a set of testing samples. The measure of the cross-validation
Rα(T) is a linear dependence between the complexity of the tree and the cost of misclassifications
Equation (4) [51].

Rα(T) = R(T) + αT

1 
 

⬄ α = Rα(T) − R(T)/|T| (4)

where Rα(T) is the cost-complexity measure, R(T) is the cost of misclassifications, |T| is the complexity
of tree measures as the number of terminal nodes in the tree, a parameter of tree complexity (assumes
values from 0 for a maximal tree to 1 for a minimal tree).

The produced regression rule set was then applied to all FFCPs to map flash flood susceptibility.
It is worthily of note that the dependence (complexity of the tree) and accuracy of classification
should be taken into consideration. The low complexity of the tree usually leads to the low accuracy
of classification.
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The output of CART is a hierarchical binary tree which subdivides the prediction space into
several regions (Rm) where the response factors have similar values (≡ am) based on Equation (5):

f � am; ∀x ∈ Rm (5)

3.3.3. Naive Bayes Tree (NBT)

Naive Bayes (NB) is a machine learning classifier that creates a probability-based model. It works
based on Bayes Theorem, which is known as Naive Bayes. The NB uses a decision tree (DT) for its
structure and organizes an NB model on every leaf node of the constructed DT [66]. The NBT exhibits
a significant classification performance and accuracy [67,68].

During the NB process, the impact of an attribute value on a specific class is independent of the
value of another attribute and known as class conditional independence. This conditional independence
of NB makes the datasets to train quicker and it considers all the vectors as independent and applies
the Bayes rule [69]. Bayes role can be explained as follows (Equation (6):

P(A|B) = P(B|A) P(A)/P(B) (6)

where:
P(A|B) = conditional probability of A given B
P(B|A) = conditional probability of A given B
P(A) = probability of event A
P(B) = probability of event B
The model starts by estimating the probability of each class in the model, calculating the covariance

and variance matrix, and building the discriminate function for each class [70–72].

3.4. Optimal Model Parameterisation and Flash Flood Susceptibility Mapping

As a first step, the CART, BRT and NB models were fitted in SATISTICA v. 7 [73], Salford
system [74,75], and in R (R Development Core Team 2006) v.3.0.2 [76], implementing gbm, dismo, rpart,
and random forest packages [77]. These tools have a stochastic gradient boosting tree which is widely
used for regression problems related to predicting and mapping continues dependent variables [73].
After that, the setting and optimizing of all parameters was performed. These parameters were;
learning rate, the number of additive trees, the proportion of sub-sampling, and so forth.

Here, the optimal value for the learning rate was set as 0.1, additive trees were 185, and the
maximum size of the tree was five. These values may lead to precise results accuracy [74]. In this
study, the random point’s values have been extracted from each variable of FFCPs for the presence
and absence condition of the FF. After that, all three machine learning models were then run based
on the mechanism of the open-source tools. Using these tools, FFSM was calculated for each pixel in
the thematic maps of FFCPs and then converted into text files. Finally, these text and dbase files were
imported into SPSS v.25 to evaluate the models’ performance and generate FFSM in GIS environment
of ArcGIS v.10.2 software.

During the prediction processing, the models used FFCPs and the regression tree separates the
FFCPs into two groups [78,79]. A group such as distance from streams, altitude, and slope in the
upper part of the regression tree indicates an approximate area with a higher probability occurrence
of FF. Another group, such as altitude, slope, and topographic curvature in the lower part of the
regression tree allowed recognition areas of a higher probability of FF occurrence. Among several
interval methods, the quantile method, which is used widely in the literature, was chosen to classify
FFSM [12,14,36]. The produced FFSM was then classified into four classes namely low, moderate, high,
and very high.
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3.5. Evaluation of the Models Performance

To evaluate the models’ performance, we used 61 FF locations. The datasets were divided into 43
(70%) for model training and 18 (30%) for the model validation. These datasets were classified and
selected randomly using the Hawth’s Tool implemented in the ArcGIS v. 10.2 Software. We calculated
the accuracy metrics for each model. Each metric includes accuracy, precision, recall and F1 score.
The F1 score was found to the best technique and used widely in literature [13,14,80]. The F1 score was
calculated based on four parameters, namely true positive (TP), true-negative (TN), false-positive (FP),
and false-negative (FN) using the following equations from 7–11:

Accuracy = TP + (TN/TP) + FP + FN + TN (7)

Kappa = po − pe/(1 − pe) (8)

where po is the observed agreement ratio, and pe is the expected agreement

Precision = TP/(TR + FP) (9)

Recall = TP/(TP + FN) (10)

F1 = 2 × precision recall/(precision + recall) (11)

where TP is the true-positive; FP is the false-positive and FN is the false-negative.
The performance of SVM and SAM were evaluated using the open-source R 4.0.0 software.

Further validation was performed using the receiver operating characteristics (ROC) curve, which is
used widely in the literature due to its simplicity, easiness and higher accuracy [81]. The curve has
been successfully used by several researchers in several applications such as groundwater potential
mapping [82], and land subsidence susceptibility mapping [12]. The obtained prediction FF maps
sometimes contain errors. These errors sometimes come from the deficiency of the FFCPs quality and
the structure of the models [46,83].

The accuracy of the produced prediction maps was measured using the area under the curve
(AUC) [84]. The AUC ranges from 0 to 1. AUC with a value of 1 indicating a good prediction, and
a value of 0 indicating the model is not efficient and cannot predict FF occurrence. Both the success
and prediction rates were created to assess the accuracy of the FFSM [85]. The value of AUC can be
estimated via the following equation [86]

AUC = Σ (TP + ΣTN/(P + N)) (12)

where TP (true positive) and TN (true negative) are the numbers of pixels that are correctly classified.
P is the total number of pixels with torrential phenomena, and N is the total number of pixels of no
flash floods.

3.6. Geohydrological Model for FFMI and Filling the Gaps in MLC Maps

Although ensemble-based machine learning models have been used widely in FFS mapping due
to their greater accuracy, these models still have some limitations regarding FFCPs. These include the
length of the basin, basin area, the gradient of each basin, alluvial plain width, and mean slope. These
new parameters are very important in measuring the FF magnitude. Here, we first delineated drainage
basins from a DEM using a hydrological tool implemented in the Arc GIS v. 10.2 Software. After that,
each basin was considered and treated as a separate FF zone and its magnitude was measured by
calculating the following parameters (Figure 8 and Table 1):
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Table 1. Flash flood index parameters used for calculating flash flood magnitude for each zone (basin).

Basin Lb Bh (m) G◦ A (km2) Aw MS FFM

RAK 2000 1100 33 1131 3 43.39 3.24
Falaheyn 15,000 1300 5.2 1136 9 27.63 0.57
Al Dhaid 28,000 600 1.28 1561 13 14.78 0.16

Masafi 5000 850 10.2 248.6 4 39.03 3
Rul Dadnah-Dibba 4200 950 13.5 406.6 3.5 35.31 2.96

Fujiarah-Kalba 5000 1000 12 649 3 32.52 2.71
Hatta-Houylate 6000 1200 12 761.2 2 32.16 1.11

Total 5893.4

(i) Calculating the length of each basin (Lb)
(ii) Calculating the relief for each basin (Bh)
relief = Bh = hmax − hmin (the difference between the maximum and minimum heights)
(iii) Calculating the gradient of each basin (G◦) using the following equation

Gradient = (Bh/Lb) × 60 (13)

(iv) Calculating the area for each basin (A)

A = basin area (km2) (14)

(v) Calculating the alluvial plain width (Aw) for each basin manually in a GIS
(vi) Calculating the mean slope (Ms) for each basin using a moment statistic
(vii) Calculating FF magnitude for each basin with the following equation;

Flash Flood magnitude = Ms/ln (A/G◦) (15)

4. Results and Discussion

4.1. Evaluation of the Models Performance and Validation

Visual inspection shows that there are some differences among the FFSM maps produced using
machine learning models. Thus, it is important to evaluate model performance and assess the prediction
accuracy. The results from the evaluation of the model performance show that the BRT model had the
highest accuracy, followed by the CART and the NB models. The BRT yields an F1 score value of more
than 0.91 for all FFS classes, followed by the CART with an F1 score value of more than 0.90 for high
and very high classes (Figure 9).

The NB had the lowest F1 score for all FF classes. Thus, the validation results confirmed a positive
agreement between the observed and predicted values for the BRT and CART models. Additionally,
the slight difference between the F1 score of the BRT and the CART models is due to the gap between the
two models and is not statistically different [87]. The BRT model offers reliable information regarding
the FF to be predicted [42]. The BRT has the boosting approach that can employ an existing AI method
and has the dual advantage of boosting and decision trees [87]. Further quantitative validation using
the ROC curve was performed to examine the reliability of the obtained FFSM [88]. Similar to the F1
score, the BRT model has the highest AUC value (0.92), followed by the CART model (0.90) and the
NB model (0.79). The high performance of the BRT is because it combines the CART with a boosting
algorithm (Figure 10).
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4.2. Spatial Analysis and Flash Floods Susceptibility Mapping

The results of the spatial analysis show that the extreme FF events had occurred at narrow alluvial
plains of the mountainous and coastal areas. These areas are characterized with steep slopes, high
relief, surface run-off and high density of streams. The higher density of streams reflects rocks with a
lower rate of permeability that has a higher probability of FF occurring. The most important FFCPs
affecting FF occurrence altitude and slope (Figure 5a,b). Both parameters strongly influence relief,
topographic curvature (Figure 5c,d), soil moisture and surface run-off. For topographic curvature,
convex classes (>0) have a very low influence on FF occurrence. Concave slopes (<0) had the strongest
impact on FF occurrence (Figure 5c). About 90% (40 FF events) of the past FF events had occurred at an
elevation from 300 m to 1400 m and slopes between 10◦ to 15◦ (Figure 5a). Another important FFP
affecting flood was lithology. For the lithology factor, the upper streams are dominant by igneous and
metamorphic rocks, while the lower streams are dominant by alluvial deposits. Most of the past FF
events had occurred in the alluvial plains and fans (flooded plains) at the foot of the mountainous
areas (igneous and metamorphic rocks) (Figure 6a). For distance from streams and streams density,
the highest number of the past FF events had occurred in areas within 1000 m from the major stream
networks (wadi courses) and characterized by a low density of streams (Figure 6b,c).

Parameters such as LULC and aspect and plan curvature have no significant contribution to
the modeling process and could affect the accuracy of the model’s predictions [13,44,89]. These
parameters should be ignored and not considered in the modeling process since the aspect is already
calculated during the extraction of stream networks, and the area is characterized by low urban
development [13,42].

Maps of FFSMs were constructed by dividing the study area into separated pixels. Each pixel
was categorized as a flood and non-flood class. Thus, the FFS index for each map was calculated for
all pixels and each pixel was assigned a unique susceptibility index [12,13,36]. The testing of several
classification methods such as equal interval, geometrical interval, natural break and quantile shows
that the quantile and interval methods were the most appropriate method to classify flooded and
non-flooded areas, respectively. This finding agrees well with similar studies applied by Khosravi et al.
(2016) [36] who tested several classification methods for different susceptibility mapping. Susceptibility
maps of FF produced using BRT, CART and NBT model are shown in Figure 11. These susceptibly
indices were categorized into four classes intervals using the quantile technique, which is used widely
in the literature [12,36,90]. The produced susceptibly classes were recognized namely very high, high,
moderate and low construct FFSMs (Figure 11).

The maps demonstrate that the high and very high susceptibility classes are commonly located in
wadi courses and alluvial plains of the mountainous areas in the east and north. Some portions of very
high and high classes are located at the foot of mountainous areas. About 54% (3196.4 km2) of the total
area was classified as high and very high classes of FF, 19.3% (1136 km2) was classified as moderate
susceptibility classes of FF, and 26.5% (1561 km2) as low class susceptibility of FF. The effectiveness
of the proposed MCL models was confirmed by the highest F1 and AUC values than the individual
MCL model.
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4.3. Geohydrological Model for FFMI and Filling the Gaps in MCL Maps

Although the BRT model yields the highest performance, the geographical and spatial variability
of the valley depth and alluvial plain width parameters have not been taken into consideration. In this
study, the FF magnitude index (FFMI) was calculated using a set of new terrain parameters for each
derived basin (Table 1). These parameters include basin area (A) (Figure 12a) the length of the basin (Lb)
(Figure 12b), relief (Bh) (Figure 12c), alluvial plain width (Aw) (Figure 13a), gradient (G◦) (Figure 13b),
and mean slope (Ms) (Figure 13c).

Figure 12a shows that the area is divided into seven basins (zones) of flash flood and can be
divided into two types. The first type is narrow coastal zones such as RAK in the northwest, Masafi,
Rul Dadanh-Dibba and Fujairah-Kalba in the east. The second type is wide inland basins (zones) such
as Falahyeen and Al Dhaid in the west and Hatta-Houylate in the south (Figures 1, 2 and 12a). Except
for Al Dhaid and Falaheen basins, all basins are small in area, short in length, drained by dendritic
streams in shape and narrow alluvial plains. These zones and their adjoining areas have high gradient
angles ranging from 10◦ to 33◦, high relief values of more than 900 m, mean slope of than 30◦, and
an alluvial plain width of less than 5 km (Figures 12 and 13). Lithologically, all upper streams are
dominated by the igneous, metamorphic, and carbonate rocks, while the lower streams are dominated
by alluvial deposits. These parameters directly influence the magnitude of the destruction of the FF
and have a greater impact on the occurrence of FF in an arid region. For example, a basin (zone)
with a higher relief and runoff potential indicates rocks with lower permeability, steeper slopes, relief,
and high runoff potential in a basin with a narrow alluvial plain, which can cause susceptibility to
floods [91].

Figure 14a shows the modified map of FF produced using the proposed hybrid approach. The map
shows different FF zones. Each zone has its own FF magnitude. The estimated FF magnitude values
for the basins of RAK and Massafi were 3.24 and 3, respectively (Table 1 and Figure 14a). Villages,
roads and farms in these basins were severely affected zones. They cover an area of about 1379 km2

(23.4%). Rol Dadnah and Fujairah-Kalba basins that cover an area of 1055.6 km2 (17.9%) and have high
FF magnitude values of 2.96 and 2.71, respectively. Hatta-Houylate has a moderate FF magnitude of
1.11, while Falahyeen and Al Dhaid have FF magnitude values of 0.57 and 0.16, respectively.

To validate the produced FFMI, the past FF events were draped over the FFMI and spatial analysis
was performed. The results showed that most of the past FF events (40 FF events) had occurred in
high and very high FF susceptibility zones. Further analysis was performed by draping the existing
infrastructures and agricultural area over the FFIM shows that most of the villages and farms in
mountainous areas and the RAK are located in areas at a higher risk. This fact is acceptable since all
settlements, farms and roads have been constructed in the high and very high susceptible zones.

The proposed approach permits that FFCPs be updated at any time, as new parameters
become available.
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5. Discussion

5.1. Evaluation of the Models Performance and Validation

In this study, a hybrid approach, which integrates machine learning and geohydrological models,
was modified to map FF susceptible areas and measure their FF magnitude in an arid mountainous
region. We first used three machine learning models to map the susceptibility of natural phenomena
with nonlinear relationships and without the need for prior elimination of statistical supposition and
data transformation [12,92,93]. These types of models can fit complex nonlinear relationships between
FF locations and conditioning parameters and their efficiency compared based on accuracy matrices
(precision, recall and F1 score) and AUC-ROC [14].

The results demonstrated that the BRT model had the highest performance, while NBT a higher
accuracy comparing with NBT [53]. This finding is consistent with Rahmati et al. (2020) [94] who used
a machine learning approach for spatial modeling of agricultural droughts. They concluded that the
BRT and CART models showed the best performance and prediction accuracy compared with NBT
and linear supervised classifiers. Our findings also agree well with Naghibi et al. (2016) [65], who
concluded that the BRT model produced the best prediction results followed by the CART and RF
models. These machine learning, used widely in the literature, were applied due to their simplicity in
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description, their accuracy, and straightforwardness of interpretation [7,8,13,14,22,23,29–31,33,53,94,95].
However, limited numbers have been applied to FF susceptibility mapping using a hybrid approach,
which integrates machine learning models and morphological and geohydrological parameters to map
FF susceptibly and measure its magnitude for each basin the FFSM.

5.2. Spatial Analysis and Flash Floods Susceptibility Mapping

FF is one of the main destructive phenomena that occur in mountainous areas and narrow
alluvial coastal areas, especially in the NUAE. FF susceptibility mapping using remote sensing and
MCL algorithms is considered as a crucial step to reduce the destructive impact of any future FF
event [36,80,96]. Spatial analysis showed that most of the built-up and agricultural areas of the Emirates
of RAK in the northwest and Fujiarah in the East (95%), and some parts of the Emirates of Ajman and
Sharjah (20%) are located in high and very high susceptible zones. Thus, most of roads, dams, farms,
and the human population are highly susceptible FF because they are located in wadi courses of the
mountainous areas and at the foot of the mountainous areas. These areas receive intensive rainfall due
to the impact of climate change [38]. In these zones, a proper urban planning scheme is very important
to reduce risk hazard of any future FF event (Bathrellos et al., 2017).

Tremendous numbers of previous studies proposed a combination of MCL models for FFS
mapping. They built susceptibility maps using several conditioning factors that are relatively
complex [28,36,38,86,96]. Other studies have shown that intensive precipitation, LULC and
geohydrology parameters are important factors controlling FF occurrence [28,36,96]. Further studies
have shown that factor such as human activities is a significant in FF occurrence [25,94]. These factors
such as LULC and human activities could not consider as significant factors in the study area due to
low population and intensive human activities. Additionally, the obtained FFSMs using MCL are,
in realty, altitude and/or slope map. Thus, it is important to modify geohydrological model and a
hybrid approach.

5.3. Geohydrological Model for FFM Indexing and Filling the Gaps in MLC Maps

To measure FF magnitude and fill the gaps in the MCL maps, it is important to a hydrological model.
Until now, there is no standard rule to choose FFCFs, flood and non-flood locations. Here, the result
obtained using the proposed approach and new FFCPs is consistent with the constructed FF inventory
map and demonstrated that the proposed approach was able to map susceptible FF and measure their
magnitudes in an arid region and much more accurately and reliably compared to ensemble machine
learning approaches that are widely used to susceptibility map groundwater potentiality [82], land
subsidence [12], landslides [3,42,85], and flash floods [3,23,26,29–31]. The obtained susceptibility maps
using MCL can be upgraded and re-categorized using the proposed approach and demonstrated that
the approach was able to create a satisfactory FFM. The result shows that the highest number of the past
FF events in the study area are commonly occurred in the major mountainous streams (wadi courses)
and the narrow coastal strip in the east and in the northwest. These areas are lowlands covered by
alluvial deposits, located at the foot of the Oman mountains and characterized by the gentle slope.

Based on the new map of FFMI and its related infrastructures map (Figure 14b), about 153.34 km
in length of mountainous roads and those at the foot of mountainous areas are dangerous and deadly
roads. Roads of residential areas are also dangerous and had a higher probability to destroy (Figure 14b).
In Ras Al Khaimah (RAK), one woman was crushed to death after a wall collapsed during a violent
storm (NCM, 2020). In Ghalilah and Al Fahlain villages of the RAK, flash floods destroyed roads,
farms and flooded the village graveyard (Figure 1). The risk of damage can be reduced by constructing
valley dams and a real-time alert system in the mountainous areas. The existing human settlements in
the valley mouth should be shifted to the terrain at a lower elevation with a very gentle slope. Here,
the produced FFSM and FFMI can be used as a reference for decision-makers and urban planners.

The results of the proposed approach permit a better understanding of the natural hazard
setting of the study area for the first time. The results also facilitate the detection of sites of a higher
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probability of FF occurrence help identification of infrastructures that are located at high risk. The use
of geohydrological approach can be used to fill the gaps in the FFSMs obtained using MCL models and
represents an effective approach for FFSM and measuring FF magnitude, particularly in the NUAE,
which has not been investigated previously. This finding agrees well Chen et al. (2019) [97] who
concluded that the superiority of hybrid models. However, some limitations have been reported during
the modeling process. These limitations include the spatial resolution and number of FF conditioning
parameters as well as the optimal parameterization of the machine learning algorithms [12,13,95].
Therefore, future work will focus on FF susceptibility mapping using new FFC parameters such as
alluvial plain width, the depth of the mountainous valley, and the gradient of the basin. Future work
will focus on constructing a real-time meteorological system that is needed to predict areas with a
higher FF occurrence. Plantation of Prosopis Cineraria forests and merging steel wedges and screens on
the wadi slopes are also needed to reduce runoff potential.

6. Conclusions

In this study, a hybrid approach that integrates machine learning (the BRT, CART and NBT)
and geohydrological models was applied for FF susceptibility mapping and constructing FFMI.
The proposed approach was applied, for the first time, to the NUAE. Eight FFCPs, namely; altitude,
topographic slope, topographic curvature, relief, streams density, lithology, and distance from streams,
were chosen for FFSM. The parameters were selected based on their level of influencing FF occurrence,
the geo-environmental characteristics of the study area, the geological background of the authors, and
those used widely in this literature. Parameters such as LULC, aspect, plan curvature, and NDVI were
ignored since the aspect (flow direction) already calculated during stream network extraction, and the
study area is characterized by low population, human activity, and large vegetation cover.

The performance of the machine learning models was evaluated by calculating accuracy metrics
using the F1 score for each model and ROC curve. The results showed that the BRT had the highest
performance followed by the NBT and CART models. The produced FFSM using the BRT was modified
by applying a geohydrological approach, and results showed that the area consists of seven FF zones.
Each FF zone has its geohydrological characteristics and FF magnitude. The highest FF magnitude was
found to be in the zones of the RAK and Masafi, Rul Dadna, and Fujairah-Kalaba, while the lowest FF
magnitude was found to be in the zones of Al Dhaid and Falahyeen in the west. These magnitudes can
be further enhanced by applying the proposed approach to sub-basins using remote sensing data with
a higher spatial resolution. New FFCPs such as alluvial plain width, stream depth, basin gradient and
mean slope can be considered in any future study, especially in an arid region. As a conclusion, the
proposed approach and new FFCPs from this study demonstrated the superiority of hybrid models,
and the obtained FFSMs can assist urban planners, geohazard specialists and decision-makers to
reduce the risk of the FF in an arid region.
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