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Abstract: Satellite remote sensing plays an important role in the monitoring of surface water
for historical analysis and near real-time applications. Due to its cloud penetrating capability,
many studies have focused on providing efficient and high quality methods for surface water mapping
using Synthetic Aperture Radar (SAR). However, few studies have explored the effects of SAR
pre-processing steps used and the subsequent results as inputs into surface water mapping algorithms.
This study leverages the Google Earth Engine to compare two unsupervised histogram-based
thresholding surface water mapping algorithms utilizing two distinct pre-processed Sentinel-1 SAR
datasets, specifically one with and one without terrain correction. The resulting surface water maps
from the four different collections were validated with user-interpreted samples from high-resolution
Planet Scope data. It was found that the overall accuracy from the four collections ranged from 92%
to 95% with Cohen’s Kappa coefficients ranging from 0.7999 to 0.8427. The thresholding algorithm
that samples a histogram based on water edge information performed best with a maximum accuracy
of 95%. While the accuracies varied between methods it was found that there is no statistical
significant difference between the errors of the different collections. Furthermore, the surface water
maps generated from the terrain corrected data resulted in a intersection over union metrics of
95.8%–96.4%, showing greater spatial agreement, as compared to 92.3%–93.1% intersection over
union using the non-terrain corrected data. Overall, it was found that algorithms using terrain
correction yield higher overall accuracy and yielded a greater spatial agreement between methods.

Remote Sens. 2020, 12, 2469; doi:10.3390/rs12152469 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-7557-0425
https://orcid.org/0000-0001-6169-8236
https://orcid.org/0000-0003-2082-3605
https://orcid.org/0000-0002-6392-6084
https://orcid.org/0000-0001-9999-1219
http://dx.doi.org/10.3390/rs12152469
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/15/2469?type=check_update&version=3


Remote Sens. 2020, 12, 2469 2 of 20

However, differences between the approaches presented in this paper were not found to be significant
suggesting both methods are valid for generating accurate surface water maps. High accuracy surface
water maps are critical to disaster planning and response efforts, thus results from this study can help
inform SAR data users on the pre-processing steps needed and its effects as inputs on algorithms for
surface water mapping applications.

Keywords: Sentinel-1; pre-processing; Otsu threshold; surface water mapping; Southeast Asia;
Google Earth engine

1. Introduction

Satellite remote sensing offers a means to monitor water resources and their change in time
across large areas. Monitoring these variations is critical in monsoonal regions, such as Southeast Asia,
where annual variation in rainfall results in hydrologic extremes that affect local communities [1–4]. As more
people are negatively affected by floods in Asia than in any other place in the world, there is a need for
increased hydrologic monitoring to guide flood response efforts [5]. Traditionally, ground-based stream
gauges are used to monitor water level or streamflow/discharge in major water bodies; however,
these observations fail to provide a large scale overview of conditions in regions where stream gauges
are sparsely located. Furthermore, stream gauge-based monitoring provides a simple means to
identify floods based on pre-determined water level thresholds set to individual gauge locations,
bu fail to capture the spatial extent of flooding, a critical component in disaster response and damage
assessments [6]. To address these shortcomings, many methods have been developed leveraging
satellite remote sensing to map the surface water extent, particularly during floods. However, to date,
there are few automated surface water mapping methods implemented due to uncertainties in the
large-scale accuracy of these methods and the need for robust computational resources. Fortunately,
the rise of cloud-based data providers and computational resources such as Google Earth Engine
(GEE) offer a means to address these computational challenges enabling satellite image processes to
be scaled.

Many satellite remote sensing surface water mapping studies and applications focus on the
use of optical sensors, such as Landsat [7,8], Sentinel-2 [9], the Moderate Resolution Imaging
Spectroradiometer (MODIS) [2,10,11], and the Visible Infrared Imaging Radiometer Suite (VIIRS) [12,13].
These optical water mapping methods include spectral information and thresholds [14–16], decision tree
approaches [17,18], historical time-series analysis [19,20], and machine learning/deep learning [21,22].
Even with well-defined methods and readily available data for surface water mapping applications,
optical sensors can only be used during the day and are hindered by clouds that obscure surface
observations, especially in monsoon-driven environments [23]. Often, peak surface water extent
during flood events occur when there is cloud cover, resulting in data gaps limiting the use of optical
sensors for flood monitoring applications [5].

To address the issue of cloud cover, Synthetic Aperture Radar (SAR) has been employed as
the sensor signals penetrate clouds, thus can be used in all weather conditions and during the
day or night [24]. There are many examples of SAR data being used for surface water mapping
efforts [25–28], and it is considered to be the most useful space-based remote sensing technology for
detecting surface water in the presence of clouds [29]. With the 2014 launch of the Copernicus
Sentinel-1 satellite by the European Space Agency (ESA), consistent data acquisition with free,
publicly accessible data, has enabled SAR to be applied more frequently to a variety of research
areas [30,31]. The capabilities of SAR technology also allows for continuous monitoring of ground
features and their changes over time [32]. Surface water mapping methods for SAR imagery are
similar to those of optical imagery, employing thresholding [33,34], decision tree classifiers [35],
active contour modeling [36], time series information, [37] and statistical/machine learning [38–40]
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methods. While SAR imagery provides unobstructed views of the Earth, it is susceptible to image
artifacts caused by radio frequency interference, terrain effects, heavy precipitation, and speckle noise,
thus requiring substantial pre-processing [41]. Furthermore, SAR imagery relies on the specular
reflectance of open water for detection which can lead to errors of commission with other smooth
surfaces such as pavement and errors of omission when surface water may be obfuscated beneath
vegetation canopies [42]. Therefore, careful consideration is needed in pre-processing SAR imagery
and in the application of automated surface water mapping methods due to these challenges.

As previously mentioned, SAR users are often required to select and undertake a series of
complex pre-processing steps to convert the data from a Level-1 SAR product into a suitable
higher-level product for scientific analysis. Standardized pre-processing steps of Level-1 data
include updating the orbit state vectors, thermal and border noise removal, calibration to either
γ0, σ0, or β0 units, Range Doppler terrain correction (also known as geometric terrain correction or
geocoding), and conversion from linear backscatter units to logarithmic decibels (dB) [43]. Efforts
are underway to provide Analysis Ready Datasets (ARD) using these standardized pre-processing
steps [44] through select venues: Swiss Data Cube (http://www.swissdatacube.org), Digital Earth
Africa (https://www.digitalearthafrica.org), and GEE (https://earthengine.google.com). Further
optional processing steps include radiometric terrain correction (RTC), also know as terrain flattening,
and speckle filtering [45]. Truckenbrodt el al. [46] evaluated how different software suites and external
data sources used during pre-processing affected the computed SAR backscatter values finding that
the processing workflow to generate SAR RTC ARDs is subject to the user’s preference. Studies have
focused on developing automated workflows for Sentinel-1 to develop surface water maps using the
standard pre-processing with speckle filtering to produce surface water maps [47,48]; however, no RTC
process was performed. To the extent of the author’s knowledge, few studies have been conducted
exploring the effects of SAR pre-processing, specifically RTC, on subsequent automated algorithms
such as surface water mapping.

Automation is required for any systematic mapping approach to produce rapid robust water maps
and avoid subjective, time-consuming, and expensive manual image interpretation. This analysis was
conducted to determine how differently pre-processed SAR data used as inputs into automated surface
water mapping approaches influence the accuracy of generated surface water maps. Furthermore,
this analysis focused on evaluating unsupervised threshold-based surface water mapping algorithm
in effort to provide accurate results with little computational burden in a near real-time applications
context. Therefore, the goals of this study were to (1) assess the performances of different automated
image-based methods for extracting surface water, and (2) compare their performance across SAR
processed imagery with/without RTC. We accomplished these goals by leveraging GEE [49] to apply
two automated image-based thresholding methods to extract surface water processed Sentinel 1 data
with and without RTC. The generated Sentinel-1 derived water maps were compared and validated
against manually interpreted high-resolution Planet Scope data. The results from this analysis can
help inform SAR data users on how pre-processing steps affect subsequent automated surface water
mapping algorithms.

2. Materials and Methods

2.1. Study Area and Period

For this study we focused our analysis in Southeast Asia, particularly on the Upper Irrawaddy
river system of Northern Myanmar and the floodplains of the Lower Mekong basin in the Cambodian
Tonlé Sap sub-watershed. The Irrawaddy River system of Myanmar starts at the confluence of the Nmai
and Mali rivers at an elevation of 160 m above sea level and proceeds south for over 1900 km crossing
complex terrain including the Shan highland and Irrawaddy plain to the Andaman Sea [50]. Starting in
Tibetan Plateau, the Mekong river system moves south for 4800 km and across six different countries.
The entire basin is home to over 70 million people [51]. Across the Lower Mekong Floodplains,

http://www.swissdatacube.org
https://www.digitalearthafrica.org
https://earthengine.google.com


Remote Sens. 2020, 12, 2469 4 of 20

the average elevation ranges from 0.5 to 1.2 m above sea level [52]. Both Cambodia and Myanmar
have a tropical monsoon climate [53], where 75%–90% of the country’s annual rainfall occurs in the
summer monsoon months from June to September [54,55]. While monsoonal rains are essential for
agriculture, supplying water for irrigation, and alluvial sediments, these events can lead to severe
flooding greatly impacting people, homes, and ecosystems [56].

This study specifically focused on recent 2019 conditions. For Cambodia, the study period was
constrained to May–December 2019, observing both the wet and dry seasons. For Myanmar, the study
period was limited to July–August 2019, capturing the summer wet season. These time frames were
selected due to availability of both Sentinel-1 imagery as well as quality Planet Scope high resolution
imagery with limited cloud cover which is used for validation. Figure 1 depicts the study area and the
associated coverage of Planet Scope imagery used for this analysis.

Figure 1. Study Area in Southeast Asia focused on portions of the Upper Irrawaddy river system in
North Myanmar and the Tonlé Sap sub-watershed of Cambodia in 2019 during both the wet season
and dry seasons. Bounded areas indicate the spatial coverage of Planet Scope Imagery in Myanmar
(orange) and Cambodia (blue).

2.2. Data Used

2.2.1. Sentinel-1 Data

The Sentinel-1 sensor is a C-band SAR that operates in multiple acquisition modes at different
ground sampling distances (GSD). For this study we used the the Sentinel-1 Interferometric Wide (IW)
swath mode at the 10 m GSD, which offers single and dual polarization options of vertical transmitting
with vertical receiving (VV) and vertical transmitting with horizontal receiving (VH) dual-polarization.
Both polarizations have different interactions with water; VV polarization reacts to the roughness of
the surface, which can change due to wind, whereas VH polarization reacts to presence of a canopy
or vegetation. Twele et al. [47] performed an analysis of automated surface water mapping and
found that the VV polarization performed best. Furthermore, we investigated the use of VV and
VH for surface water mapping in the Lower Mekong region and found that using VH polarization
causes a larger number of false positives. Thus, only the VV polarization data was used in this study.
Two pre-processed versions of the ESA Copernicus Open Access Hub Sentinel 1 Level-1 IW Ground
Range Detected (GRD) dataset were used for this study. This first version used, provided through
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GEE, was the Sentinel-1 Level 1 GRD ARD derived from the ESA data on Copernicus. To generate
the GRD GEE dataset, each tile is processed via the Sentinel-1 SNAP7 Toolbox (Sentinel Application
Platform, http://step.esa.int/main/toolboxes/snap/) using the standard pre-processing steps to
provide a radar backscatter dataset in dB units. The Shuttle Radar Topography Mission (SRTM) [57] is
used for the geometric terrain correction. For comparing different pre-processing steps, the second
version leveraged Sentinel-1 images accessed from Copernicus and processed locally with the SNAP7
toolbox using the same standard pre-processing steps as the GEE GRD dataset. However, in this
case an additional step of RTC [58] was applied to reduce the topographic effects in the SAR imagery.
This dataset was uploaded to GEE as an ImageCollection asset to be used for this study. A Lee-sigma
speckle filter [59] was then applied to both datasets before surface water mapping to eliminate the
granular noise that can occur from the interference of waves reflected from many underlying scatterers.
For this comparison we defined the two different pre-processed datasets as “GRD” for the default GEE
data and “RTC” for the dataset processed locally, with an additional RTC step, and uploaded to GEE.

2.2.2. MERIT DEM

As surface water occurs at the lowest relative point of a local drainage systems, it is common
practice to use elevation information to constrain surface water detection algorithms to logical areas [60].
We used the Multi-Error Removed Improved-Terrain (MERIT) Digital Elevation Model (DEM) [61],
a DEM derived from the SRTM and the Advanced Land Observing Satellite (ALOS), World 3D-DEM
(AW3D) [62] with absolute bias, stripe noise, speckle noise, and tree height bias removed from the
input data to produce an improved representation of elevation particularly in major floodplains and
flooded forests. The MERIT DEM was used to derive a Height Above Nearest Drainage (HAND)
model [63] and to focus the analysis to areas less than 30 m in height relative to the nearest drainage.

2.2.3. Planet Scope

Planet Scope is a constellation of more than 120 cubesats, named Doves, that operate to acquire
visible-near infrared optical data at high-resolution (approximately 3 m GSD). The Planet Scope
constellation can acquire imagery globally everyday providing valuable data to large-scale spatial
analysis requiring high-resolution in both space and time. A total of 500 Planet Scope images within
Myanmar and Cambodia covering an area of 50,140 km2 were utilized in the analysis. Each Planet
Scope image had corresponding Sentinel-1 SAR acquisition for the same date and region. The Planet
Scope data were used as a validation dataset by visual interpretation of surface water/no surface water
classification for a given sample within each scene. More information regarding the sampling and
image interpretation for the validation dataset generation is provided in the Section 2.4 below.

2.3. Surface Water Mapping

Two unsupervised surface water mapping algorithms using Otsu’s method to perform automatic
thresholding were employed to the GRD and RTC SAR products. Otsu’s method is a histogram-based
thresholding approach were the inter-class variance between two classes, a foreground and background
class, is maximized [64]. Otsu’s method for image thresholding assumes bimodality in the histogram
of pixel values (in this case dB), however, can produce sub-optimal results if the image has more than
two distinct classes. The two surface water mapping algorithms used in this study attempt to constrain
the Otsu thresholding by sampling histogram values from areas that are more likely to represent
bimodal histogram of water/no water. The two algorithms, herein referred to as “Bmax Otsu” and
“Edge Otsu”, define areas to sample histogram values from the image differently. More information
on the algorithms is provided in the Sections 2.3.1 and 2.3.2 . To generate the surface water maps for
evaluation, the GRD and RTC datasets were used as inputs into both algorithms. Post processing of the
water extent maps included elevation thresholding where only observations below 30 m of the HAND
model are kept to remove erroneous results for both Bmax Otsu and Edge Otsu approaches. The final
flood map generated is a binary “water”/“non-water” image hosted as a GEE ImageCollection asset

http://step.esa.int/main/toolboxes/snap/
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and subsequently used in the accuracy assessment within the GEE platform. An overview schematic
of the workflow for generating the surface water maps is provided in Figure 2 and explained in more
detail in the following sub-sections. Source code used and scripts illustrating the methods are available
as Supplementary Material.

Figure 2. The surface water mapping effort utilized two processing workflows differentiated by the
algorithms employed Bmax Otsu (outlined in blue) and Edge Otsu (outlined in green). Each workflow
employed the same two pre-processing data streams “RTC” and “GRD” and same post processing steps.

2.3.1. Bmax Otsu Algorithm

The Bmax Ostsu algorithm is a method to extract a bimodal histogram from imagery as inputs
into the Otsu thresholding. This algorithm was originally developed by Cao et al. [65] for operational
surface water mapping using Sentinel-1 and was implemented in GEE for this study. Specifically,
the algorithm subsets the image into a grid using a chessboard segmentation with a user defined spatial
resolution, for this study we used 0.1◦ resolution, after-which each subregion is checked for a bimodal
histogram using a maximum normalized between-class variance (BCV), or Bmax, test [66]. To calculate
Bmax, an initial estimate of water/no-water for the segment needs to be provided for estimating
the probabilities of the individual classes, we provide the initial threshold in this study as −16 dB.
The initial threshold was selected using a sensitivity analysis conducted by sampling histograms
from images with differing terrain and hydrological conditions for Cambodia and Myanmar. Another
threshold is provided to consider the Bmax value as bimodal or not; in this study we considered a
Bmax value greater than 0.65 to be bimodal based on a study comparing bimodality thresholds for
images with a variety of distributions [66]. However, this bimodal Bmax threshold is variable where
values up to 0.75 have been used. For a detailed explanation of the Bmax algorithm readers are referred
to Cao et al. [65] . The selected bimodal regions are then used to sample a histogram from the dB values
and used to calculate a segmentation threshold using Otsu’s method. The final surface water map is a
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binary image where dB values less than the threshold are classified as water and values greater than
are non-water.

2.3.2. Edge Otsu Algorithm

The concept of the Edge Otsu algorithm was initially pioneered by Donchyts et al. [20] where
an index highlighting water was used to extract edges of features in the imagery using a Canny edge
filter [67] (with the assumption the edges are water), the algorithm buffers the defined edges and
subsequently samples histogram values as input for Otsu thresholding. This method was expanded
upon by providing an initial segmentation threshold to create a binary image to alleviate any edges
being defined from other classes that are present in SAR imagery (i.e., Urban Areas or Forests). Then the
defined edges are filtered by length to omit small edges that can occur and skew the histogram sampling.
Similar to the Bmax Otsu algorithm, we provided the initial threshold as −16 dB. The edge features
extracted are then filtered by length where only edge features over 200 m in length are considered to
be valid water edges; this was done to reduce misclassifications that occur from the initial threshold.
The extracted edges were then buffered by 3000 m (1500 m on either side) where the dB values within
the buffered edges were used to construct the histogram. Finally, the histogram sampled from the
buffered edges were used to calculate a threshold using Otsu’s method and applied to the entire image
where dB values less than the threshold are water and values greater than are non-water.

2.4. Evaluation Design

Surface water maps were generated using both the Bmax Otsu and Edge Otsu methods with
both GRD and RTC products for 19 dates (Table 1). The resulting surface water maps were analyzed
to evaluate the accuracy as compared to a validation dataset. Specifically, the validation dataset
was generated utilizing a simple random approach distributed over the corresponding Planet Scope
imagery associated with individual flood dates. The validation samples were classified using a digital
ocular sampling approach [68,69]. An individual sampler performed a visual interpretation on the
Planet Scope imagery, constraining the interpretation to a 3 × 3 pixel neighborhood equating to
the approximate resolution of the surface water products generated (10 m GSD). This interpretation
survey was conducted to estimate the presence/absence for the following classes: cloud, water,
and not water. The interpreter followed a decision tree approach for classifying the validation samples
shown in Figure 3. Points classified as clouds were removed leaving 3787 sample points available for
the validation.

The validation samples were then used to extract values of water/no-water from the generated
surface water maps and statistical metrics were calculated. Specifically, we used a stratified KFold [70]
to extract sub-samples of the larger validation data set for estimating a distribution of errors while
retaining the distribution of water/non-water samples from the original dataset. From the generated
10 sub-samples we calculated the following metrics: overall accuracy, Cohen’s Kappa coefficient,
and F1-score. These metrics were selected as they are widely used to evaluate classification methods [71,72].
We further evaluated the methods using the precision-recall ratio [73] which provides insights on
the trade-off between precision (error of commission) and recall (error of omission) rates for each
method, where a value of 1 is preferred means there the precision and recall scores are equal and
balanced. To assess the statistical difference between methods and datasets, we implemented the
McNemar’s test [74], a statistical test to analyze statistical significance of the differences in classifier
errors. This method statistically compare error matrices by testing the differences in false positives and
false negatives made by either method [75]. The results of this test follows a χ2 distribution with one
degree of freedom where a significance level over 5% means that it can be stated that the two methods
differ in their performances.



Remote Sens. 2020, 12, 2469 8 of 20

Table 1. Spatial and temporal extent of Planet Scope high resolution imagery used for evaluation.

Country Date n Sample Points n Planet Scope Scenes Footprint Area (km2)

Cambodia 2019-05-01 68 24 5138
Cambodia 2019-05-02 80 25 5352
Cambodia 2019-09-09 38 12 2253
Cambodia 2019-09-11 87 48 7095
Cambodia 2019-09-16 12 6 1177
Cambodia 2019-09-21 22 7 1575
Cambodia 2019-09-23 72 37 6421
Cambodia 2019-10-03 134 64 11,230
Cambodia 2019-10-04 39 23 4246
Cambodia 2019-10-05 202 106 18,903
Cambodia 2019-10-10 57 35 4825
Cambodia 2019-10-15 112 47 9722
Cambodia 2019-12-04 89 23 7760
Myanmar 2019-07-16 514 13 2818
Myanmar 2019-07-18 872 9 3859
Myanmar 2019-07-21 155 6 2042
Myanmar 2019-07-28 185 6 1689
Myanmar 2019-08-02 79 5 1988
Myanmar 2019-08-05 87 4 649

Figure 3. Interpreter decision tree utilized for sampling imagery. Circle numbers 1–4 (pink, blue, green,
yellow) provide visual representation of decision points for sample classification [76].

3. Results and Discussion

The two water mapping algorithms, Bmax Otsu and Edge Otsu, were applied to the two pre-
processed Sentinel-1 datasets, GRD and RTC, across all of the scenes and dates where the validation
dataset coincided. This produced four collections of surface water maps for validation. The validation
points were sampled from the four surface water map collections and tabulated from all samples for
interpretation (Table 2). To display the distribution of accuracy metrics from the KFold sampling for
the collections, we use violin plots in which the box plot and kernel density estimation are combined
to illustrate the metrics in Figure 4. It can be seen that overall, the Edge Otsu algorithm performed
the best with an accuracy range of 92%–94% using the GRD dataset and 94%–95% using the RTC
dataset. The two surface water maps using the Bmax Otsu method performed similarly with accuracy
distributions around 92%–95.5% using the GRD dataset (only one sub-sample iteration had an accuracy
near 96%) and 92%–93.5% using the RTC dataset. This highlights that the Edge Otsu algorithm can
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achieve high accuracies; however, the differences in accuracy ranges using different input data indicate
sensitivity to data inputs for the algorithm. Whereas the Bmax Otsu algorithm performs similarly
regardless of the dataset used as inputs. These findings are consistent across the overall accuracy,
Cohen Kappa, and F1-score metrics. Furthermore, the precision-recall ratio is above 1 for the Edge
Otsu methods using both GRD and RTC datasets, meaning there are higher errors of omission as
compared to errors of commission. The Bmax Otsu algorithm resulted in a precision-recall ratio of 0.95
and 0.99 for the GRD and RTC datasets, respectively, suggesting a balance of error of commission and
omission where using the RTC dataset provides slightly better results. Lastly, across all metrics the
collections using the RTC data product have a tighter distribution of the metrics when compared to the
methods using the GRD dataset. For example, the standard deviation for the RTC products is 0.33%
and 0.36% for the Bmax and Edge Otsu algorithms, respectively, as compared to 0.77% and 0.50%
for the algorithms using the GRD dataset. This suggests that the algorithms using the RTC product
can produce more stable results across space and time as compared to the GRD product. However,
when the McNemar’s test was performed to assess statistically significant differences in errors between
methods, no statistically significant differences were found (Table 3). When comparing the differences
between the Bmax algorithm using different datasets, we see that there is no difference (McNemar’s
test = 1) showing that the algorithm has the same number of false positives and false negatives using
either dataset. Whereas when comparing the Edge Otsu algorithm, the RTC product differs the greatest
compared to the other methods. This suggests that there is a slight difference in error between the
Edge Otsu-RTC product and other methods but it is, however, not statistically significant.

Table 2. Statistical evaluation of all input sample points for each algorithms (Bmax Otsu and Edge
Otsu) and each dataset (GRD and RTC). Values are mean metric (stand deviation is in parentheses) of
metrics across the different subsamples.

Statistic Bmax Otsu GRD Bmax Otsu RTC Edge Otsu GRD Edge Otsu RTC

Overall Accuracy 0.925 (0.007) 0.925 (0.003) 0.928 (0.005) 0.943 (0.004)
Precision/Recall 0.946 (0.028) 0.996 (0.022) 1.18 (0.033) 1.17 (0.020)
Cohen Kappa 0.804 (0.019) 0.801 (0.009) 0.800 (0.015) 0.843 (0.011)
F1 Score 0.855 (0.014) 0.851 (0.007) 0.846 (0.012) 0.879 (0.009)

While statistically there are no differences between the method’s resulting errors, there are some
considerations regarding the use of the Bmax Otsu and Edge Otsu algorithms with the the GRD and
RTC datasets. These considerations include the source of variation in these two algorithms particularly
how the two methods differ in sampling histograms for input into the Otsu threhsolding function.
The Bmax Otsu algorithm identifies chessboard tiles within the image that are bimodal and uses all
the pixels within the tiles for the histogram. This approach captures broad scale bimodality within an
image and is dependent on parameters such as the chessboard tile size and the Bmax threshold value
for determining bimodality. Choosing a large chessboard tile resolution and too low of Bmax threshold
can produce skewed histograms towards high dB values; however, being too strict with parameters
without inspecting the data may result in few pixels being sampled. The Edge Otsu algorithm samples
a histogram using a buffer around identified edges. This focuses the sampling on localized areas
depending on the length of edges considered to be valid and the buffer size. Choosing too small of
a buffer will produce a non-bimodal histogram and choosing a very large buffer size can skew the
histogram towards higher dB values. Whereby the Edge Otsu is relatively more sensitive to data inputs
based on the more localized sampling (as seen from the accuracy assessment) and influenced by the
buffer size, the Bmax Otsu relies on a definitions of parameters and thresholds that can impact the
results. The Bmax Otsu algorithm in total has fewer parameters to define, therefore, will be easier to
quickly transfer to other regions with reasonable results, while to opposite might be true for Edge Otsu



Remote Sens. 2020, 12, 2469 10 of 20

algorithm. On the other hand, this also means that Edge Otsu algorithm can be more fine tuned, so its
performance could potentially be improved and better calibrated to regional conditions.

Figure 4. Accuracy assessment for the two algorithms (Bmax Otsu and Edge Otsu) using the two
datasets (GRD and RTC) showing the distribution of (a) overall accuracy, (b) precision/recall ratio,
(c) Cohen Kappa coefficient, and (d) F-1 score. The violin plots show the distribution of values at
different accuracy scores. The thicker the violin, the more values fall at the y value.

Table 3. Statistical significance testing scores using McNemar’s test. First row is the method compared
against the method from the first column. Values are p-value of test where higher values mean that
null-hypothesis, there no difference in the accuracy, has a higher probability of being true. Values less
than 0.05 are statistically significant.

Bmax Otsu GRD Bmax Otsu RTC Edge Otsu GRD

Bmax Otsu RTC 1.0
Edge Otsu GRD 0.790 0.790
Edge Otsu RTC 0.159 0.159 0.253

To illustrate the differences between the surface water extents generated using the two methods
across the two datasets, we provide two examples illustrating the surface water map extents and
agreement between the four collections for two different areas and times. The maps are compared using
the Intersection over Union (IoU) ratio [77] to calculate the percent overlap of the maps (or agreement)
compared to the total extent from both maps. Figure 5 highlights a case in Cambodia over the Mekong
River near Phnom Penh for 5 October 2019 with the corresponding Planet Scope data for comparison.
In this example, slight differences between the water extents estimated by the Bmax Otsu and Edge
Otsu algorithms using the GRD product are observed. Specifically, the Bmax Otsu and Edge Otsu
algorithm’s have an IoU of 92.3% in water area using the GRD dataset showing good agreement;
however, the Bmax Otsu algorithm shows a larger extent by 7.6% compared to the Edge Otsu extent.
This over estimation of the Bmax Otsu method as compared to the Edge Otsu method can be seen
by the red pixels in the difference map (Figure 5c). The over estimation using the Bmax algorithm is
also seen using RTC dataset as the input data, however, with better agreement with an IoU of 95.8%
(Figure 5f). When comparing the same method across the different input datasets, the Bmax Otsu
method had an IoU agreement of 89.2% and the water extents estimated using the GRD product was
greater by 5.4% (Figure 5g). Similar results are seen using the Edge Otsu algorithm applied to both
datasets resulting in an IoU agreement of 89.6% where the water extent generated using the GRD
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product had an area greater by 2% as compared to the water extent with the RTC product (Figure 5h).
This case in Cambodia shows that using Bmax Otsu algorithm or the GRD dataset resulted in larger
estimated surface water extents. Although, high spatial agreement can be achieved using the RTC data
as inputs into both methods.

Figure 5. Surface water maps generated over the Tonlé Sap River and Lake in Cambodia for 2019-10-05
using the Bmax Ostu algorithm with the GRD dataset (a) and RTC datasets (d), as well as the Edge
Otsu algorithm with GRD (b) and RTC (e) data. Difference maps between the methods using either
the GRD (c) or RTC (f) datasets are provided. The difference maps between datasets using either the
Bmax Ostu (g) and Edge Otsu (h) algorithms is also provided. Image differences are denoted in either
red for areas only water from Image 1 is present and yellow for for areas only water from Image 2 is
present. Image 1 for the difference maps is the first image used to find the difference starting from
either top row or left column whereas Image 2 is the second image across rows or down columns.
The corresponding Planet imagery for the region and date (i).

Figure 6 further highlights the resulting surface water maps from both algorithms using both
datasets for a case over the Irrawaddy River in Myanmar for 28 July 2019. For this case, the RTC data
product had the higher agreement between both algorithms (Figure 6f) with an agreement of of 96.4%
as compared to using the GRD datset which resulted in an agreement of 93.1%. The Myanmar case
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shows similarities with the Cambodia case where the RTC dataset has greater spatial agreement in
surface water mapping results and the Bmax Otsu method estimates surface water area greater than
the Edge Otsu algorithm. However, when comparing how the different input data compares within the
methods, the Edge Otsu algorithm had slightly better agreement between the two input datasets with
an agreement of 89.4% for the Myanmar case (Figure 6g) compared to the Bmax Otsu algorithm with
an agreement of 87.2% (Figure 5h). While there is no statistical difference found between the errors
produced using the different methods and datasets, these cases provide additional perspective as to
how the different algorithm’s resulting surface water extents compare with each other even though
the spatial differences are subtle.

Figure 6. Same as Figure 5 except highlighting surface water maps over the Irrawaddy river in
Myanmar for 2019-07-28.

The difference between the methods and generated water maps are also prevalent in the
histograms that were sampled. Figure 7 displays the histograms sampled from the GRD data in
green and RTC data in blue with the calculated thresholds using the two algorithms and for the two
cases previously presented. The Bmax Otsu algorithm produced similar histograms and threshold
values using both GRD and RTC datasets (Figure 7a,c). The larger peak for greater dB values from
the Bmax Otsu algorithm is due to sampling over the entire chessboard segmentation area, in this



Remote Sens. 2020, 12, 2469 13 of 20

case a 0.1◦ resolution grid, that is considered bimodal, but can have a large area of land present.
However, the skewness of the resulting histogram from the Bmax algorithm towards greater values
can still produce adequate surface water results as demonstrated in the accuracy metrics. Furthermore,
the threshold values generated are similar for the Bmax Otsu algorithm using both input data showing
that the RTC preprocessing step has little effect on the Bmax Otsu algorithm derived water maps.
Again, this is due to the relatively large area chessboard segments that are sampled which may not
capture the local-scale adjustments due to the RTC process. The histogram produced with the Edge
Otsu algorithm with the GRD data did not produce a distinct bimodal histogram with one prominent
peak near −17 dB present in both cases (Figure 7b). Instead, a smaller local maxima near −8 dB for
the Myanmar case is present, highlighting the lower threshold for the Cambodia case leading to less
surface water area and explaining the higher errors of omission. Whereas the histogram from the Edge
Otsu algorithm with the RTC dataset has local maxima peaks near −19 and −7 dB (Figure 7d) leading
to a threshold more similar to the thresholds calculated with the Bmax Otsu algorithm. The difference
in the histogram distribution for the Edge Otsu algorithm supports the finding that the Edge Otsu
algorithm is more sensitive to the input data than the Bmax Otsu algorithm. Overall, these results
suggest that the RTC product is superior for sampling bimodal histograms particularly in the case of
the Edge Otsu algorithm.

Figure 7. Histograms highlighting the values sampled from the GRD (green) and RTC (blue) data using
the Bmax Otsu (left) and Edge Otsu (right) algorithms for the Cambodia (KH; left) and Myanmar (MM;
right). Note the different scales on the y-axis due to the different number of pixels sampled depending
on the method.

While this analysis of the two cases provide different snapshots of performance between the two
algorithms using the differently processed SAR datasets, commonalities exist. First, the use of RTC
dataset as inputs into the algorithms indicate more consistent results in terms of threshold calculation
and agreement in surface water extent (as seen in the Cambodia and Myanmar cases highlighted).
Furthermore, the Edge Otsu algorithm resulted in slightly higher accuracies when using the RTC
product, whereas there was little change in accuracy when using the RTC product with the Bmax
Otsu algorithm. When considering the performance of algorithms, the Bmax Otsu resulted in similar
accuracies across the validation dataset when using different data inputs, but the Edge Otsu method
performed best with the RTC dataset, suggesting the Bmax Otsu method is less sensitive to input data
(as seen in Figure 7). Although the accuracies of the approaches differed slightly, it was found that
there is no statistical significance in the errors.



Remote Sens. 2020, 12, 2469 14 of 20

3.1. Caveats and Limitations

While this study attempts to provide a robust analysis to evaluate SAR data pre-processed with
and without an RTC step along with the results from different surface water mapping algorithms,
there are some caveats to note. First, this analysis was somewhat limited due to its geographic location
and temporal range. This was largely due to the limited availability of cloud-free Planet Scope imagery
to generate the validation samples from which coincided with Sentinel-1 imagery during the monsoon.
While the study area and period covered different environments (mountainous riverine vs. flood plain)
and different timing (dry vs. wet season) the results could prove different for other areas of the
world. For example, Chapman et al. [78] suggested that surface water mapping algorithms may have
higher errors or omission in flooded forested areas where the C-band SAR signal cannot penetrate
the canopy structure to view the underlying water and L-band SAR data is preferred. Conversely,
Martinis et al. [79] found higher errors of commission with surface water mapping algorithms in arid
regions where flat, smooth surfaces can have a similar signal as water in SAR imagery. Furthermore,
when pre-processing the SAR data, we used a Lee Sigma filter, where using different speckle filtering
algorithms (such as a Refined Lee filter) can potentially provide adjusted inputs into the surface
water algorithms [80]. Lastly, additional parameters can be provided to the algorithms which were
not discussed in this paper. While tuning parameters can provide highly customized results for a
specific case, this study focused on using default parameters discussed in the Methods section to
highlight baseline accuracies which can be applicable for other geographic regions. Exploring all
possible combinations offers a thorough comparison of surface water mapping parameterization for
different environments, however, is outside the scope of this study.

3.2. Future Work

As stated in Section 3.1, there is additional work that can build upon this study. First, further
evaluation of the Sentinel-1 surface water algorithms will be explored across other areas in South
Asia and other regions in the world that experience regular flooding (i.e., Amazon River or Niger
River). The statistical analysis performed is based on the ground validation samples used and may
yield different results for different samples, therefore, additional work will be needed to explore if
the approaches produce the same level of accuracy and are in fact statistically significant for other
regions. Expanding the validation work initiated in this study will be essential to explore the various
surface water mapping approaches and their parameterization in an effort to provide highly accurate
surface water maps for a variety of environments with additional reference data. Additionally,
these surface water mapping methods can be evaluated using additional datasets such as the Landsat
series, Sentinel-2, and even Sentinel-1 data processed with other pre-processing software suites (e.g.,
Gamma software; https://www.gamma-rs.ch/software). Data fusion methods [23,81] can also be
explored using the generated surface water maps to provide consistent, high-temporal surface water
extent data when leveraging multi-sensor sources. Lastly, these methods, including proposed future
work, can be integrated into an automated surface water mapping system to assist in delivering near
real-time surface water maps for a variety of applications such as automated disaster response and
flood risk mapping [56].

This work was conducted under the auspices of the SERVIR-Mekong project. SERVIR harnesses
space technology and geospatial technologies to to help decision makers to integrate geospatial
information into their decision-making process. High quality surface water maps will support efforts for
the regional land cover monitoring system [82–86], food security [87], monitoring of ecosystems [88,89]
and water management applications [90]. The application of the presented surface water maps
integrated with near real-time information systems for water have the potential to support effective
decision making processes for sustainable landscape management.

https://www.gamma-rs.ch/software
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4. Conclusions

This study evaluated the performance of two pre-processed Sentinel-1 SAR datasets (GRD and
RTC products) as inputs into two different unsupervised histogram-based surface water mapping
algorithms, referred to as the Bmax Otsu and Edge Otsu algorithms. The objectives were to understand
how different pre-processing steps in SAR data (using a terrain correction and without a terrain
correction) influence the results of surface water mapping and how the different algorithms perform
with the inputs. Surface water maps were generated for 19 days in 2019 over Myanmar and Cambodia
and compared with user interpreted validation points from Planet Scope imagery. The results
highlighted that the Edge Otsu algorithm performed best with the RTC data inputs with an accuracy
around 94%–95%. Alternatively, the Bmax Otsu algorithm performed similarly with both input datasets
resulting in accuracies from 92% to 94%. The differences in the Edge Otsu algorithm’s performance
with separate input data based on the validation suggest the Edge Otsu algorithm is more sensitive to
the input data than the Bmax Otsu algorithm, particularly for sampling a bimodal histogram. Although
the overall accuracy between the methods is not significantly different, the Edge Otsu showed higher
errors of omission whereas the Bmax Otsu algorithm showed slightly higher errors of commission.
The Bmax Otsu and Edge Otsu algorithms have a higher spatial agreement when using the RTC data
as inputs. While there are differences in accuracies, there was no statically significant differences found
between the approach’s errors. The results from this study can help inform remote sensing users
on how data inputs and algorithms affect results when producing operational surface water maps.
To expand on this study, additional software will be used to process RTC products and the automated
surface water algorithms will be evaluated in other regions of the globe with more regionally detailed
parameterizations with sensitivity analyses.

Supplementary Materials: Source code for the processing of the raw Sentinel-1 data to RTC products is available
at: https://github.com/Servir-Mekong/sentinel-1-pipeline. The source code for the Bmax and Edge Otsu
algorithms implemented on GEE with the JavScript API is available at https://code.earthengine.google.com/
?accept_repo=users/kelmarkert/hydrafloods with the code used to export this studies surface water maps
available at: https://code.earthengine.google.com/2a24d1887bc42a9617dffdfe64a92e11. An example for sampling
the validation points from surface water maps and exporting the results is available at: https://code.earthengine.
google.com/63216c599e76f6b018c222b4455c82b2
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