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Abstract: West Africa represents a wide gradient of climates, extending from tropical conditions
along the Guinea Coast to the dry deserts of the south Sahara, and it has some of the lowest income,
most vulnerable populations on the planet, which increases catastrophic impacts of low and high
frequency climate variability. This paper investigates low and high frequency climate variability
in West African monthly and seasonal precipitation and reference evapotranspiration from the
early 1980s to 2016. We examine the impact of those trends and how they interact with payouts
from index insurance products. Understanding low and high frequency variability in precipitation
and reference evapotranspiration at these scales can provide insight into trends during periods
critical to agricultural performance across the region. For index insurance, it is important to identify
low-frequency variability, which can result in radical departures between designed/planned and
actual insurance payouts, especially in the later part of a 30-year period, a common climate analysis
period. We find that evaporative demand and precipitation are not perfect substitutes for monitoring
crop deficits and that there may be space to use both for index insurance design. We also show that
low yields—aligned with the need for insurance payouts—can be predicted using classification trees
that include both precipitation and reference evapotranspiration.

Keywords: West Africa; climate variability; precipitation; evapotranspiration; index insurance

1. Introduction

Index insurance is an insurance product that pays out based on the performance of a weather
indicator and is used to mitigate the impact of poor cropping seasons, often through targeting
drought years [1]. This paper explores the efficacy of two weather indicators, precipitation and
reference evapotranspiration, that are subject to decadal trends in West Africa. Our interest is in
understanding how the choice of weather indicators may affect the robustness of index insurance
programs. We document long-term trends in the indicators and explore how those trends cause a
divergence between planned program payouts and expected program payouts. Using yield data as a
direct measure of crop stress—the target of index insurance program intervention—we explore the
degree to which the indicators are statistically associated with yields and can be used to predict the

Remote Sens. 2020, 12, 2432; doi:10.3390/rs12152432 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-7826-4896
https://orcid.org/0000-0003-3450-6870
https://orcid.org/0000-0003-2647-7870
https://orcid.org/0000-0002-9254-6718
https://orcid.org/0000-0001-9742-5379
http://dx.doi.org/10.3390/rs12152432
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/15/2432?type=check_update&version=3


Remote Sens. 2020, 12, 2432 2 of 29

lowest yield quantile. Our goal is to highlight potential issues in index insurance programs related to
the choice of indicator and to inform as to how those issues might be mitigated.

1.1. Farming under Uncertainty

West African agriculturalists are primarily smallholder farmers dependent on rainfed cropping.
They rely on a good rainy season to maintain their livelihoods [2] and often identify weather shocks
as their greatest concern [3]. As a whole, West African farmers are at high risk of food insecurity [4].
Given their extreme poverty, they are ill-prepared to manage risks. Farmers respond to this through
risk-averse behavior [5]. To ensure stable livelihoods, they employ risk-averting methods such as
growing reliable crops (sorghum and millet), delaying planting until the rainy season has fully
started, and forgoing investment in costly inputs like higher yield seeds or fertilizer [6]. However,
farmers could attain more productivity through agricultural advancements by taking productive
risks. Some agricultural practices for improved resilience include using genetically improved
drought-resistant crop varieties [7,8], using fertilizer [9], or implementing water capture techniques
such as contour ridges or demi lunes [10].

Agricultural advances can be complemented with financial tools to share risk and create risk
reserves [11]. One financial tool is weather index insurance, which relies on a proxy measure of a
hazard to identify payout events. Index insurance is similar to traditional insurance but pays out based
on the poor performance of a weather indicator, unlike traditional insurance which pays out based on
damages [12]. Index insurance is a risk management tool used to mitigate the impacts of a climate
shock and is often used to mitigate the impacts of drought. Combined with other risk management
strategies, index insurance can provide an additional safety net to help farmers experiencing poor
growing conditions [13]. Risk-averse farmers can use index insurance to cover the uncertainty that any
given year might be a bad year. Across the Sahel, where improved productivity is a necessity in the face
of mounting climate variability and large population growth [14], index insurance has great potential
to help millions of farmers. (Index insurance projects are ongoing across much of West Africa, targeting
poor cropping years for different crops and using different indicators. These projects are functional and
are already providing coverage for farmers in these areas. Our research goal is not to displace these
projects but rather provide a guide for evaluating different indicators for index insurance. For further
reference, these projects include but are not limited to the following: the World Food Programme’s R4
index insurance project in Senegal [15], the World Bank and the Global Index Insurance Fund PlaNet
Guarantee project in Benin, Burkina Faso, Mali, and Senegal [16,17], the African Risk Capacity index
insurance project in the following West African countries: Burkina Faso, Mali, Niger, Senegal, and The
Gambia, [18], and evapotranspirative projects through Environmental Analysis and Remote Sensing
(EARS) in Senegal [19]).

1.2. Agroclimatic Indicators in West Africa

West Africa is classified as an arid region, with the rainy season defined as the West African
Monsoon occurring from May to October [20]. The distribution of precipitation occurs through the
intertropical convergence zone [21], and the majority of the precipitation in West Africa occurs from
July to September [22], with August being the wettest month [23]. As seen in Figure 1a, West African
precipitation has a sharp north-south gradient, where isohyets running east-west increase from north
to south [24]. Similarly, the annual evaporative demand is characterized by east-west running isopleths
of reference evapotranspiration (ET0), seen in Figure 1b, which decrease from north to south [25].
Seasonal changes show high ET0 to be related to high net radiation and temperature [25], indicating
that when the sky is clear and the temperature is high, the evaporative demand is greatest.
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Figure 1. (a) Isohyets across West Africa, ranging from 100 mm/year in the far north of the Sahel to
over 2000 mm/year in the south of West Africa (The amount of precipitation per year was capped at
2000 mm/year). Isohyets were calculated using yearly rainfall from the Climate Hazards InfraRed
Precipitation with Stations dataset from 1981–2016 [26]. (b) Isopleths of ET0 across West Africa, ranging
from 5000 mm/year in the far north of the Sahel to under 1500 mm/year in the far south. (The amount
of ET0 was capped at 5000 mm/year). Isopleths of ET0 used the ET0 dataset produced by the National
Oceanic and Atmospheric Administration’s Physical Sciences Division from 1981 to 2016 [27,28].

West African precipitation exhibits a large amount of natural interannual and long-term variability,
and predictability at seasonal scales is generally low [29]. Interannual variability is in part related
to zonal winds where the African Easterly Jet is displaced farther north in anomalously wet
years [23]. Long-term variability is related to sea surface temperatures fluctuating from the Atlantic
Multidecadal Variability (AMV). The AMV drives 60% of the precipitation variability in the Sahel [30],
which can result in decades with relatively high precipitation (abundant periods) or decades with low
precipitation (drought periods).

Long-term climate change may also be influencing West African precipitation and evaporative
demand. Biasutti and Sobel [31] found that for the 21st century simulation, an increase in simulated
greenhouse gasses to the Coupled Model Intercomparison Project Phase Three (CMIP3) increased
positive precipitation anomalies in October and negative precipitation anomalies in May/June.
This delay in precipitation was also shown in CMIP5 simulations, where West Africa in particular
experiences a delayed onset while across the Sahel there are stronger rains at the cessation of the rainy
season [32].

ET0 may be a useful proxy for identifying poor crop years. ET0 measures the water needs of crops,
estimating the amount of water that a hypothetical reference crop would evaporate and transpire
in unlimited water conditions [33]. ET0 was designed for irrigation management and has become
an important agrometeorological parameter for climatological and hydrological analyses including
drought identification [34,35].

Climate change is projected to increase temperatures in West Africa, which may contribute
to ET0 increases [36], resulting in higher risk of heat and water stress for agriculture [37,38].
The Intergovernmental Panel on Climate Change (IPCC) expects an overall increase in ET0 in the Sahel
during the 21st century [39]. However, Estes et al. [40] found large decreases in ET0 during the rainy
season in the Sahel. Cook et al. [20] found a more nuanced breakdown of the season, where ET0 in
West Africa increased during the early part of the season (May-June) but decreased in the later part of
the rainy season.

1.3. Index Insurance in West Africa

Index insurance is designed to provide income to farmers during agroclimatic “bad” years
as a partial substitute for lost farming income. In addition to direct income supplement effects,
index insurance has been shown to have several positive indirect effects. Farmers with index insurance
are more likely to invest in measures to increase production such as purchasing fertilizer [41].
In addition, banks may be more likely to provide credit to invest in productive inputs (expensive seed,
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additional fertilizer) or even in irrigation systems [5]. These indirect effects can result in a significant
increase in farmer production in an average year [13].

One class of index insurance protects against agroclimatic drought and is particularly well-suited
to farming in West Africa, based on precipitation since often precipitation is the main determinant
of a “good” yield [1]. These policies typically use precipitation deficits, for all or part of the season,
to determine payouts. Determining the proper index and thresholds for payouts is a controversial
and sensitive issue, as it needs to be straightforward for the policyholder but also complex enough to
capture the variety of events that impact agricultural production. Although extremely high rainfall
events can cause poor yields and adversely affect crops, they are difficult to accurately capture with
remotely sensed data and therefore are not included in the scope of this research. Surveys, educational
programs, and iterative tests have been done with farmers through organizations such as the World
Food Programme to identify the appropriate indices to serve as proxies for the policies [41].

Index insurance targeting droughts use historical precipitation data, from an observation
“window” spanning some or all of the rainy season, to calculate the threshold for payouts. If the
precipitation falls below a certain amount, called a trigger, a partial payout occurs. A full payout
occurs if the precipitation is below a different amount, called the exit. A critical aspect in
the use of historical precipitation data is an understanding of low-frequency variability. In the
last half-century, West African precipitation experienced low-frequency shifts from generally
above-average precipitation in the 1950s to dry conditions of the 1980s and a recovery of rainfall
during the 1990s until today [23]. If a positive precipitation trend is present, and insurance contracts
ignore this trend, then these trends are likely to lead to the underpayment on index contracts held
by farmers.

Because reliance on precipitation alone could be problematic, there is interest in using multiple
independent datasets as inputs to the insurance index [42]. In a project funded by the International
Fund for Agricultural Development [12], several data providers were asked to generate index insurance
designs for drought-related farming losses in specific regions of Senegal. The seven service providers
used a variety of remotely measured datasets: evapotranspiration, soil moisture estimates, satellite
rainfall estimates, and Normalized Difference Vegetative Index (NDVI), a satellite measured vegetative
product. They found that indices based on these datasets had similar accuracy in capturing drought,
depending on the crop used for reference [12]. While use of multiple datasets may increase robustness
of the resulting index, variability within datasets can affect index insurance products through changes
in premiums, different identification of payout years, and the size of the payouts themselves.

1.4. Objectives

In this study, we focus on patterns of water supply (precipitation), atmospheric water demand
(evapotranspiration, ET0), and the implications of these spatial and temporal patterns on index
insurance. We explore precipitation and ET0 trends and indices during the period 1981–2016.
This period is known to contain low-frequency variability moving from low precipitation in the
1980s to a rebound of precipitation in the late 1990s–2000s. We also investigate patterns in derived
measures of agroclimatic drought such as the cessation of precipitation and the occurrence of dry spells
during the rainy season. We then characterize the significance of these changes on index insurance and
how insurance might combine these datasets to have more robust identification of poor agricultural
conditions. Finally, we use yield data to better understand how these datasets might better serve
applications such as index insurance.

2. Materials and Methods

We use data from three datasets (ET0, precipitation, and one measure—Standardized
Precipitation-Evapotranspiration Index, SPEI, derived from them) and observational crop data (yield).
Trend analysis is used to identify the presence of low-frequency variability in each of the candidate
measures. The results from the trend analysis are used to evaluate the impact of ignoring that variability
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on insurance payouts and the degree of concurrence between candidate measures. Regression analysis
is used to characterize association between the candidate measures and yield. Final regression and
classification trees are used to predict lowest yield years (the target of index insurance) based on the
full range of candidate measures.

2.1. Data

The precipitation data comes from the Climate Hazards Center InfraRed with Stations
(CHIRPS) dataset (Downloadable at ftp://ftp.chc.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/).
CHIRPS blends a long-term climatology, satellite estimates of precipitation derived from cold-cloud
duration calibrated to the Tropical Rainfall Measuring Mission (TRMM) dataset and available station
observations [26]. Resolution for the CHIRPS dataset is 0.05◦ by 0.05◦.

The ET0 dataset (Downloadable at ftp://ftp2.psl.noaa.gov/Projects/EDDI/global_archive/.
Documentation on this dataset available at https://psl.noaa.gov/eddi/globalrefet/) is produced
by the National Oceanic and Atmospheric Administration’s Physical Sciences Division (NOAA-PSD)
global Evaporative Demand Drought Index (EDDI) [27,27,28,43,44] and was calculated with the
American Society for Civil Engineers Penman-Monteith formulation [45]. The data is natively
available at coarse-scale (0.5◦ × 0.625◦) resolution and is subsequently resampled to fine-scale
resolution (0.125◦ × 0.125◦) by superimposing a 4 × 5 block grid using climatological estimates of
monthly potential evapotranspiration from the the International Water Management Institute (IWMI).
ET0 calculations were done on a daily basis using daily means of 2-m air temperature, downward
shortwave radiation at the surface, 2-m specific humidity, and 2-m wind speed from Modern-Era
Retrospective Analysis for Research and Applications, Version 2, (MERRA-2) Reanalysis data [46].
ET0 estimations are for a 0.12-m short grass reference crop. The ET0 data is 0.125◦ by 0.125◦ resolution.
To match the ET0 and precipitation grids in certain analyses, the precipitation data were averaged
per-pixel and resampled using nearest-neighbor to a 0.125◦ by 0.125◦ resolution.

A Standardized Precipitation and Evapotranspiration Index (SPEI) [47] was constructed by
the authors from the CHIRPS precipitation dataset and the ET0 dataset following the method as
described by Vincente-Serrano et al. [48] using a log-logistic distribution for the period 1996–2016.
SPEI is designed to capture droughts and supposedly reflect water balance in the target area by
combining the hydrologic input to the system (precipitation) and removal of moisture from the system
(evapotranspiration). Such an index should be able to account for poor cropping years, such as a year
with high precipitation coupled with elevated ET0.

Finally, a yield dataset (This data was collected and reported separately by the Ministry of
Agriculture, Official Agricultural Statistics, Burkina Faso; Direction Nationale de l’Agriculture, Malie;
Ministère de l’Agriculture, Niger; and Ministère de l’Agriculture et du Développement Rural, DAPSA,
Senegal. Additional data cleaning was conducted internally, and the authors are responsible for the
current data. This dataset can be shared, but requests to share are subject to review) was used in
assessing the precipitation and ET0 datasets for index insurance. This research combined sorghum and
millet yield (defined as tonnes per crop produced per hectare, tonnes/ha), to have a sorghum-millet
hybrid variable, hereafter referred to as yield. Twenty regions across the Sahel were chosen in Burkina
Faso, Niger, Mali, and Senegal. Although these regions are relatively small in size, they are still larger
than the pixel size of either the ET0 or the precipitation data. Both of these datasets took the spatial
average to match the region size. For drought insurance, large areas are impacted such that finer
spatial resolution would not necessarily add more information to mesoscale droughts [49]. The yield
data have 20 years’ worth of yield data, from 1996 to 2016.

2.2. Trend Analysis

Precipitation, ET0, SPEI, and index insurance indices were analyzed during the time 1981–2016
through trend analysis. Linear fit was used to estimate changes over time for June–October monthly
totals of precipitation, monthly totals of daily means for ET0, and seasonal totals for both. The months

ftp://ftp.chc.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/
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were chosen based on the months that received the majority of the precipitation (July-September)
and one month before and after the majority of the rainy season (June and October) to capture the
ramp up and down of the rainy season. ET0 data was regressed on precipitation to assess their linear
relationship, using ET0 as the response variable and precipitation as the independent variable.

To investigate the end of the rainy season and the distribution of the rains, two measures were
developed with precipitation: the cessation of the season and number of dry pentads (5-day periods)
per season. The cessation of the season is the period during which the season may end and is calculated
as the first dekad (10-day period) with less than 5 mm of precipitation, followed by two dekads with a
combined total of less than 10 mm of precipitation, using the dates 11 August through 31 December.
The start and end date for calculating the end of the season were chosen to better target bad years,
which may have a much earlier end of season. The last months of the year were picked to capture end
of season in the Gulf of Guinea, which has a longer rainy season. Then, the number of dry pentads per
season is calculated by adding the number of dry pentads with less than 5 mm from 1 June through
the previously calculated cessation of season. Linear fit was then used to analyze trends for cessation
of season and dry pentads.

2.3. Index Design

Insurance indices were made for both ET0 and precipitation using the 15th percentile to
approximate a 1 in 7 drought event (1/7 is approximately 14.3%) and used the 1981–2016 data,
for the months of June–October and the seasonal totals. Any rate can be used to generate payouts for
index insurance and in experiments testing farmers’ interest in index insurance, the rates often range
from 33% to 20% [50]. We chose the 15th percentile to target low probability poor precipitation events.
Events more extreme than the empirically identified lowest (highest) 15th percentile for precipitation
(ET0) threshold were considered a “bad” year and would require a payout. In this index the “payout”
is binary, each year being identified as a payout year or not, with no exploration of fractional payouts
for this test. Although indices typically have a sliding scale, since this paper is focusing on different
datasets for index insurance purposes, and not on the payouts themselves, our choice of binary payouts
is appropriate.

2.4. Heidke Skill Score

The Heidke Skill Score was used to measure agreement between the precipitation payouts and the
ET0 payouts, both seasonally and for the months June–October. The Heidke Skill Score measures the
skill of predictions using hits, correct negatives, misses, and incorrectly predicted hits [51]. This analysis
considers “hits” as years where both ET0 and precipitation have payouts, “correct negatives” are years
where neither ET0 nor precipitation had a payout, and misses or incorrectly predicted hits are where
the payout years disagree between datasets. The results of the Heidke Skill Score were translated
into total number of agreeing payout years, ranging between 0 (locations that never had a payout
match between precipitation and ET0) and 5 (all possible payouts matched). A comparison of the
first and second half of the payouts was conducted, where the payout data was split into 1981–1998
and 1999–2016.

2.5. Linear Regression

Association between the environmental indicators (precipitation, ET0, and SPEI) and yield can be
empirically assessed using regression analysis. We use regional yield and the associated environmental
measures for the same region and growing season. The yield data is first examined via linear fit with
seasonal totals of precipitation, ET0, and SPEI. The empirical bivariate relationships were assessed
using pooled data over the full set of the locations in the region. Using a pooled model increases
the power to find statistically significant relationships if some of the β coefficients can be held fixed.
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Specification testing, outlined in the Appendix A, indicates that Equation (1), which has a fixed slope
and varying intercept is the best equation for capturing yield.

yi,t = αi + β1Xi,t + ui,t (1)

where yi,t is the regional (i) and year (t) indexed yield, and Xi,t is either precipitation, ET0, or SPEI.
Note that αi models the unobservable time-invariant regional effect.

2.6. Classification and Regression Tree Analysis

While statistically significant association is of interest as a check whether the measures reflect
the underlying biological relationship linking environmental growing conditions to crop outcomes,
this metric does not directly address whether the indicators can predict crop failures. Classification
and Regression Trees (CART) can be used to predict low yields using a set of partially collinear
environmental indicators (SPEI, ET0, and precipitation) as well as country indicators (to allow
for regional heterogeneity). In CART, the algorithm searches over the range of each candidate
regressor independently to identify the split that provides the best predictive accuracy. All regressors
are considered as candidate criteria by which to split the data, until a stopping rule is reached.
In classification tree analysis the outcome is binary, which in our models takes the value 1 if yield is in
the lowest 20% and 0 otherwise. Regression tree analysis is an alternative formulation to classification
trees, where the data is not binary but rather continuous. The splitting criteria in regression tree
analysis tries to most efficiently partition the data into as homogeneous as possible yield regimes.

3. Results

3.1. Precipitation

Some broad spatial patterns become apparent from the maps in Figure 2. Precipitation overall has
a generally positive trend for individual months across large swaths of the Sahel during the 36 years of
analysis. First, Figure 2c,d show that north of 14◦ N there is a positive precipitation trend in August
and September, and central West Africa experiences a slight increase in precipitation in June (Figure 2a)
and July (Figure 2b). During October, the 7◦ N latitude has shown a positive precipitation trend along
the Coast of Guinea. Additionally, the overall change for June–October season (Figure 2f) shows a
positive increase in precipitation across the 13–15◦ N latitude.

The trends in the cessation of the season and dry pentads point to the rainy season overall
changing in structure. In Figure 3a, the trend for the cessation of the season is positive in central West
Africa, particularly around 12◦ N to 16◦ N from 15◦ W to 15◦ E, indicating that the rainy season is
ending later here. There are additional spots, such as over 3◦ E to 4◦ E from 6◦ N to 10◦ N and from
10◦ W to 15◦ E above the 15◦ N latitude that have a later end of season overall. The locations where
overall there is no change in the later end of season is south of 10◦ N from 15◦ W to 2◦ W and 5◦ E
to 20◦ E. Results show an overall change of around 0.5 days/year. Across the 36 years used for this
study, that would indicate a delay in the cessation of season by 16 days (approximately half a month).
The locations where overall there is no change in the later end of season are south of 10◦ N from 15◦ W
to 2◦ W and 5◦ E to 20◦ E. Additionally, in Figure 3b, the trend for the total number of dry pentads is
negative, indicating there is a general decrease in the number of dry pentads over time. The trend for
the start of season was also calculated but was not significant.
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Figure 2. Precipitation regressions for the months of June (a), July (b), August (c), September (d),
October (e), and full season (f) from 1981 to 2016, in mm/month for (a) through (e), and in mm/season
for (f). The data in (a–e) is capped at −1 to 1 mm, and the data in (f) is capped at −10 to 10 mm.
Any insignificant trend (p > 0.05) has been masked out in gray.

a- Cessation	of	Season b- Dry	pentads	

dekads/year
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Figure 3. (a) Trend for the cessation of the season, as measured by dekads per year, calculated from
1981 to 2016. Capped at −0.1 to 0.1 dekad/year, insignificance (p > 0.05) is masked out in gray. (b) The
trend of total number of dry pentads for the season, as measured in pentads/year, calculated from 1981
to 2016. Capped at −0.15 to 0.15 pentads/year, insignificance (p > 0.05) is masked out in gray.

3.2. ET0

The patterns observed in the ET0 trends vary throughout the summer months, and,
unlike precipitation, a general regional trend is not readily apparent. As seen in Figure 4, ET0 trends
depend on the month and location. East of 10◦ E and west of 7◦ W show increases in evaporative
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demand in all the months, varying in spatial extent. From 5◦ W to 5◦ E there is decreasing ET0 during
June (Figure 4a), September (Figure 4d), and October (Figure 4e). In August (Figure 4c) there is a
broad decreasing band in evaporative demand extending from 13◦ N to 20◦ N and between 15◦ W to
15◦ E. This prominent feature from the August (Figure 4c) map is much less pronounced in September
(Figure 4d) and October (Figure 4e). The coast from 14◦ W to 15◦ W along the 11◦ N to 15◦ N has
decreasing ET0 in all months. For the whole season (Figure 4f), there is an decrease along the 15–13◦ W
from 11–20◦ N, particularly in the July (Figure 4b), September (Figure 4d), and October (Figure 4e)
months, with a marked increase from 10 to 20◦ E from 0 to 5◦ N, a feature that is present in all months
except September.
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Figure 4. ET0 regressions for the months of June (a), July (b), August (c), September (d), October (e),
and full season (f) calculated from 1981 to 2016. The units in (a) through (e) have been capped to −3
to 3 mm day−1 month−1, while the units in f have been capped from −4 to 4 mm day−1 season−1.
Any insignificant slope (p > 0.05) has been masked out in gray.

3.3. ET0 and Precipitation

This relationship is shown in Figure 5, where the correlation between precipitation and ET0 is
largely negative, particularly during August, September, and October along 14◦ N to 15◦ N. From the
coast to the north across 4◦ W to 4◦ E for July, August, and October, the slopes are also negative.
For the overall season, see in Figure 5f, there is a strong negative correlation between precipitation
and ET0, particularly across the 15–18◦ N latitude. This negative relationship is expected, as the rainy
season presents more cloud cover, resulting in lower solar radiation and ultimately decreasing ET0.
Unsurprisingly, the relationship in the Sahara (approximately 15◦ N and northward) exhibits a strong
negative relationship throughout the season between ET0 and precipitation, which is particularly
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prominent in August, September, and the overall season. In general, drier areas exhibit a stronger
inverse relationship.
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Figure 5. ET0 regressed on precipitation, where precipitation is the independent variable and ET0 is the
dependent variable for the months of June (a), July (b), August (c), September (d), October (e), and full
season (f) calculated from 1981 to 2016. Any insignificant slope (p > 0.05) has been masked out in gray.

3.4. Indices and Heidke Skill Score

The precipitation index and ET0 index pay out at different critical times. The payout rate of
once every seven years (1/7) resulted in 5 payouts over the 1981–2016 time series. The monthly
payouts for precipitation and ET0 are shown in Figure 6, along with the corresponding Heidke Skill
Score for each month. In the precipitation index, there are generally a low number of payouts in the
years 1999–2016, although there are exceptions in the northern-most and southern-most parts of West
Africa, where some locations have a higher rate (4–5) of payouts during the latter half of the record.
During July–October, many locations in central West Africa, along the 13–15◦ N latitude experience
0–2 payouts. For the ET0 index, payouts have a greater range than precipitation payouts from 1999
to 2016. August, for example, receives fewer payouts while June and October receive more payouts
during this time.

The agreement between the precipitation and ET0 payouts varies by month, as analyzed in the
Heidke Skill Score in Figure 6k–o. The monthly index Heidke Skill Scores in Figure 6k–o range from no
agreement to strongly agree, and the seasonal indices have more agreement than the monthly payouts
except August. June and July are the months that overall have the lowest agreement, with September
agreement being only slightly higher. August has the highest overall agreement, with agreement
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throughout central West Africa and western West Africa. There is additionally high agreement in
the southern part of West Africa during October. Considering that there is a significant negative
relationship between ET0 and precipitation for August (Figure 5c), the high Heidke Skill Score for this
month is unsurprising. The agreement for the seasonal indices is better than all months except August.
In particular, in Figure 7a, the precipitation index has less than 2 payouts overall for 1999–2016 across
the 13–15◦ N latitude. In contrast, the ET0 index experiences between 2 and 5 payouts for the same
13–15◦ N latitude region.
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Figure 6. (a–e) (Left, Top to Bottom) June (a), July (b), August (c), September (d), October (e) payouts
that occurred for 1999–2016 precipitation data. (f–j) (Middle, Top to Bottom) June (f), July (g),
August (h), September (i), October (j) payouts that occurred for 1999–2016 ET0 data. (k–o), (Right, Top to
Bottom) June (k), July (l), August (m), September (n), October (o), Heidke Skill Score for the payouts
of ET0 to the precipitation payouts. These plots show where the precipitation data and the ET0 data
have between 0 and 5 payouts occurring in the same year. To match the ET0 and precipitation grids,
the precipitation data were averaged per-pixel and resampled using nearest-neighbor. However,
although some areas in the ET0 appear more coarsely mapped than the precipitation data or
the Heidke Skill Score maps, this appearance is a known consequence of the method in https:
//psl.noaa.gov/eddi/globalrefet/ used to downscale the ET0 spatial resolution from 0.5◦ × 0.625◦

resolution to 0.125◦ to 0.125◦ × 0.125◦ resolution and is not an artifact in our analysis in this study.

https://psl.noaa.gov/eddi/globalrefet/
https://psl.noaa.gov/eddi/globalrefet/
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Figure 7. (a) Seasonal payouts that occurred during 1999–2016 in the precipitation dataset. (b) Seasonal
payouts that occurred during 1999–2016 in the ET0 dataset. (c) Heidke Skill Score for the payouts of
ET0 to the precipitation payouts. This plot shows where the precipitation data and the ET0 data have
between 0 and 5 payouts occurring in the same year.

3.5. Linear Fits with Yield, Precipitation, ET0, and Spei

Coefficient estimates, standard errors, and other diagnostics for model (1) using either
precipitation, ET0, or SPEI as the independent variable are provided in Table 1. The model results
in Table 1 show that the independent variables (precipitation, ET0, and SPEI) all have significance
in predicting yield and have correspondingly high R-squared. It is clear that precipitation, ET0,
and SPEI capture variation in the yield reasonably well. All three of these variables are significant
at the p-value < 0.001 level. The relationship is present in all regions, with each region having a
modifying variable for the region. Additionally, all models have a relatively high adjusted R-squared,
with precipitation’s R-squared at 0.6649, ET0’s R-squared 0.6784, and SPEI’s R-squared at 0.6692 (see
Figure 8a–c).
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Figure 8. Using yield data, precipitation, ET0, and SPEI for 1996–2016, (a) this image shows the
regression of precipitation predicting yield. (b) this image shows the regression of ET0 predicting yield.
(c) this image shows the regression of SPEI predicting yield. The data are identified by country in
different colors: Burkina Faso represented in red, Mali in green, Niger in blue, and Senegal in purple.
There were five regions per country, which are further represented by different regression lines in
the plots—all plotted with corresponding colors to the country they are in. Further information on
specifications of the regression models can be found in Table 1.
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Table 1. Regressions Predicting Yield Numbers within the brackets () represent the standard error
of the estimate directly above themselves. Different p-values are used to determine significance—*
represents estimates that p-values smaller than 0.05, ** represent estimates that have p-values smaller
than 0.01, and *** represent estimates that have p-values smaller than 0.001.

Model 1: Precipitation Model 2: ET0 Model 3: SPEI

Intercept 0.4954 *** 1.1026 *** 0.7521 ***
(−0.0759) (−0.1039) (−0.0379)

X1 0.0005 *** −0.0006 *** 0.2856 ***
(−0.0001) (−0.0002) (−0.0536)

Burkina-Kenedougou 0.1494 * 0.2278 *** 0.0385 ***
(−0.0634) (− 0.0564) (−0.0535)

Burkina-Kouritenga −0.0085 −0.0046 0.0385
(−0.0551) (0.0554) (−0.0535)

Burkina-Mouhoun 0.226 *** 0.402 *** 0.2988 ***
(−0.0568) (0.0611) (−0.0535)

Burkina-Silassi 0.1684 ** 0.3503 *** 0.2726 ***
(−0.0596) (−0.0611) (−0.0535)

Mali-Kayes 0.0436 0.0946 0.1179 *
(−0.057) (−0.0544) (−0.0535)

Mali-Koulikoro 0.0972 0.2928 *** 0.1325 *
(−0.0546) (−0.0699) (−0.0535)

Mali-Mopti 0.0191 0.0131 −0.0396
(−0.0557) (−0.056) (−0.0535)

Mali-Segou 0.1347 * 0.3019 *** 0.1315 *
(−0.0539) (−0.0716) (−0.0535)

Mali-Sikasso 0.1265 0.3539 *** 0.2808 ***
(−0.066) (−0.0587) (−0.0542)

Niger-Bouza −0.2407 *** −0.0557 −0.3178
(−0.0571) (−0.0902) (−0.0535)

Niger-Dosso −0.2264 *** −0.0975 −0.2338 ***
(−0.05459) (−0.0665) (−0.0542)

Niger-Filingue −0.3094 *** −0.3415 *** −0.4191 ***
(−0.0602) (−0.0582) (−0.0535)

Niger-Goure −0.3062 *** −0.3722 *** −0.5024 ***
(−0.073) (−0.0656) (−0.0542)

Niger-Mayahi −0.3162 *** −0.1432 −0.4006 ***
(−0.0582) (−0.0891) (−0.0542)

Senegal-Diourbel −0.0719 0.1062 −0.1752 **
(−0.0596) (−0.0945) (−0.0535)

Senegal-Fatick −0.0092 0.1580 −0.09
(−0.0574) (−0.0871) (−0.0535)

Senegal-Foundiougne 0.1864 ** 0.3092 *** 0.1071 *
(−0.0573) (−0.0776) (−0.0535)

Senegal-Gossas −0.1458 ** −0.0115 −0.1868 ***
(−0.0549) (−0.0725) (−0.0535)

Senegal-Mbacke −0.2022 *** −0.2458 *** −0.2593 ***
(−0.0557) (−0.0542) (−0.0535)

Adjusted R-squared 0.6649 0.6784 0.6692
F-statistic 42.16 41.65 42.97

Degrees of Freedom 395 395 395

3.6. Regression Tree Analysis of Crop Yield

The regression tree, seen in Figures 9–12, finds that for Niger, Burkina Faso, and Mali, the splits
between precipitation accurately separate the yields into different high, medium, and low classes.
For Niger, the single rule between 314.7 mm splits the observations into low yield (0.27 tonnes/ha).
For Burkina Faso and Mali, the initial rule splits the observations into high yield (1.02 tonnes/ha) and
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medium/lower yield. The second rule for Burkina Faso and Mali splits the observations to medium
yield (0.85 tonnes/ha) when there is less precipitation than 680.2 mm but more precipitation than
460.6 mm and low yield (0.62) when there is less precipitation than 460.6 mm. The regression tree
results for Senegal are more mixed. Surprisingly, the lowest yield (0.49 tonnes/ha) is when the ET0 is
less than 749.1 mm, which would be expected to have the highest yield since the evaporative demand
is low. This may indicate issues related to poor crop yield data, as well as other factors than climate on
yield (i.e., socio-economic influences, governmental influences, soil quality, etc). The second lowest
yield (0.58 tonnes/ha) occurs when the ET0 is greater than 997.5 mm, which would be more in line
with the expectation for an association between yield and ET0. When the ET0 is between 749.1 mm
and 997.5 mm, the final rule in the Senegalese observations is precipitation greater (less) than 367.4,
which results in another surprising result—the high precipitation has a lower yield (0.67 tonnes/ha)
amount than the lower precipitation yield (0.91 tonnes/ha).

Regression	Tree
Yield~Rainfall+ET0+SPEI+country

Node	1
Mean	=	0.7059

n=		416
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Figure 9. The regression tree for yield across all regions using seasonal precipitation, seasonal ET0,
and seasonal SPEI to classify the yield into classes. Seasonal SPEI was ultimately not used for splitting
the data in this regression tree.

3.7. Classification Tree Analysis of Low Yield Years

Precipitation, ET0, and SPEI are also used as the classification candidates to predict low yield
years, defined as years that are lower than the 20th percentile of yield. Figure 13 provides a visual
representation of the classification tree and a summary of the splitting criteria. Precipitation and ET0

are selected in the model to predict poor growing years. The final classification tree has two rules,
using first precipitation to split the observations into high precipitation (greater than 317.7 mm) and
low precipitation (less than 317.7 mm). The second rule splits ET0 into high evaporative demand
(greater than 892.5 mm) and low evaporative demand (less than 892.5 mm). There is one node that
has 100% crop failures, which has low precipitation and low evaporative demand. The node that has
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low precipitation but high evaporative demand has a 66.7%/33.3% split between crop successes and
failures. The node that splits the data into high precipitation has 88.4% of the observations being crop
successes and 11.6% of the observations as crop failures.

a b

Figure 10. (a) The regression tree for Burkina Faso, Mali, and Niger plots ET0 against precipitation.
The rules for Burkina Faso and Mali have the first rule of precipitation greater (less) than 680.2 mm and
the second rule of precipitation greater (less) than 460.6. The rule for Niger has precipitation greater
(less) than 314.7 mm. (b) The regression tree for Senegal plots ET0 against precipitation. The first rule
is ET0 greater (less) than 749.1 mm. The second rule is ET0 greater (less) than 997.5 mm. The final rule
is precipitation greater (less) than 367.4 mm.

a b

Figure 11. (a) The regression tree results for Burkina Faso, Mali, and Niger plotted with ET0 against
yield, with different dot shapes denoting which node in the regression tree the yield falls into. The dots
are separated by different colors for the precipitation rules—for Burkina Faso and Mali, the precipitation
greater than 680.2 mm is represented as pink, the precipitation between 680.2 mm and 460.6 mm
is represented as dark red, and precipitation less than 460.6 is represented as green. For Niger,
the precipitation greater than 314.7 mm is represented with blue, and the precipitation less than
314.7 is represented as orange. (b) The regression tree results for Senegal, plotting ET0 against yield,
with different dot shapes representing which node in the regression tree the yield falls into. The dots
are separated by different colors for the precipitation rules, and there are lines representing the ET0

rules. The first rule is ET0 greater (less) than 749.1 mm, and the second rule is ET0 greater (less) than
997.5 mm. The next rule is precipitation greater than 367.4 mm (represented by pink) and precipitation
less than 367.4 mm (represented by orange).
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a b

Figure 12. (a) The regression tree results for Burkina Faso, Mali, and Niger with yield plotted against
precipitation; the different dot shapes represent the nodes the observation is under and the different
dot colors represent the country the observation is from, with lines representing the regression tree
rules for precipitation. The first rule for Burkina Faso and Mali data is precipitation greater (less)
than 680.6 mm, and the second rule is precipitation greater (less) than 460.2 mm. The rule for Niger
observations is precipitation greater (less) than 314.7 mm. (b) The regression tree results for Senegal
with yield plotted against precipitation, the different dot shapes representing the node the observation
is under and the different dot color representing the ET0 rules, with a line representing the rule for
precipitation. The first rule splits data into greater than 749.1 mm and less than 749.1 mm (represented
in orange). The second rule splits data into greater (less) than 997.5 mm, with data that is greater than
997.5 represented in pink. The data that falls between 997.5 mm of ET0 and 749.1 mm are represented
in blue, and are subject to the precipitation rule of greater (less) than 367.4 mm.

a b

Figure 13. (a) The precipitation plotted against the ET0, with the rules of the classification tree shown
as lines. The first rule is precipitation is greater (less) than 317.7 mm, the next split is ET0 is greater
(less) than 892.5 mm. Crop failures are shown in red, and crop successes as defined by the 20th quantile
are shown in blue. (b) the classification tree is shown, with 416 observations, 83 of which are crop
failures. In Node 2, the precipitation is greater than 317.7 mm, with 317 of the 359 observations being
crop successes (88%) and 42 of the observations being crop failures (12%). In Node 3, the observations
have less than 317.7 mm of precipitation, resulting in 16 crop successes of the 57 observations (28%)
and 41 crop failures (72%). Node 4 has ET0 less than 892.5 mm, and of the 24 observations, 16 are crop
successes (66.7%) and 8 are crop failures (33.3%). Finally, Node 5 has ET0 less than 892.5 mm and has
33 observations, all of which are crop failures (100%)

4. Discussion

When constructing index insurance products, the choice of the dataset is extremely important,
as the industry relies on stationary historical data to best match poor cropping years with payouts.
Although this research did not investigate specific index designs, it is important to remember that
even with data that is highly correlated to each other, small differences in design can lead to large
differences with respect to product value [52]. The trends observed in ET0 and precipitation were not
similar throughout the season, and the structure of precipitation during the rainy season also changed
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such that there were longer ends of the season and fewer dry pentads during the rainy season. Indices
created for both datasets had radically different payout structures, and the agreement between the
two indices was overall very low. The relationships between yield, precipitation, ET0, and SPEI were
relatively strong, with R-squared above 0.6 for all of these relationships. The classification trees and
regression trees indicate that precipitation and ET0 are useful in identifying poor yield years.

4.1. Precipitation Trends

The overall trends in the precipitation data are consistent with previous analysis of other datasets,
specifically with an overall increase in precipitation in August, September, and October. However,
there are few trends in the precipitation at the beginning of the rainy season, (Figure 2a,b). Consistent
with our findings, ARC2 and GPCC precipitation datasets have positive increases for the whole rainy
season in West Africa [53,54] and lower precipitation in the 1980s and increasing precipitation in the
1990s [54,55]. Although Biasutti [32] ran simulations of precipitation in the future with CMIP3 and
CMIP5 [32], they find that by the year 2100, there would be significant changes across the Sahel in
the beginning and end of the rainy season. Despite only analyzing data from the 1980s to the 2000s,
we find a trend for the end of the season coming later, consistent with Biasutti [31,32].

The structure of the rainy season has also changed over time, with a decrease in the number of
dry pentads and a delayed end of the season, as can be seen in Figure 3a. A later end of season date
would be in accordance with Biasutti [31,32]. Additionally, fewer dry pentads indicate that the rainy
season was more humid in the 1990s and 2000s, which would also be in accordance with L’Hôte [55]
and Zhang [54].

4.2. ET0 Trends

The ET0 trends had no spatial pattern of the temporal trends. The decreases in ET0 across the
Sahel occur in August, consistent with other datasets [40], and the decreases in September are also
consistent with other datasets [20]. The decrease in August ET0 is consistent with a strengthening of
the core of the rainy season in West Africa [56], where August receives more precipitation. An increase
in precipitation during this month indicates increased cloud cover, and thus decreased evaporative
demand. Although Cook et al. [20] found an overall increase of ET0 during the early part of the
rainy season in the Sahel, this analysis found no significant changes in ET0 during the early part of
the season.

Contrasting to the rest of West Africa, the Guinea Coast does have decreasing ET0 for June,
September, October, and the overall season, while July and August have either no trend or an increase
directly over Cote d’Ivoire in August. The decreasing trend in June, September, October, and the
overall season and absence thereof in July in August is an exception to the trend in the rest of West
Africa. In a study that focused on the 1961–1990 period [57], the Guinea coast had the largest annual
mean precipitation, cloud cover, and vapor pressure but the lowest mean temperature in West Africa.
The ET0 values along the coastlands are a reflection of the greater development of cloudiness in that
zone, thereby reducing the incoming solar radiation with a consequent reflection in the net radiation
available for ET0 [57].

4.3. Precipitation and ET0

Regressing ET0 on precipitation, we find that increases in precipitation do lead to reductions in
ET0, most likely due to a reduction in incoming radiation due to increased cloud cover, as well as
increased relative humidity. This relationship is particularly pronounced during August and appears
to a lesser extent during September, October, and the season as a whole. Additionally, in September,
October, and the overall season, large areas of West Africa have a negative relationship. June and July,
however, have very little area with a significant relationship between ET0 and precipitation.

While the long-term trends in ET0 and precipitation are generally diverging, the spatial
characterization of the trends are not especially tightly intertwined. August is the only month
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that exhibits a coherent spatial signal between these two trends. For the Sahelian region of West
Africa, there is a strong temperature–evapotranspiration relationship but a weak precipitation–
evapotranspiration relationship [58]. As August is a month experiencing both an increase in
precipitation and an increase in cloud cover resulting in a decrease in temperature, the resulting
increase in precipitation across the 14–15th latitude corresponds with ET0 decreasing. ET0 is decreasing
in September and precipitation is increasing as well, but the significant trend for ET0 is concentrated in
the westernmost part of West Africa.

4.4. Indices and Heidke Skill Score

The indices created for ET0 and precipitation pay out differently for the majority of the rainy
season. The payouts for precipitation occur mainly in the 1980s and early 1990s, especially during the
months of August–October. The fact that the more payouts occur in the first half of the precipitation
index confirms the previously established trend of increasing precipitation from the 1980s to present
day. A majority of the payouts occurring in the first half of the dataset will result in farmers not getting
enough payouts in the second half of the dataset. If precipitation were exclusively used for an index
insurance product with data from 1981 to 2016, present-day farmers will likely experience too few
payouts for it to be beneficial. However, ET0 payouts occur mainly in the late 1990s to 2000s, with the
exception of August.

ET0 and precipitation have low agreement as measured with the Heidke Skill Score for most
months except August. This divergence in payouts between precipitation and ET0 indicates that these
datasets may provide complementary information in capturing farming conditions during any given
year. Considering the low number of payouts occurring in the 1999–2016 period for precipitation,
ET0 may well complement the precipitation data to cover poor cropping years in the second half of
the dataset. Combining ET0 and precipitation to create an index for insurance would be novel—but
the concept of using multiple different datasets for indices is not. For example, index insurance in
Ethiopia features a double trigger for insurance, where the early part of the season uses a precipitation
index and the cessation of the season is evaluated with an Normalized Difference Vegetative Index
(NDVI), a vegetation index [59]. In the case of Ethiopia, the addition of the vegetative index reduces
the basis risk (the risk of the on-the-ground expectation not matching an index insurance payout) with
the product.

4.5. Linear Fit of Yield with Precipitation, ET0, and Spei

From the standpoint of plant physiology, in semiarid regions low crop yields should associate
closely with precipitation, ET0, and SPEI. Higher precipitation and SPEI should be associated with
higher yields, and conversely, increased ET0 should be associated with lower yields. Confirming these
expected relationships, precipitation and SPEI both have positively significant slopes, while ET0 has
a negative significant slope, all with R-squared statistics above 0.60. A one-way analysis of variance
(ANOVA) was conducted to compare the effect of precipitation/ET0/SPEI and country on yield and
showed that the effects were significant (results of these ANOVA tests are viewable in the Appendix A).
An analysis of the yield data shows that three countries have positive trends over time, but the
R-squared for these yields remain rather low and therefore do not explain a large amount of the
variance. Additional information on the yield analysis can be found in the Appendix A.

An unexpected result from the model specification is that the best model had a fixed-slope across
locations. The fixed-slope model is a less complex model than a freely varying model and has important
practical implications: although regions are shifted relative to each other in terms of their ultimate crop
yield potential, variation in yield is otherwise similarly responsive to a given environmental indicator.

4.6. Regression Tree

While the regression analysis is useful in confirming the hypothesized relationship between yield
and the three regressors empirically, it does not inform whether the lowest outcomes on a regressor
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align with the lowest yields, or whether the regressors may be combined to improve targeting the
worst cropping years. Therefore, it is largely uninformative as the basis to improve index insurance.
The regression model describes how the mean yield varies conditional on X, whereas our interest is in
the left tail of the distribution, i.e., the low yields (A natural next step would then be to use quantile
regression to model variation in the left tail of yield. We briefly pursued quantile regression but the
results were not informative. In addition, the multicollinearity issue is present in using a blending of
the three different covariates and is equally problematic for quantile regression and linear (conditional
mean) regression). Further, the regression framework disallows use of the regressors in combination
because they range from weakly to strongly collinear (as shown in Appendix A.2 Figure A3a–c).

The regression tree, viewable in Figure 9, finds that for many countries, low precipitation can
reliably discriminate between high, medium, and low yields. Although the precise amount varies by
country, precipitation determined low yield quantities for Burkina Faso, Mali, and Niger. However,
using the ET0 and precipitation in tandem was important for one country, Senegal. The first two rules
for Senegal use ET0 to separate the yield with a final rule using precipitation. SPEI was never used
by the model to separate high and low yields. The classification and regression trees may not have
used SPEI for any rules due to the fact that SPEI essentially duplicates information to the precipitation
and ET0.

4.7. Classification Tree

When using a classification tree, seen in Figure 13, to predict the discrete outcome category of
lowest 20% of yield, the resulting tree was able to separate the data through precipitation and ET0 into
three nodes, two of which discriminated fairly well between crop failure (lowest 20%) and nonfailure
(highest 80%). The resulting classification tree accurately showed that low yield has a relationship to
low precipitation and high ET0. SPEI was not used in separating out the different outcomes of yield.

5. Conclusions

Precipitation-based indices are useful for identifying probable poor yield seasons, particularly in
water limited areas like in the Sahel. However, historical precipitation trends can substantially impact
a payout schedule, and designers of insurance indices need to account for these trends. Since index
insurance is a relatively new risk management strategy, there is limited exploration for solutions to
trends in datasets. Many groups have identified trends in data as a problem, particularly when it comes
to climate change impacts [11,60]. Some have suggested that insurers incorporate the uncertainty due
to trends in the price of index insurance [61], but this may result in index insurance becoming too
expensive for farmers to afford. Other possible solutions could be to incorporate seasonal forecasts,
decadal trends, or climate change into index insurance contracts [11].

If payout models are to be built using only a single predictor among precipitation, ET0 and SPEI,
this work indicates that any of these datasets are equally useful in creating an index. In fact, the datasets
could be interchangeable depending on the preferences of the farmers and the insurance company.
Surprisingly, there are no great gains in using SPEI instead of precipitation and ET0. Due to these
results being so similar, it might make sense in the near-term to continue using precipitation for indices.
Precipitation is relatively understandable: if a specific level of precipitation is not achieved, there is a
payout, otherwise there is no payout. However, as the trends between precipitation and ET0 are not the
same, it would be prudent to continue to monitor the relationships between ET0 and SPEI to yield.

Conversely, we present evidence supporting the use of multiple datasets when making index
insurance contracts in the future. The precipitation works fairly well as a first rule to understand
poor yields, but ET0 is used in the classification tree to determine the worst yields. On a theoretical
basis, SPEI may actually be a useful indicator for yield in the future. It performs equally well to
precipitation and ET0 in regressions currently, although it is not used for any rules in the classification
or regression trees. For the time being, precipitation and ET0 perform well in indicating low and high
yield results, but as climate change impacts temperatures [39] and natural climate variability impacts
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precipitation [23,30,40,55,62,63], SPEI might be the best way to ensure that poor cropping years are
covered for farmers.

Although not included in the scope of this paper, combinations of datasets may better capture
crop losses experienced by farmers. For example, considering the relatively low Heidke Skill Score of
ET0 and precipitation payouts, a combined index would capture different bad years, potentially to the
benefit of the farmers. An indicator not investigated in this paper is NDVI, which has shown promise
for potential use in index insurance in West Africa [12] and is already used in other regions for index
insurance [64]. Traditionally, there are few indices that use NDVI in West Africa, with precipitation
and ET0 preferred for index design, which is the basis of the research in this analysis. However, NDVI
has been proven to accurately indicate drought conditions in other parts of the world [65]. There is
evidence that in Sahalian West Africa, vegetation is driven by precipitation and that NDVI can be used
to assess changes in crop production [66]. One potential avenue for future research is multiple trigger
index insurance for West Africa, such as in Ethiopia, where NDVI is used as a complementary trigger
for detecting drought alongside precipitation [49,59], or using NDVI as a stand-alone indicator for
index insurance [12], given it has proper calibration [67].

Index design and data processing can greatly affect the quality of the final insurance product;
this aspect is crucial to ensuring that smallholder farmers get the best option for an insurance product.
Meroni 2019 [68] produced estimates of near real time NDVI anomalies by consolidating new incoming
data with prior information smoothing and updating the estimates as new data became available to more
accurately capture crop health quickly. As the precipitation and ET0 datasets are available at different
temporal scales, similar innovative methods to integrate data at different temporal scales will be necessary
to create. As was highlighted in this study, precipitation and ET0 do not exhibit similar trends, which could
represent an opportunity to capture information pertinent to improving the poor cropping years.

Future research should investigate how ET0 is affected by its different drivers, in order to have
a better understanding of the spatial variation in the trends as observed in this paper. Although
precipitation is relatively well understood, more research on extreme rainfall events could lead to
options in coverage for affected farmers. Ultimately, ET0 and precipitation both have trends in their
datasets, which impact the identification of payout years. These two datasets capture complementary
aspects of water shortages, one capturing the deficit of water input to the system while the other
captures enhancement of the water needed by the system. Innovative approaches utilizing the
combination of these two dynamics should result in financial instruments which better serve farmers
in the developing world by helping them mitigate the impacts of drought events.
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Appendix A

Appendix A.1. Standard Deviation and Coefficient of Variation for Precipitation and ET0

An analysis of the variability, through standard deviation, averages, and coefficient of variation
was conducted to better understand the relevant magnitudes of variability within both the precipitation
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and ET0.Consistent with the findings of Husak 2018 [69], the standard deviation of precipitation
(Figure A1) is always greater than that of ET0 (Figure A2). However, comparing the standard deviations
for both variables can be misleading since the means of each dataset are both different and vary
across space, (Figure A1g-l and Figure A2g–l). The coefficient of variation expresses the variability
in relation to the mean, thereby allowing for a direct comparison between the precipitation and
the ET0. Comparing the coefficients of variability between ET0 in Figure A2m–r and precipitation
in Figure A2m–r, it is clear that precipitation has a higher range of variability. For all months,
the coefficient of variability for precipitation is larger than the coefficient of variability for ET0.
From comparing the coefficients of variability, it is clear that the SPEI data would vary more due to the
precipitation dataset as opposed to the ET0.
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Figure A1. These three columns show the variability for precipitation from 1981 to 2016. The right-hand
column (a–f) has the standard deviation by month expressed in mm/month (mm/season for (f), June (a),
July (b), August (c), September (d), October (e), and the whole season (f) for 1981–2016. The middle
column (g–l)shows the average precipitation per month (expressed in mm/month or mm/season for
(l)) for June (g), July (h), August (i), September (j), October (k), and the whole season (l). The left-hand
column (m–r) has the coefficient of variation per month expressed in percentage for June (m), July (n),
August (o), September (p), October (q), and the whole year (r).
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Figure A2. These three columns show the variability for ET0 from 1981 to 2016. The right-hand column
(a–f) has the standard deviation by month as expressed in mm/month (seasonal is mm/season),
June (a), July (b), August (c), September (d), October (e), and the whole season (f) for 1981–2016.
The middle column (g–l)shows the average ET0 per month (expressed in mm/month or mm/season
for l for June (g), July (h), August (i), September (j), October (k), and the whole season (l). The left-hand
column (m–r) has the coefficient of variation per month expressed in percentages for June (m), July (n),
August (o), September (p), October (q), and the whole year (r).

Appendix A.2. ET0 Precipitation and Spei Relationships

Before comparing ET0, precipitation, and SPEI to yield, these agroclimatic indicators were
compared to each other. As expected, the relationship between ET0 and precipitation is negative
(see Figure A3a). The SPEI is positively associated with precipitation, although the relationship is
weak (see Figure A3c) whereas there is almost no association between ET0 and SPEI (see Figure A3b).
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Figure A3. (a) The relationship between precipitation and ET0. (b) The relationship between
precipitation and SPEI. (c) The relationship between ET0 and SPEI. The regions are identified by the
colors in each plot, with red indicating Burkina Faso, green is Mali, blue indicating Niger, and purple
indicating Senegal.

Appendix A.3. Specification Testing for Yield Regressions

There are three potential model parameterizations to assess the effects of country, yield, and an
environmental indicator (precipitation, SPEI, reference evapotranspiration). The least constrained of
these models is a random effects model where, seen in (A1), both the intercept and estimate of effects
of the environmental indicator are allowed to vary across time and location (region). On the other
hand, the most constrained model would be (A3), where both the intercept and slope are constrained.
This “null” model reflects no time variance or region variance, and is simply an estimate of overall
means across West Africa. It is not useful for this analysis. Between these two models, there are two
possible constraints we could use, one to constrain the slope and allow the intercept to vary and one to
constrain the intercept and allow the slope to vary. Both of these models are inherently more relevant
to this research, and we tried both specifications. The final model is a compromise between the most
constrained model (A3) and the least constrained model (A1), where the intercept varies but the slope
does not, seen in (A2).

yi,t = αi + β1,iXi,t + ui,t (A1)

where yi,t is the region (i) and year (t) indexed yield, and Xi,t is either precipitation, ET0,
or SPEI. The coefficient estimates returned from (A1) are identical to those derived from separate
country-specific regressions. Specification testing, using F-tests and AIC, can be used to evaluate
whether restricted versions of (A1) are superior in terms of providing as good or better fit to the data
but using fewer parameters. One option is to use a common slope term with varying intercepts:

yi,t = αi + β1Xi,t + ui,t (A2)

the other option is to use varying slopes with fixed intercept:

yi,t = α + β1Xi,t + ui,t (A3)

Specification testing indicates that the fixed slope, varying intercept model (A2) is the best.
The F-tests and AIC results can be found in Table A1.
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F-Test

Table A1. Different p-values are used to determine significance. *** represent estimates that have
p-values smaller than 0.001.

Precipitation Degrees of Freedom Sum of Squares F-statistic Pr(>F)

Model 1, Model 2 19 7.45 12.85 <2.2 ×10−16 ***
Model 2, Model 3 19 0.77 1.34 0.15
Model 1, Model 3 38 8.21 7.21 2.2 ×10−16 ***

ET0 Degrees of Freedom Sum of Squares F-statistic Pr(>F)

Model 1, Model 2 19 21.44 36.71 <2.2 ×10−16 ***
Model 2, Model 3 19 0.53 0.90 0.58
Model 1, Model 3 38 8.21 7.21 2.2 ×10−16 ***

SPEI Degrees of Freedom Sum of Squares F-statistic Pr(>F)

Model 1, Model 2 19 25.28 44.21 <2.2 ×10−16 ***
Model 2, Model 3 19 0.56 0.97 0.49
Model 1, Model 3 38 25.83 22.53 <2.2 ×10−16 ***

Appendix A.4. Yield Analysis

Looking at the plots of yield over time in Figure A4, the yield for all locations has a relatively low
R-squared, with only one country, Niger, having an R-squared that is relatively large, at 0.17 (all the
rest are below 0.10). The slopes for Burkina Faso, Niger, and Senegal are all significant, with the slope
for Mali’s yield remaining insignificant.

a b

c d

Figure A4. Yield (tonnes/ha) plotted against time for (a) Burkina Faso, (b) Mali, (c) Niger,
and (d) Senegal.
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Yield Regressions

Table A2. Numbers within the brackets () represent the standard error of the estimate directly above
themselves. Different p-values are used to determine significance—* represents estimates that p-values
smaller than 0.05, and *** represent estimates that have p-values smaller than 0.001.

Burkina Faso

Estimate pr(>t)

Intercept −15.74 0.057
(8.19)

Slope 0.008 0.044 *
(0.004)

Adjusted R-squared 0.029
F-statistic 4.15
p-value 0.04

Mali

Estimate pr(>t)

Intercept −10.41 0.072
(5.72)

Slope 0.006 0.051
(0.003)

Adjusted R-squared 0.027
F-statistic 3.89
p-value 0.051

Niger

Estimate pr(>t)

Intercept −19.5 8.55 ×10−5 ***
(4.15)

Slope 0.01 5.93e-6 ***
(0.002

Adjusted R-squared 0.178
F-statistic 22.89
p-value 5.93 ×10−6

Senegal

Estimate pr(>t)

Intercept −20.94 5.00 ×10−3 ***
(7.37)

Slope 0.011 4.00 ×10−3 ***
(0.004)

Adjusted R-squared 0.068
F-statistic 8.58
p-value 4.00 ×10−3

Appendix A.5. One-Way Anova Results for Linear Fit for Yield with Precipitation, ET0, and Spei

An Analysis of Variance (ANOVA) compares the sum of squares for each variable against the
sum of squares for the residuals and uses these metrics to construct the F-statistic. The F-statistic
is used to determine if the explanatory variable does not improve the prediction of the dependent
variable from the average of the dependent variable (null hypothesis), or in other words, randomness
explains the dependent variable better than the regression model. In our case, the F-statistic is larger
than the critical F-statistic, and the p-value for the F-statistic is small for precipitation, ET0, and SPEI.
This indicates that for all three models, an intercept alone does not explain the majority of the variance
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in the model, rather that the slopes for these models are significantly contributing to the improvement
of the model.

Appendix A.5.1. One-Way ANOVA Precipitation

Table A3. *** represent estimates that have p-values smaller than 0.001.

Degrees of Freedom Sum of Squares Mean Square F-Value Pr(F)

Precipitation 1 18.26 18.26 599 <2.2 ×10−16 ***
Country 19 7.45 0.39 12.9 <2.2 ×10−16 ***

Residuals 395 12.04 0.03

Appendix A.5.2. One-Way ANOVA ET0

Table A4. *** represent estimates that have p-values smaller than 0.001.

Degrees of Freedom Sum of Squares Mean Square F-Value Pr(F)

ET0 1 4.17 4.17 135.54 <2.2 ×10−16 ***
Country 19 21.44 1.13 36.71 <2.2 ×10−16 ***

Residuals 395 12.14 0.03

Appendix A.5.3. One-Way ANOVA SPEI

Table A5. *** represent estimates that have p-values smaller than 0.001.

Degrees of Freedom Sum of Squares Mean Square F-Value Pr(F)

ET0 1 0.59 0.59 19.53 <1.28 ×10−5 ***
Country 19 25.28 1.33 44.21 <2.2 ×10−16 ***

Residuals 395 11.89 0.03
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