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Abstract: The filtering of multi-pass synthetic aperture radar interferometry (InSAR) stack data is a
necessary preprocessing step utilized to improve the accuracy of the object-based three-dimensional
information inversion in urban area. InSAR stack data is composed of multi-temporal homogeneous
data, which is regarded as a third-order tensor. The InSAR tensor can be filtered by data fusion, i.e.,
tensor decomposition, and these filters keep balance in the noise elimination and the fringe details
preservation, especially with abrupt fringe change, e.g., the edge of urban structures. However, tensor
decomposition based on batch processing cannot deal with few newly acquired interferograms
filtering directly. The filtering of dynamic InSAR tensor is the inevitable challenge when processing
InSAR stack data, where dynamic InSAR tensor denotes the size of InSAR tensor increases continuously
due to the acquisition of new interferograms. Therefore, based on the online CANDECAMP/PARAFAC
(CP) decomposition, we propose an online filter to fuse data and process the dynamic InSAR tensor,
named OLCP-InSAR, which performs well especially for the urban area. In this method, CP rank is
utilized to measure the tensor sparsity, which can maintain the structural features of the InSAR tensor.
Additionally, CP rank estimation is applied as an important step to improve the robustness of
Online CP decomposition - InSAR(OLCP-InSAR). Importing CP rank and outlier’s position as prior
information, the filter fuses the noisy interferograms and decomposes the InSAR tensor to acquire the
low rank information, i.e., filtered result. Moreover, this method can not only operate on tensor model,
but also efficiently filter the new acquired interferogram as matrix model with the assistance of chosen
low rank information. Compared with other tensor-based filters, e.g., high order robust principal
component analysis (HoRPCA) and Kronecker-basis-representation multi-pass SAR interferometry
(KBR-InSAR), and the widespread traditional filters operating on a single interferometric pair, e.g.,
Goldstein, non-local synthetic aperture radar (NL-SAR), non-local InSAR (NL-InSAR), and InSAR
nonlocal block-matching 3-D (InSAR-BM3D), the effectiveness and robustness of OLCP-InSAR are
proved in simulated and real InSAR stack data. Especially, OLCP-InSAR can maintain the fringe
details at the regular building top with high noise intensity and high outlier ratio.

Keywords: multi-pass SAR interferometry (InSAR); data fusion; online tensor decomposition;
phase filtering

1. Introduction

The interferometric synthetic aperture radar (InSAR) is an effective remote sensing technique
to obtain the multi-baseline interferograms and monitor the surface deformation via repeated
observation [1]. Multi-pass InSAR with the characteristics of high resolution and wide detection
range has gained a great achievement in monitoring land subsidence, landslides, and small surface
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deformation [2,3]. The damage to urban buildings and bridges caused by slow geologic change seriously
threaten people’s lives and production safety [4]. Besides, with economic development and population
increase, the groundwater funnels appear in urban areas because of the massive and irrational
exploitation of groundwater, which impacts the sustainable development [5]. Therefore, it is significant
to apply the multi-pass InSAR to monitor the ground deformation in urban areas [6]. The processing
of multi-baseline InSAR stack data involves three important steps, including interferometric phase
filtering, phase unwrapping, and 3D surface information inversion, which is shown in Figure 1.
The phase filtering is applied to eliminate the phase discontinuity and additive noise in interferograms,
and thus realizes high-precision phase estimation. The purpose of the phase unwrapping is to recover
the true phase from the wrapped phase. With the unwrapping phase as input, the process of 3D
surface information inversion converts the phase components to elevation model, deformation model,
tomographic model, and so on. There are many effective methods to achieve 3D surface information
inversion. For example, some methods utilize the reliable reference points selected by amplitude
or coherent threshold to monitor surface deformation, e.g., persistent scatterer InSAR (PSI) [7] and
small baseline subset (SBAS) [8]. The localization of these reference points depends on the latitude
and longitude information provided by standard SAR image products. If InSAR stack data has a
layover effect caused by some tall buildings, tomographic interferometry is introduced to extract
the scatter points and invert them to the ortho-coordinate [9]. It can be seen that the accuracy of
interferomeric phases affects the inversion of 3D surface information. Therefore, the high-precision
phase estimation is a necessary step in the workflow of InSAR stack data processing. Especially in
urban areas, the interferometric phase has complicated patterns and many noise factors, and it is
important to filter the noisy InSAR stack data for urban interferometric big data.
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Many attempts are devoted to resolving the problem of noise suppression in a single
interferometric pair. The boxcar filter [10], as a common spatial domain denoising method, removes
noise meanwhile sacrificing interferogram details. The Goldstein filter [11] is established in the
frequency domain, and the filter parameters can be adjusted by the coherence within an interferometric
pair to improve the performance of reducing noise [12]. Based on the self-similarity property of images,
the nonlocal means (NL-means) [13,14] denoises by weighted averaging center pixels in several similar
patches of an image. Recently, NL-means has been extended to filter an interferometric pair [15,16].
Nonlocal InSAR (NL-InSAR) [15] combines non-local thought with the appropriate phase-oriented
method. Nonlocal SAR (NL-SAR) [16] further improves the robustness by adaptively selecting filter
parameters in case of filtering the interferogram. Furthermore, combining with Wiener filtering [17],
a nonlocal block-matching 3-D (BM3D) algorithm [18,19] is proposed and performs well in SAR
interferometric phase recovery with an appropriate phase-oriented method called InSAR-BM3D [20].
These filters may obtain satisfactory denoising results in most situations, but in the region of rapid
phase change, their performance seriously deteriorates [20].

In addition to the above-mentioned filtering methods for a single interferometric pair, tensor
decomposition has obtained great improvements as an effective filter to fuse and make full use of the
information on multiple interferometric pairs. In fact, the multi-pass InSAR stack data conforms to the
three-dimensional tensor mathematical representation [21], where the first and second dimensions
represent the spatial distribution of an interferogram, and the third dimension denotes the temporal
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variation of the interferograms, i.e., the number of interferometric pairs. The information on the
interferograms in the InSAR stack data with the inner connection has a low sparsity meanwhile the
noise has a high sparsity. Therefore, the authors of [21,22] fuse InSAR stack data and decompose
them into low rank tensor and outlier tensor. The tensor decomposition model is transferred to
the optimization problem by using Tucker rank [23] to measure the sparsity of the InSAR tensor.
Recently, in [24] the authors proposed KBR-InSAR which further decomposes the InSAR tensor into
the low-rank, Gaussian noise, and sparse noise tensors. Besides, Kronecker based representation
(KBR) [25,26] is imported to definite InSAR tensor rank. KBR is a combination of the zero norm of the
core tensor acquired by higher order singular value decomposition (HoSVD) [27] and the relaxation of
the Tucker rank [28]. These filters have achieved a good performance in filtering InSAR tensor because
of multi-pass data fusion, especially at the region of phase jump.

However, the accuracy can be further improved by a suitable measure of tensor sparsity.
Tucker rank and KBR, utilized in HoRPCA and KBR-InSAR, both use kernel norm of mode-i tensor
unfolding to measure the sparsity of tensor [23,25]. Tensor unfolding expands tensor into the matrix
form and destroys the structure of tensor, which makes it difficult to extract tensor structural information.
Different from them, CANDECAMP/PARAFAC (CP) rank [29] is defined as the number of vector
outer products, which keeps the tensor structure. Moreover, these tensor-based filters are based on
the batch manner and required memorizing the whole tensor. And their filtering result is affected by
the tensor depth (the number of interferograms in tensor). In order to ensure the accuracy of filtering,
these methods need to fuse the interferograms as much as possible. Therefore, these filters cannot
process the dynamic InSAR tensor, where the dynamic InSAR tensor indicates the InSAR tensor depth
increases continuously due to the acquisition of new interferograms. Once a new single interferometric
pair is obtained, these tensor-based filters cannot process it directly and need to re-run on the updated
whole tensor containing the new pair, which is inefficient and inconvenient.

In fact, the low rank information of the accumulated InSAR tensor provides an effective reference
for filtering the new acquired interferograms. Fortunately, tensor decomposition has many online
forms [30–32] and one of them based on CP rank can maintain structural features. Therefore, in order
to filter dynamic InSAR tensor, we propose an unsupervised filtering framework to realize the InSAR
data fusion by using online CP decomposition. The filter fuses the multi-pass interferograms and
learns the low rank information of InSAR tensoronline, which can provide assistance to process new
acquired interferograms. To this end, the contributions of this paper are threefold:

(1) Based on the properties of the InSAR tensor and the online CP decomposition, an effective
filter is proposed, named as OLCP-InSAR, to handle the dynamic InSAR stack data. Compared with
other filters, OLCP-InSAR can not only eliminate noise but also keep the fringe details well, especially
for the fringe mutation at the edges of buildings in urban areas.

(2) The properties of the CP rank of InSAR tensor are analyzed and an effective method
based on MPCA [33] to estimate CP rank is proposed. Compared with other CP rank estimation
algorithms [34,35], this method can estimate rank online and has good robustness with high noise
intensity. The estimated CP rank, as an important parameter in OLCP-InSAR, helps to improve the
robustness of our filtering method.

(3) The robustness and reliability of the framework are demonstrated by simulated data.
Furthermore, 10 interferograms acquired by TerraSAR-X are used as experimental data to prove
the effectiveness of the proposed framework. The framework can effectively filter the dynamic InSAR
tensor and improve the accuracy of object-based interferometric phase estimation, especially at the
regular building top with the high noise intensity and high outlier ratio.

The rest of this paper is organized as follows. Section 2 briefly introduces the method applied
in the paper and the overall workflow of online dynamic InSAR tensor filtering. Section 3 presents
some mathematical tensor notations and preliminaries. Section 4 introduces OLCP-InSAR applied to
the InSAR tensor. Section 5 describes the CP rank and the way to estimate the InSAR tensor CP rank.
Section 6 elaborates the proposed online filtering framework in detail. Section 7 provides experimental
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results by using simulated and real data to evaluate the filter performance. The conclusion is given in
the final part.

2. Materials and Method Section

From the point of view of the data model, there is an important problem to estimate the valuable
information from a set of uncertain observations (including noise). The appropriate estimation method
depends on the appropriate data model. It is inevitable to choose an accurate mathematical model to
describe the observed data and a measurement to judge the valuable information.

Consequently, a reasonable multi-baseline InSAR stack data model is established at first, i.e.,
tensors [22]. The definitions about tensors are introduced in Section 3. The overall workflow of tensor
decomposition is shown in Figure 2, the historical InSAR stack data is decomposed into the low rank
information, and the new acquired interferograms are filtered with the assistance of low rank information.
Finally, the filtered dynamic InSAR phase tensor is acquired by using this online filtering framework.
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3. Notions and Preliminaries

Tensor is the multi-dimensional extension of the vector and matrix, which equals to a multi-dimensional
array. In the following sections, vectors are denoted as boldface lowercase letters, e.g., a. Matrices are
denoted as boldface capital letters, e.g., A, where ai represents the ith row vector of A and ai represents
the ith column vector of A. Tensors are denoted as boldface Euler script letters, e.g.,A ∈ RI1×I2×···×IN ,
where N represents the order of tensor, and In (n = 1, 2, · · · , N) is the size of nth order. The mode-n
unfolding of tensorA is an unfolding matrix along the nth mode, i.e., A(n) ∈ RIn×(I1×···×In−1×In+1×I···×IN).
For example, assuming thatA ∈ RI1×I2×I3 , and then the mode-1 unfolding of tensorA is A(1) ∈ RI1×I2I3 .

Some symbols appear in the following sections, and their definitions are shown as follows.
⊗ represents the outer product of two matrices, e.g., C = A1 ⊗A2, and the element of C is

calculated as
C(i, j) =

∑
k

A1(i, k)A2(k, j) (1)

where A1, A2 ∈ RI1×I2 .
� denotes element-wise product of two matrices, e.g., C = A1 �A2, and the definition of the

element of C is
C(i, j) = A1(i, j)A2(i, j) (2)

◦ denotes the vector outer product, e.g.,A = a1 ◦ a2 ◦ . . . ◦ an, the element ofA is calculated as

A(i, j, . . . , k) = a1(i)a2( j) . . . an(k) (3)

×n denotes n-mode product, which represents the product of tensor and matrix, e.g., C = A×m B,
the element of C ∈ RI1 is calculated as

C(i1, i2, . . . , jm, .., in) =
∑
im

A(i1, i2, . . . , im, .., in)B( jm, im) (4)

where C ∈ RI1×I2×...×Jm×...×In ,A ∈ RI1×I2×...×Im×...×In , B ∈ RJm×Im .
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The definitions of some norms applied in this paper are introduced as follows. The Frobenius
norm refers to the square root of the sum of all tensor elements squares, and is defined as

‖A‖F =

∑
i1

∑
i2

· · ·

∑
iN

∣∣∣∣ai1,i2,··· ,iN

∣∣∣∣2


1/2

(5)

where ai1,i2,··· ,iN is the element in N-order tensorA.
The L2 norm of a vector a ∈ Rn refers to the square root of the sum of all vector elements squares,

i.e., ‖a‖2, which is Frobenius norm reduce to vectors.
The notation diag() transfers a vector to a diagonal matrix.

4. Filtering Method via Online CP Decomposition for Dynamic InSAR Tensor

4.1. Signal Model

InSAR stack data can be regarded as a three-dimensional tensor [21,22], i.e.,T ∈ CI1×I2×I3 , where I1

and I2 represent the spatial distribution, I3 represents the number of interferograms. The noise in the
InSAR tensor [24] includes the system thermal noise with Gaussian distribution and the outliers with
uniform distribution caused by under sampling. Therefore, the noisy InSAR tensor decomposition
model is shown as (6).

T = L+N + E (6)

whereL is the low-rank tensor, i.e., the filtered result. N is the Gaussian noise tensor and E is the outlier
tensor. Topography and deformation are the main factors affecting the phase. Therefore, the clean
InSAR tensor L is represented as follows:

L = exp
{
− j(

4π
λd

E⊗ b +
4π
λ

D⊗ t)
}

(7)

where E ∈ RI1×I2 is the elevation of the surface, D ∈ RI1×I2 is the deformation model, t is the temporal
baseline, b is the spatial baseline, λ is the wavelength of the radar signal, and d is the distance between
the radar and the observed object.

Based on the signal model, we simulated a terrain model E, a linear deformation model D and
a distribution of baselines, i.e., t and b, which is shown as Figure 3. The simulated elevation model
contains the most common urban topography, including a square building, two irregular structures,
and a cone. The temporal baselines are chosen to be close to the uniform distribution, which is almost
0.5 mm/acquisition. The spatial baselines are randomly selected between [−100m, 100m], as shown
in Figure 3c. With these inputs, a simulated InSAR tensor L is generated and its angle is shown as
Figure 4a. The circular complex standard Gaussian noise with SNR of 5dB is imported to the simulated
InSAR stack data, and 30% pixels in each interferogram of InSAR stack data are randomly selected
and replaced by −π or π to simulate outliers. The method of noise simulation in the following section is
consistent with that of this section. The angle of the noisy simulated InSAR tensor is shown as Figure 4b.

In consideration of the phase that is wrapped between −π and π, the real and the imaginary part
of the InSAR tensor needs to be processed, respectively. As the phase outliers are −π or π, the outliers
can be understood as the pixels missing the actual value. The outliers are caused by the influence of
both real and imaginary part. The complex Gaussian noiseN is diffused in the real and imaginary part.
Therefore, the tensor decomposition model is shown as (8).

RW = LR +NR
IW = LI +NI

(8)

where R, I are denoted as the real and imaginary part of the InSAR tensor. W indicates the position of
outliers, where the missing pixels are 0 and other pixels are 1. W can be roughly considered as the
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position of phase which equals −π or π. RW represents R�W. LR andLI are the low rank tensors of
R and I, respectively. NR andNI are the Gaussian noise tensors of R and I, respectively.
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4.2. OLCP-InSAR for Tensor Model

The noise elimination in the InSAR stack data is a significant prerequisite for extracting geophysical
information. The noisy InSAR tensor decomposition model is introduced in the previous section
in detail. The dynamic InSAR tensor consists of accumulated interferograms and new acquired
interferograms, and it is difficult to decompose the dynamic data by using the conventional data
fusion framework. Therefore, a framework based on online CP (OLCP) tensor decomposition is
proposed to fuse and filter the dynamic InSAR tensor, as shown in Figure 5. On the one hand,
the tensor model of OLCP-InSAR is applied to the accumulated InSAR stack data, and the specific
workflow of OLCP-InSAR tensor model is shown in Figure 6, where the estimation CP rank part will
be introduced in Section 6. On the other hand, for a new acquired interferogram, the selected prior
low-rank information of the historical data helps to improve the filtering accuracy of the interferogram
(matrix model). The selection depends on the spatial and time baselines to the dynamic data. The detail
of OLCP-InSAR tensor model is demonstrated in Section 5.

The mathematical representation of online CP decomposition model is shown as Equation (10),
and it is different from the standard CP decomposition model shown as Equation (9). The online CP
decomposition deal with the slices in tensor to extract the low-rank vectors instead of processing the
overall tensor. The excellent property is that the low-rank vectors can be updated by following slices.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 28 
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The standard CP decomposition can be written as

LR =
R∑

i=1

xi ◦ yi ◦ zi (9)

where R is the CP rank of LR. Then the online CP is represented as

L[t] =
R∑

i=1

zi × (xi ◦ yi) (10)

where L[t] is the t-th slice of LR. The vectors acquired by decomposing L[t] compose X[τ], Y[τ] and
z[τ], i.e., X[τ] = (x1, x2, . . . , xR), Y[τ] = (y1, y2, . . . , yR), z[τ] = (z1, z2, . . . , zR), where X[τ] ∈ RI1×R,
Y[τ] ∈ RI2×R, z[τ] ∈ RR.

In order to solve the online tensor decomposition shown as (10), the low-rank problem of online
CP decomposition is modeled as follows:

min
L[t]

1
2 ‖Ω[t] �

R[t] −
R∑

i=1

zi × (xi ◦ yi)

‖
2

F

(11)

where R[t] is the t-th slice of R and Ω[t] is the t-th slice ofW.
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X[τ], Y[τ], and z[τ] are initialize as follows:

X[0] = U1Σ1
1
2 Y[0] = U2Σ2

1
2 z[0] = (U3Σ

1
2
3 )(1, :) (12)

where Un, Σn are acquired by SVD of the mode-n unfolding of R, i.e., R(n) = UnΣn(Un)
−1,

where n = 1, 2, 3.

Algorithm 1 OLCP-InSAR for tensor model

Input: R[t](t = 1, 2, . . . , n), ξ
Output: L[t], X[t], Y[t], z[t](t = 1, 2, . . . , n), R
1: Initialize X[0], Y[0], z[0] by (11)
2: Initialize W = 0, updateR = true, step = 5, threshold = 1e− 3
3: R← max(I1, I2)

4: while updataR = true||‖X[t] −X[t− 1]‖2F + ‖Y[t] −Y[t− 1]‖2F + ‖z[t] − z[t− 1]‖2F > threshold do
5: calculating X[t], Y[t], z[t] by Online CP decomposition
6: L[t]← X[t]diag(z[t])Y[t]T

7: if updateR then
8: if Algorithm 2(X[t], Y[t], z[t], ξ) then
9: R← R− step
10: else
11: updateR← f alse
12: end if
13: end if
14: end while
15: return L[t], X[t], Y[t], z[t], R

Algorithm 2 CP Rank estimation via multilinear PCA

Input: X[t], Y[t], z[t], ξ
1: for i = 1→ R do
2: decentralized yt

i × (xi ◦ zi) to acquire Ni
3: calculating Mi by (24)
4: calculating λ(1), λ(2) by (25)
5: end for
6: calculating W( j, k) by (26)

7: ω←
∑∑

W( j,k)
R2

8: if ω <= ξ then
9: return true
10:else
11: return false
12:end if

The noisy InSAR stack data is decomposed by Equation (11) to get accurate low rank information,
i.e., X[τ], Y[τ], and z[τ]. In this algorithm, Recursive Least Squares (RLS) [36] is applied to solve
the low-rank problem by updating the low rank information iteratively, and then the low rank
information is combined as Equation (10) to calculate the low rank slice, which is regarded as the
filtered interferogram. Therefore, OLCP-InSAR for tensor model is summarized as Algorithm 1.

Noticeably, it is necessary to determine the proper CP rank first for OLCP-InSAR. A large
value of CP rank is required for preset in initial processing. The lower and upper bounds of tensor
rank was studied in [37]. The CP rank of a tensor T ∈ RI1×I2×I3 is smaller than max(I1, I2, I3).
Therefore, an algorithm to confirm the rationality of the CP rank estimation is proposed for
the tensor model of OLCP-InSAR, which is introduced in detail in Section 6, i.e., Algorithm 3.
Moreover, OLCP-InSAR for tensor model gradually updates the low rank information slice by
slice, it may not obtain the optimized low rank information until the number of slices is sufficient.
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i.e., ‖X[t] −X[t− 1]‖2F + ‖Y[t] −Y[t− 1]‖2F + ‖z[t] − z[t− 1]‖2F > threshold, the remaining interferograms
participate in the decomposition process until the algorithm converges.

4.3. OLCP-InSAR for Matrix Model

In fact, the acquisition of the multi-pass InSAR stack data is dynamic and continuous. Therefore, it is
necessary to utilize the historical data to assist in processing new observation (interferogram). It is a
challenge and very difficult for the conventional filters operating on matrix model, such as Goldstein,
NL-InSAR, and InSAR-BM3D. Fortunately, the fusion of historical InSAR data, i.e., online CP tensor
decomposition, can extract the steady and accurate low rank information from the accumulated
interferograms. Similarly, this low rank information also exists in the new acquired interferogram.
In order to handle the new acquired interferogram, OLCP-InSAR for matrix model is proposed which
is summarized in Figure 7. The detail of OLCP-InSAR for matrix model is demonstrated as follows.
Based on online CP decomposition, the optimization problem is shown as follows:

argmin
X,Y,z

t∑
τ=1

γ(τ) ·
{
‖Ω[τ] � (R[τ] −X[τ]diag(z[τ])Y[τ]T)‖

2
F +

µ

2
(‖X[τ]‖2F + ‖Y[τ]‖

2
F + ‖z[τ]‖

2
2)

}
(13)

where γ(τ) is the selection of prior low rank information, and the definition of γ(τ) is shown as follows:

γ(τ) = Imin
τ

(1−λ)||b(t)|−|b(τ)||+λ|t−τ|(τ) (14)

where b(t) is spatial baseline of the interferogram obtained at t moment. I(·) is the indicator function.
λ ∈ [0, 1], and λ is the trade-off parameter to adjust the importance of the time and the spatial baselines.
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Figure 7. Flow chart of OLCP-InSAR for matrix model (Algorithm 2).

The difference between the obtained interferograms are caused by the terrain deformation and
the variation of the spatial baseline. The linear terrain deformation depends on the change of the time
baseline. Therefore, γ(τ) is designed to select the closest historical interferogram to help filter the new
acquired interferogram.
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The closest historical interferogram acquired at t′ moment is selected by γ(τ). With respect to
X[t′] and Y[t′], z[t] can be calculated by solving the sub-problem as follows:

min
z[t]

1
2 ‖Ω[t] �

[
R[t] −X[t′]diag(z[t])Y[t′]T

]
‖

2

F
+

µ
2 ‖z[t]‖

2
2

= min
z[t]

1
2

∑
h,w

[R[t](h, w) − (xh[t′] � yw[t′])
T

z[t]]
2
+

µ
2 ‖z[t]‖

2
2

(15)

where 1 ≤ h ≤ I1, 1 ≤ w ≤ I2 and Ω[t](h, w) , 0.
According to (15), z[t] can be updated as follows:

z[t] =

∑
h,w

R[t](h, w)(xh[t′] � yw[t′])∑
h,w

(xh[t′] � yw[t′])(xh[t′] � yw[t′])T
+ µIR

(16)

with respect to z[t] and Y[t′], X[t] can be calculated by solving the sub-problem as follows:

min
X[t]

1
2 ‖Ω[t] �

[
R[t] −X[t]diag(z[t])(Y[t′])T

]
‖

2

F
+
µ

2
‖X[t]‖2F (17)

To update X[t] row by row, (16) is rewritten as follows:

min
xh[t]

1
2

∑
w
(R[t](h, w) − (xh[t])

T
diag(z[t])yw[t′])2 +

µ

2
‖xh[t]‖

2
2 (18)

According to (18), xh[t] can be updated as follows:

xh[t] =

∑
w

R[t](h, w)(diag(z[t])yw[t′])∑
w
(diag(z[t])yw[t′])(diag(z[t])yw[t′])T + µIR

(19)

with respect to z[t] and X[t′], Y[t] can be calculated by solving the sub-problem as follows:

min
Y[t]

1
2 ‖Ω[t] �

[
R[t] −X[t′]diag(z[t])Y[t]T

]
‖

2

F
+
µ

2
‖Y[t]‖2F (20)

when updating Y[t] row by row, (19) is rewritten as follows:

min
yw[t]

1
2

∑
w
(R[t](h, w) − (xh[t′])

T
diag(z[t])yw[t])2 +

µ

2
‖yw[t]‖22 (21)

According to (21), yw[t] can be updated as follows:

yw[t] =

∑
h

R[t](h, w)((xh[t′])
T

diag(z[t]))

∑
h
((xh[t′])Tdiag(z[t]))((xh[t′])Tdiag(z[t]))

T
+ µIR

(22)

In conclusion, OLCP-InSAR for matrix model is shown in Algorithm 3.
If the tth new acquired interferogram is processed, X[t], Y[t], and z[t] are acquired by updating

X[t′], Y[t′], and z[t′]. Instead of dealing with the whole tensor, OLCP-InSAR filter a new acquired
interferogram by the low-rank information of a selected historical interferogram without reprocessing
all the historical interferograms.
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Algorithm 3 OLCP-InSAR for matrix model

Input: R[t], Ω[t], R, X[t′], Y[t′], z[t′]
Output: L[t], X[t], Y[t], z[t]
1: Updating z[t] by (16)
2: for h = 1→ I1 do
3: Updating xh[t] by (19)
4: end for
5: for w = 1→ I2 do
6: Updating yw[t] by (22)
7: end for
8: L[t]← X[t]diag(z[t])Y[t]T

9: L[t], X[t], Y[t], z[t]

5. CP Rank Estimation for OLCP-InSAR

In OLCP-InSAR, it is required to preset an appropriate value of CP rank, however, it is a NP-hard
problem for calculating CP rank directly [38,39] and it influences the performance of the filtering
method by initializing with a random CP rank. Therefore, it is a key step to obtain a suitable CP
rank. The authors of [34,35] estimate CP rank by initializing a large value of CP rank and gradually
decreasing it to be an appropriate one with iterations. However, the methods need the overall tensor
as input, which limits its application in online framework. These methods are sensitive to noise,
which made them unsuitable for InSAR tensors. If using these methods to estimate the CP rank of the
simulated InSAR tensor shown as Figure 4, the initial CP rank cannot obviously decrease by iterations
due to the Gaussian noise and outliers. Therefore, we analyze the properties of the InSAR tensor CP
rank and take the real part of the InSAR tensor as an example to explain the proposed method to
estimate CP rank in detail.

5.1. CP Rank of Interferometric Phase Tensor

CP rank is the number of Kronecker bases acquired by CP decomposition, and it fuses the
information in tensor and decomposes the tensor into the sum of Kronecker bases. To assess the
performance of OLCP-InSAR with different predetermined CP ranks, a series of InSAR tensors with
different signal-to-noise ratios (SNRs) and different ratios of outliers are simulated. MSE is calculated
between the reference noise-free tensor and the filtered one, and the result curve with different CP
ranks are shown in Figure 8. There is no monotonous relationship between MSE and CP ranks,
however, each MSE curve has an extreme point when CP rank varies. The whole curve will deteriorate
with the increase of deformation rate, and the same phenomenon also appears under different noise
conditions. It is remarkable that the extreme points of these MSE curves in Figure 8b have the same
x-axis coordinate, that is the MSE under different noise conditions reaches the minimum value with
the same CP rank.

Supposing that the predetermined CP rank is not suitable, some noise will not be removed in the
filtered interferogram in the case of higher CP rank, or fringes detail will be damaged with lower CP
rank. The CP rank in the InSAR tensor means the correlation between the interferograms, which is
not affected by the noise intensity. Fortunately, in view of low deformation rate, there is a closer
relationship between the interferograms in urban area, which means that the CP decomposition is
appropriate to handle the InSAR tensor of urban area.
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5.2. CP Rank Estimation via Multilinear PCA

A filtered interferogram is regarded as the sum of factor matrices shown as (9). If factor
matrices contain a lot of redundant information, it implies the current CP rank is higher than
the suitable value. The information redundancy can be measured by the correlation between the
factor matrices. Principal component analysis (PCA) [40] can effectively analyze the correlation
between the vectors, and multilinear PCA (MPCA) [33] extend PCA to high-dimensional information,
i.e., tensor. Therefore, MPCA is applied to analyze the redundant information between the factor
matrices acquired by OLCP-InSAR, and the process of CP rank estimation is shown in Figure 9. MPCA
map an original matrix Ni to feature space and acquire a new matrix Mi as follows:

Mi = Ni ×1 U(1)T
×2 U(2)T

(23)

where U(1) and U(2) contain orthogonal vectors. Ni is the center processing result of yt
i ∗ (xi ◦ zi)

acquired by OLCP-InSAR.
MPCA realize the map shown in (23) by optimizing (24). Alternate least square (ALS) is applied

to acquire U(1) and U(2).

arg max
U(1),U(2)

R∑
i=1

‖Mi‖
2
F (24)

The eigen vectors of Mi, i.e., λ(1) and λ(2), can be calculated as follows:

λ
(1)
j =

∑
k

V( j, k) λ
(2)
k =

∑
j

V( j, k) (25)

where V =
R∑

i=1
(Mi −

1
R

R∑
i=1

Mi)
2. λ(1)j is the j-th value in λ(1). λ(2)k is the k-th value in λ(2).

The weight matrix W can be calculated by eigen vectors as follows:

W( j, k) =

√
λ
(1)
j ·λ

(2)
k (26)

where W( j, k) is the distance between M j and Mk. When the distances between feature matrices are
far, the information similarities are poor and the redundant information is less. Therefore, we can
judge whether the CP rank is appropriate by comparing the mean value of the weight matrix,
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i.e.,
∑

j
∑

k W( j, k)/R2, and the preset threshold. The algorithm is summarized as Algorithm 2, which is
introduced into OLCP-InSAR to help the CP rank estimation.
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6. Experiment Results

In this section, the quantitative and qualitative results are presented to prove the effectiveness of
OLCP-InSAR if filtering InSAR tensors or new acquired interferograms. Experiments are performed
on simulated and real InSAR stack data.

6.1. Simulated Data Experiment

The first experiment is to compare the performance of OLCP-InSAR and other tensor-based filters
(i.e., HoRPCA, WHoRPCA, and KBR-InSAR). The parameters of HoRPCA are set as [41], and the
parameters of KBR-InSAR and WHoRPCA are set as [24]. A complex InSAR tensor is generated
as experimental data with 25 interferograms and its angle form are shown as Figure 4. We impose
uncorrelated complex circular Gaussian noise to the simulated InSAR tensor with an SNR of 3, 5,
and 7 dB. In consideration outliers π or −π in the real data, we randomly select 30% pixels in each
slice of stimulated InSAR tensor with the value of π or −π, which is denoted as 30% outlier in the
following section.
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MSE is an effective evaluation applied to measure the filtered results, and the evaluation results
of MSE between clean references and filtered tensors with different noise conditions are shown in
Table 1. The number of residues that remained in these filtered InSAR tensors is also used to compare
the results acquired by these filters, and these evaluation results are shown in Table 2. In addition,
for visual observation, a noisy interferogram is selected in the simulated InSAR stack data with 5dB
Gaussian noise and 30% outlier to compare the filtered results as shown in Figure 10. The phase value
at the positions of white short line in Figure 10 is shown as Figure 11.

Table 1. The mean square error (MSE) of filtered tensors with different noise conditions.

Noise Intensity Outlier Ratio HoRPCA WHoRPCA KBR-InSAR OLCP-InSAR

3 dB 30% 0.25 0.20 0.17 0.04
5 dB 30% 0.19 0.14 0.09 0.03
7 dB 30% 0.16 0.11 0.07 0.03
5 dB 20% 0.15 0.08 0.05 0.03
5 dB 40% 0.37 0.29 0.22 0.04

Table 2. The number of remaining residues of filtered tensors with different noise conditions.

Noise Intensity Outlier Ratio HoRPCA WHoRPCA KBR-InSAR OLCP-InSAR

3 dB 30% 69,525 617,750 1,039,525 287,275
5 dB 30% 65,275 539,300 262,225 226,875
7 dB 30% 61,575 480,450 307,625 187,550
5 dB 20% 65,350 453,175 363,825 222,750
5 dB 40% 67,850 637,400 1,268,250 251,825
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Figure 11. The filtered phase profiles with OLCP-InSAR (blue line) and other references. (a) The filtered
phase profiles at row 125 and column 25 to 75. (b) The filtered phase profiles at row 275 and column
360 to 410. (c) The filtered phase profiles at row 400 and column 100 to 150. (d) The filtered phase
profiles at row 150 and column 375 to 425.

As shown in Table 1, OLCP-InSAR works fairly well on filtering the noisy InSAR tensor for MSE,
which means that the result acquired by OLCP-InSAR is closest to the ground truth. The same conclusion
is obtained by comparing the filtered interferograms shown in Figure 10 and the filtered phase value in
the typical positions shown in Figure 12. HoRPCA generates an over-smooth filtered result with the
fewest residues shown in Table 2, losing many details in the interferogram. As WHoRPCA introduces
the weight tensor into the optimization equation and enhances the expression ability of the equation,
the details of the fringes are preserved better compared to HoRPCA. However, since WHoRPCA filters
the product of the weight tensor and the noisy InSAR tensor, there are many residues remaining in
its filtered results. KBR-InSAR refines the tensor decomposition model and uses KBR to measure the
tensor sparsity, which balances the noise removal and the fringe preservation. However, the filtering
effect deteriorates as a result of the influence of outliers, which is obvious around the edge of the square
building. In consideration of the auxiliary information about outlier positions, OLCP-InSAR is not
sensitive to outliers. Since there are often outliers around the edge of buildings, OLCP-InSAR is the
most suitable filter to handle the InSAR tensor of urban area.

The second experiment compares the performance of OLCP-InSAR and other conventional
filters operating on a single interferometric pair since OLCP-InSAR can also handle a new acquired
interferogram. The parameters of the conventional methods are set as [24]. The simulation data is
consistent with the data in the first experiment. The prior low-rank information is extracted by the
fusion of 20 simulated interferograms. The other five interferograms in the stimulated InSAR tensor are
assumed as the new acquired data and filtered in the matrix model. A slice in these five interferograms
in the simulated tensor with 5dB Gaussian noise and 30% outliers and the filtered results are shown in
Figure 12. The evaluation results of MSE between the clean reference and filtered interferogram in
Figure 12 are shown in Table 3. The white short line on the noisy interferogram in Fgiure 12 is the
selected profile and the filtered results of these profiles are shown in Figure 13. The number of residues
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remained in the filtered interferograms is also used to compare the result of these filters as shown in
Table 4.
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filtered phase profiles at row 275 and column 360 to 410. (c) The filtered phase profiles at row 400 and
column 100 to 150. (d) The filtered phase profiles at row 150 and column 375 to 425.
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Table 3. MSE of a filtered interferogram with different noise conditions.

Noise
Intensity

Outlier
Ratio Goldstein Boxcar NL-SAR NL-InSAR InSAR-BM3D OLCP-InSAR

(Matrix)

3 dB 30% 0.78 0.39 0.38 0.22 0.16 0.013
5 dB 30% 0.45 0.28 0.59 0.19 0.14 0.011
7 dB 30% 0.53 0.26 0.35 0.15 0.10 0.0086
5 dB 20% 0.27 0.13 0.10 0.080 0.050 0.010
5 dB 40% 0.60 1.0 0.59 0.35 0.28 0.012

Table 4. The number of residues remaining in a filtered interferogram with different noise conditions.

Noise
Intensity

Outlier
Ratio Goldstein Boxcar NL-SAR NL-InSAR InSAR-BM3D OLCP-InSAR

(Matrix)

3 dB 30% 43,729 13,406 21,578 5002 2060 7595
5 dB 30% 25,230 5574 27,697 1828 5 6769
7 dB 30% 35,692 9059 21,135 3415 1759 5222
5 dB 20% 34,097 9613 10,063 3924 1837 6426
5 dB 40% 11,961 37,554 20,891 4624 1906 6542

Without considering the prior knowledge of the historical data along temporal directions,
the filtered results of these conventional filters are much worse than OLCP-InSAR when visualizing
the performance of these method. The boxcar filter shows a clear loss of resolution in the filtered result.

The Goldstein filter and the NL-SAR have some sparse residues remaining which will influence
the phase unwrapping. In the absence of phase jumps, InSAR-BM3D and NL-InSAR provide acceptable
results, preserving the structure of the original phase. However, NL-InSAR and InSAR-BM3D are both
based on the improvement of mean filter. Although these methods filter most residues, the fringe
details are destroyed seriously, especially at the region of phase jumps. Therefore, OLCP-InSAR has
obvious advantages in dealing with interferograms of urban areas considering that regular buildings
are the most common terrain in cities.

6.2. Real Data Experiment

The experiment on 10 SAR complex images collected from TerraSAR-X covers a large single
building near the Beijing Capital International Airport. The filtering for this InSAR stack data is
relatively important because of the large flow of people in this kind of building. As shown in Figure 14,
the size of our study area is 425 × 449. We selected nine SAR complex images from March 2012 to
August 2014 and the manually cropped the target building area as experimental data. It is worth noting
that the distributed target can be extracted by the object-oriented method, such as roof and bridge.
The pixels in the target are located according to the longitude and latitude information provided by
standard SAR image products. The master acquisition (March 2012) was selected for the coregistration
with all slave images. A complex InSAR tensor was formed by these coregistrated SLC images.
The filtering for this InSAR stack data was relatively challenging on account of the low SNR in the real
data and the limited number of interferograms.

Although no clean reference is provided to compute MSE for real data, the number of the
residues remaining in the filtered image also provides some valuable information shown in Table 5.
Furthermore, an interferogram in the real tensor is selected and its filtered results are shown as
Figure 15. The value of pixels, which are near the building edge in Figure 15, is shown as Figure 16.
Although HoRPCA has the fewest residues, the fringe details are sacrificed to smooth the result and
remove the noise, which is obvious in Figure 16. The same conclusion can be found in experiments on
simulated data. The residues remaining in the filtered result acquired by WHoRPCA are obviously
reducing the effectiveness and practicability of these methods. The refine tensor decomposition model
applied in KBR-InSAR improves the accuracy of filtering with few outliers. Once the number of outliers
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in the interferograms increases as shown in the real InSAR tensor, the performance of KBR-InSAR is
significantly deteriorated. The filtered result acquired by OLCP-InSAR has relatively few residues
while most fringe details are preserved.
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Figure 16. The filtered phase profiles with OLCP-InSAR (red line) and other reference filtered methods
based on tensor decomposition. (a) The filtered phase profiles at row 130 and column 320 to 370. (b) The
filtered phase profiles at row 120 and column 300 to 350. (c) The filtered phase profiles at row 100 and
column 160 to 210. (d) The filtered phase profiles at row 160 and column 60 to 110.

Three interferograms are selected from the real InSAR tensor as the new acquired interferogram
shown as Figure 17, and other interferograms are used to extract low rank information for OLCP-InSAR.
Their filtered results acquired by OLCP-InSAR and other filters operating on a single interfermetric pair
are shown as Figures 18–20. The residues remaining in the filtered results of the chosen interferograms
are shown as Table 6. The fifth slice in real data sensor clearly shows some structural features of the
building roof, as shown in Figure 17c. Therefore, the filtered results, which should preserve these
features, were selected to compare these filters, shown in Figure 21.

Consistent with the above-mentioned analysis, the boxcar filter acquires a low-resolution version
of the filtered interferogram with blurred fringe edges. Goldstein filter has unsatisfied performance in
the real data as a result of a relatively high signal-to-noise ratio in our real InSAR tensor. NL-SAR filters
have better performance than the boxcar filter because they can preserve the details of the fringes. On the
down side, this mechanism of non-local mean filter can also lead to insufficient-smooth result at the
areas with many outliers. NL-InSAR provides satisfied noise elimination, offering visually appealing
filtered images shown in Figures 18 and 19. However, it is hard to guarantee the detail preservation,
which is intuitive in Figures 20 and 21. InSAR-BM3D and OLCP-InSAR both tend to produce an
appealing result which seems balance the noise suppression and detail retention. However, as shown in
Figure 21, the filtered signal acquired by InSAR-BM3D has many jumps which are obviously incorrect.
Therefore, the analysis of the experiment about real data provides further support to the effectiveness
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of OLCP-InSAR. It is worth noting that OLCP-InSAR still maintains a reliable performance with the
fusion of few accumulated interferograms. As the number of accumulated interferograms increases,
OLCP-InSAR can obtain more accurate historical low rank information to help filtering new acquired
interferograms, which will be far superior to other methods operating on a single interferometric pair.

Table 6. Residues remaining in the filtered interferograms.

Slice ID Boxcar Goldstein NL-InSAR NL-SAR InSAR-BM3D OLCP-InSAR

1# 5178 10,815 1531 4188 3777 3063
2# 3179 5727 627 3420 2179 1593
5# 4467 7534 1267 5411 3806 3371
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For example, the phase pattern of (c) is strongly related to the structure of the roof. (a) The first slice.
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Figure 19. The filtered result of the second slice in the real InSAR tensor acquired by the filter operating
on the matrix model.
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Figure 21. The filtered phase profiles with OLCP-InSAR and other reference filtered methods operating
on the matrix model. (a) The filtered phase profiles at row 108 and column 180 to 230. (b) The filtered
phase profiles at row 178 and column 45 to 95. (c) The filtered phase profiles at row 140 and column 275
to 325. (d) The filtered phase profiles at row 117 and column 300 to 350. (e) The filtered phase profiles
at row 87 and column 165 to 215. (f) The filtered phase profiles at row 226 and column 80 to 130.
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7. Conclusions

The 3D information inversion in urban areas is an important research direction, but the
processing of multi-pass InSAR data is difficult because of the requirement of high accurate
phase estimation. The multi-pass interferometric stack data can be represented as InSAR tensor,
and it can be filtered by solving an optimization problem and decomposed into low-rank, Gaussian
noise, and outlier tensors. These tensor-based filters outperform the conventional filtering methods
due to the data fusion framework. However, with the fast-growing InSAR data, it is difficult to handle
the dynamic InSAR tensor for the existed tensor-based filters. Fortunately, online tensor decomposition
proposed recently motivates us to fuse the InSAR stack data and estimate the steady structural feature,
i.e., the low rank information, under the online decomposition framework. Therefore, a filter based on
online CP decomposition, named as OLCP-InSAR, was proposed in this paper. This novel method
requires CP rank and the position of outliers as auxiliary information, where CP rank is confirmed
according to the correlation of the low rank information obtained by MPCA. OLCP-InSAR has two
effective forms including tensor model and matrix model. One is to deal with the accumulated InSAR
tensor and the accuracy can be further improved by cycling input of the interferograms in the tensor.
The other is to process the new acquired interferograms by fusing the selected low rank information.
The experiments were conducted with simulated data and real InSAR tensor generated from TerraSAR-X
images, which proves the effectiveness and robustness of OLCP-InSAR when dealing with the InSAR
data of urban areas. Comparing with tensor-based filters, OLCP-InSAR is not sensitive to the noise
conditions because of the auxiliary information about outlier positions. Compared with other filters
operating on a single interferogram (matrix), OLCP-InSAR can maintain the fringe details, especially at
the regular building top with the high noise intensity and high outlier ratio. In conclusion, OLCP-InSAR
can effectively filter the dynamic InSAR tensor and improve the accuracy of object-based interferometric
phase estimation, which is an indispensable step in 3D surface information inversion. In the future
work, we will continuously analyze the structural characteristics of InSAR tensor to improve the
filtering accuracy and efficiency of online tensor decomposition.
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