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Abstract: Surface water is the most important resource and environmental factor in maintaining
human survival and ecosystem stability; therefore, timely accurate information on dynamic surface
water is urgently needed. However, the existing water datasets fall short of the current needs
of the various organizations and disciplines due to the limitations of optical sensors in dynamic
water mapping. The advancement of the cloud-based Google Earth Engine (GEE) platform and
free-sharing Sentinel-1 imagery makes it possible to map the dynamics of a surface water body with
high spatial-temporal resolution on a large scale. This study first establishes a water extraction
method oriented towards Sentinel-1 Synthetic Aperture Radar (SAR) data based on the statistics of a
large number of samples of land-cover types. An unprecedented high spatial-temporal water body
dataset in China (HSWDC) with monthly temporal and 10-m spatial resolution using the Sentinel-1
data from 2016 to 2018 is developed in this study. The HSWDC is validated by 14,070 random samples
across China. A high classification accuracy (overall accuracy = 0.93, kappa coefficient = 0.86) is
achieved. The HSWDC is highly consistent with the Global Surface Water Explorer dataset and water
levels from satellite altimetry. In addition to the good performance of detecting frozen water and
small water bodies, the HSWDC can also classify various water cover/uses, which are obtained from
its high spatial-temporal resolution. The HSWDC dataset can provide more detailed information
on surface water bodies in China and has good application potential for developing high-resolution
wetland maps.

Keywords: China water dynamics; Sentinel-1; Google Earth Engine; time series satellite images

1. Introduction

Surface water, as the most important terrestrial resource, is undergoing spatial and temporal
changes caused by many factors, such as land-use/cover changes, climate changes, seasonal changes,
and environmental changes, throughout the world [1]. Quantifying spatiotemporal dynamics of
surface water resources will provide decision makers with information for feasible wetland restoration
and management strategies and to further evaluate their effects [2].

Many water body databases have been developed in previous studies. The Shuttle Radar
Topography Mission (SRTM) water body data is available at latitudes from 56◦S to 60◦N with a
resolution of 30 m [3]. Verpoorter et al. [4] produced a global water body database with a 14.25-m
spatial resolution. Feng et al. [5] develop the Global Land Cover Facility inland surface water dataset at
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a 30-m resolution for circa-2000. A global water mask based on MODIS archives is produced by Carroll
et al. [1]. The aforementioned studies produced static water maps and can meet some applications,
but the demand for information on the spatial and temporal changes of inland water bodies and
their long-term evolution is still growing [6]. Therefore, many authors have already attempted to
map dynamic changes of water bodies [7–13]. These datasets provide information on the extent of
the water bodies at daily to monthly intervals and cover a limited geographic area. Pekel et al. [11]
produced an excellent Global Surface Water Explorer (GSWE) dataset with 30-m spatial resolution and
a monthly time interval. It comes from the entire multi-temporal orthorectified Landsat 5, 7 and 8
archive spanning the past 32 years and shows the spatial and temporal variability of global surface
water and its long-term changes. However, due to the limitations of optical data, the above efforts for
monitoring the water body dynamics are still in need of further improvement. For example, GSWE
still cannot form regular periodic monitoring of water body dynamics. The dynamic water dataset
formed by time series interpolation is also affected by the model itself.

Synthetic Aperture Radar (SAR) data have the advantage of being unaffected by clouds, so they
can be used to regularly monitor surface water [14,15]. Yet, due to the difficulty of SAR data acquisition
at large scale and the complexity of data processing, in the past, water body monitoring and mapping
using SAR data has mainly focused on individual bodies of water or specific small areas [16–18].
With the free distribution of Sentinel-1 data, as well as the release and application of the Google Earth
Engine (GEE) platform, it is possible to carry out dynamic monitoring and mapping of water bodies on
a large scale. At the same time, Sentinel-1 provides data on 10-m resolution, which can produce more
accurate water maps that include many small water bodies that are missed by the aforementioned
surface water data products. Furthermore, hydrological inputs and outputs influence soil biochemistry,
and characteristics of flooding such as duration, spatial extent, and timing of high and low waters drive
plants’ germination and growth [19,20]. Quantifying long-term spatiotemporal hydro-period variability
and changes are fundamentally important for wetland management and restoration. Therefore, it is of
significance to provide the high-precision surface water dynamic information.

In order to explore the potentiality of Sentinel-1 in large-scale water body mapping and obtain
an unprecedented high spatial-temporal water body dataset, in this study, our work includes:
(1) establishing a large-scale water classification method based on time series Sentinel-1 data, (2)
extracting China surface water body on monthly temporal and 10-m spatial resolution from 2016 to
2018 based on the GEE platform and evaluating of its accuracy, and (3) comparing our dataset with
existing water products to assess their spatial and temporal differences.

2. Data Sources and Availability

Sentinel-1 is the first of the Copernicus Programme satellite constellations created by the European
Space Agency. This space mission is composed of two satellites, Sentinel-1A and Sentinel-1B, carrying
a C-band (~5.7 cm wavelength) SAR instrument offering data products in single (HH or VV) or double
(HH + VH or VV + VH) polarization [16]. There is a total of 73,128 ground range detected (GRD) images
from 2016 to 2018, covering all of mainland China (Figure 1). We determined that the observation
frequency at same location ranges from 17 to 128 during 2018, which can meet the monthly water
mapping of China. The auxiliary data includes Landsat Operational Land Imager (OLI) image, the
SRTM DEM, and GSWE. The water level dataset, GSWE and the time series of inland surface water
dataset in China (ISWDC) are used for cross comparison [9,11,21]. Table 1 summarizes all of the
datasets and tools used in this paper.
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Figure 1. (a) Spatial distribution of Sentinel-1 observations in 2018 and (b) the number of images per 
month used for 2016, 2017, and 2018. The boundary layer of China is from National Administration 
of Surveying, Mapping, and Geoinformation of China: GS (2016)1569. 
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3. Methods 

The main technical route of this study includes four major parts (Figure 2): (1) preliminary 
extraction of water body based on Sentinel-1 archive, (2) acquisition of the auxiliary water mask, (3) 
post-processing for water extraction, and (4) accuracy validation of the high spatial-temporal water 
body dataset in China (HSWDC). 

Figure 1. (a) Spatial distribution of Sentinel-1 observations in 2018 and (b) the number of images per
month used for 2016, 2017, and 2018. The boundary layer of China is from National Administration of
Surveying, Mapping, and Geoinformation of China: GS (2016)1569.
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(3) post-processing for water extraction, and (4) accuracy validation of the high spatial-temporal water
body dataset in China (HSWDC).Remote Sens. 2020, 9, x FOR PEER REVIEW  4 of 15 
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above thresholds. When using GEE and Sentinel-1 archives, this effective approach is clearly 
operational and efficient for large-scale water mapping. 

Figure 2. Flow diagram of this study.

3.1. Preliminary Extraction of Water Body

In the first step, we first implement monthly mean composite using monthly Sentinel-1 images.
The Sentinel-1 data covering China include two polarization modes: VV polarization and VH
polarization. With reference to existing research, water bodies based on the two polarization modes
have different thresholds [16]. In order to verify the feasibility of the threshold method, we divide land
cover into seven land-cover types, referring to Copernicus Global Land Cover Layers—Collection 2
and high-resolution images of Google Earth: buildings, snow, forests, crops, sand dunes, grassland and
water bodies [22]. Water bodies are further divided into freshwater lakes, saltwater lakes with high
mineral content, reservoirs with complex geometry, rivers, water in high mountains, and periodically
frozen water bodies. Based on Copernicus Global Land Cover Layers—Collection 2, the stratified
random sampling approach is used to generate sample point locations, and then they are visually
confirmed one by one based on the high-resolution images on Google Earth. Finally, there are totally
550 training sample locations for these 11 land-cover types across China. At each sample location, the
backscatter coefficient set of the above land-cover type are extracted based on time series Sentinel-1
VH/VV polarized images. We select 6866 backscatter coefficient samples from VH images in 2018,
6820 backscatter coefficient samples from VV images in 2017 and then calculate the median, mean,
upper and lower quartiles, and 1.5 interquartile range (IQR) of these backscatter coefficients (Figure 3).
The results show that all of the water body subtypes have similar values and all of the non-water
land-cover types, except for sand dunes, have good separability with water bodies. With all this, on
the VV polarization image, the pixels with a backscattering coefficient value not greater than −15 dB
are regarded as a body of water, and on the VH polarization image, the pixels with a backscattering
coefficient value not greater than −23 dB are regarded as a body of water. These characteristics of
water bodies are what past research studies have used [16,23–26]. These characteristics also allow us to
detect water bodies with periodically frozen ice in winter using the above thresholds. When using
GEE and Sentinel-1 archives, this effective approach is clearly operational and efficient for large-scale
water mapping.
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3.2. Development of Different Water Masks

The defects of this approach are the confusion between the sand dunes, snow, terrain shadows,
and waters. Therefore, we build three kinds of water masks, i.e., Water Mask-slope, Water Mask-OLI,
and Max Water-GSWE, to refine the preliminary water body results produced in the first step.

Some studies have shown that synthetic ascending and descending SAR scenes reduce some
errors caused by radar shadows or layover, but do not completely eliminate them [17]. Using optical
sensors to detect surface water will also encounter the problem of terrain shadows, and there has been
a lot of research performed using slope dataset to solve this problem [6,11,27,28]. We obtain the slope
dataset from SRTM DEM by calculating the maximum elevation change rate of each grid cell to its
eight neighboring cells. Finally, we use a threshold of to 3 degrees to exclude steep locations where
water is unlikely to exist. We extract the pixels that have slopes less than 3 degrees from the slope
dataset as Water Mask-slope.

Second, the limitation of the threshold method itself will confuse the extracted water body based
on Sentinel-1 with the sand dunes dominated by dry sand. The normalized differential water body
index (NDWI) can be used to distinguish between sand dunes and water; therefore, we use NDWI
calculated based on Landsat OLI images to generate Water Mask-OLI. Every Landsat OLI scene during
one year excludes cloud pixels by using its own quality control band, and then uses a mean composite
method to obtain an annual cloudless Landsat OLI image. Each pixel value of the annual cloudless
Landsat OLI image is derived from the average value of the original clean pixels. McFeeters et al.
propose different NDWI calculation methods [29–31]. We compare these calculation methods through
experiments. The results show that the calculation method developed by McFeeters et al. can best
reflect the water body based on the Landsat OLI image. Since it is not the main purpose of this study,
no more detailed experimental results are given in the article. With all this, the NDWI mentioned
in this article is calculated using the near-infrared spectrum (0.85–0.88 µm) and the green spectrum
(0.53–0.59 µm) of the annual cloudless Landsat OLI image. We use the water sample in Section 3.1 to
determine that the NDWI threshold is −0.06, that is, pixels with an NDWI value greater than −0.06 are
identified as a water body, and pixels with an NDWI value not greater than −0.06 are identified as a
non-water body.

The water mask obtained in this way contains snow pixels. It has been proven in a previous
study that the reflectivity of snow in the near infrared band is higher than that of water bodies [32].
This feature can help us exclude snow pixels in the above water mask; therefore, based on the
near-infrared spectrum of the annual cloudless Landsat OLI image, the snow cover threshold (0.17) is
obtained using the snow cover sample in Section 3.1. Those pixels with an NDWI value of greater than
−0.06 and a near-infrared surface reflectance value of greater than 0.17 are removed from the above
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water mask. In order to avoid the restriction of a static mask, the annual water mask is buffered 10 m
outwards to obtain Water Mask-OLI, using a morphological dilation operation [33,34].

In a study by Pekel et al. [11], the GSWE included global surface water dynamics from 1984 to
2015 in 2016, and the GSWE was later updated to 2018. The max extent water surface mask of GSWE
contains any region where water has ever been detected during 1984–2018, and the max extent water
surface is much larger the primary water body extraction in the first step. We use this max extent water
surface as Max Water-GSWE. We resample all of these auxiliary masks to 10 m.

3.3. Post-Processing Preliminary Water Extraction

In checking the classification results by visual inspection, we find the confusion of the sand dunes
and waters mainly occurs in the west region of China. So, we divide the whole of China into two
parts: the east (including Beijing, Tianjin, Hebei, Liaoning, Shanghai, Zhejiang, Fujian, Shandong,
Guangdong, Taiwan, Henan, Jiangsu, Anhui, Hubei, Hunan, Jiangxi and Hainan) and the west (the
other provinces) (Figure 1). These commissions will be corrected using Water Mask-slope and Water
Mask-OLI for the west. That is, we overlay the Water Mask-slope, Water Mask-OLI, and the primary
monthly water body extracted in the first step. The pixels where the three layers are identified as the
water body are the ultimate water map for the west.

There is also misclassification of water bodies with topography shadows in the east. The Max
Water-GSWE is overlapped with the primary water extraction in the first step. The pixels where both
layers marked as a water body are considered as ultimate water map for the east. Finally, we produce
the monthly China water map by mosaicking the east water map and the west water map.

4. Results

4.1. Validation of the High Spatial-Temporal Water Body Dataset in China (HSWDC)

Pekel et al. [11] published their paper and the GSWE, which included global surface water
dynamics from 1984 to 2015 in 2016, and later updated the GSWE to 2018. Based on GSWE monthly
water products in 2018, we divide China into two layers of water and land, and then use the stratified
random sampling method to generate a set of points on each month of GSWE products. This set
of sample points, marked with the corresponding month, includes water sample points and land
sample points. We firstly generate a total of 14,523 sample points from the 12-month GSWE monthly
water products. Because the GSWE data itself has some misclassification errors, which mainly come
from mountain shadows, saline-alkali land, ridges, and roofs (Figure 4a), we visually check those
samples one by one, combining the high-resolution images from Google Earth, and remove the sample
points that are clearly not water bodies. In the end, there are 14,070 samples left, including 6554 water
samples and 7516 land samples (Figure 4b). In order to avoid estimation errors caused by temporal
inconsistence, the verification of the HSWDC is implemented monthly using the verification samples
having the same date. In this way, we can obtain the number of correctly classified and incorrectly
classified water/land samples per month. The confusion matrix is finally calculated based on the sum
of the above corresponding samples across the year 2018. The overall accuracy of the HSWDC is 0.93,
the kappa coefficient is 0.86, the omission error is 0.14, and the commission error is 0.01.
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Figure 4. (a) Some error sample points from the GSWE water product ((a1) mountain shadow, (a2)
saline-alkali land, (a3) ridge and (a4) roof); (b) China geographic distribution of water samples points.
(China boundary layer is from National Administration of Surveying, Mapping, and Geoinformation
of China: GS (2016)1569).

4.2. The Temporal Dynamics of Surface Water in China

Based on the HSWDC, the maximum inundated area for the whole China in 2016, 2017, and 2018
are 15.95× 104 km2, 15.53× 104 km2 and 15.98× 104 km2, respectively, and the minimum inundated
areas are 14.06× 104 km2, 14.11× 104 km2 and 14.58× 104 km2 (Figure 5a). By comparison, Lu et al.
(2018) calculate that the largest inland water area of China in 2016 is approximately 11 × 104 km2,
which is less than that in the HSWDC, mainly because the small water body can be identified in the
HSWDC. Yet, both of them have the largest water surface area in July and the smallest in February,
showing the same seasonality of China surface water.
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Figure 5. (a) Monthly changes in China water area during the period of 2016–2018, (b) the max and min
surface water body area (104 km2) of each basin during 2016–2018. The boundary of basins comes from
the Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences.

Additionally, the spatial distributions of surface water can clearly be depicted according to average
water area which is calculated from the max and min water body area in 2018 (Figure 5b). The results
show that China surface water is mainly distributed in the Continental basin and Yangtze River basin,
accounting for 34.94% and 26% of the total surface water area, respectively. With 8.97% in the Huaihe
River basin and 8.68% in the Songhua and Liaohe River basin, followed by the Pearl River basin, which
accounts for 6.25%. The Yellow River Basin, Southwest Basin, Haihe River Basin, and Southeast Basin
account for the other 15.16% of the national surface water area. Furthermore, the water area of the
Continental Basin, Songhua and Liaohe River Basin, Yellow River Basin, Southwest Basin, and Haihe
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River Basin show an increasing trend, while the other river basins show a decreasing trend, and the
total water area increase slightly during the period from 2016 to 2018 (Figure 5).

5. Discussion

5.1. Comparisons with Existing Datasets

The GSWE dataset, which is based on the long-term Landsat TM, ETM, and OLI images, provides
the global monthly surface water area from 1984 to 2018. However, due to the impact of clouds and
the long revisit period (16 days) of Landsat satellite, GSWE cannot actually provide monthly water
dynamics across most areas of China, such as in the southern China where it has a subtropical humid
monsoon climate and cloudy weather occurs frequently. Figure 6 shows the monthly water dynamics
of Poyang Lake (which is located in southern China) in 2018 based on the GSWE dataset and the
HSWDC respectively. As expected, the GSWE cannot provide the surface water maps during January,
June, and December of 2018 because of the above limitations of Landsat satellites. Furthermore, we can
find GSWE only extracts part of the actual water body surface in some months, such as May, September,
October, and November.
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Figure 6. Comparison of monthly water dynamics of Poyang Lake during 2018 based on the GSWE
dataset (blue) and the HSWDC dataset (red).

Choosing GSWE in August 2018 as the standard, it can be seen that the water surfaces extracted
by HSWDC and GSWE have high consistency (gray in Figure 7). However, due to the high spatial
resolution of Sentinel-1, HSWDC can present more narrow rivers and small ponds (orange in Figure 7).
However, the limitations of the SAR image itself will cause some water surfaces to be missed in



Remote Sens. 2020, 12, 2413 9 of 15

HSWDC (blue in Figure 7). Another possible reason for the inconsistency between the two datasets
may come from the different observation date of the two satellites in the same month. The more
frequent observation of waters can address this issue in the future.
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Figure 7. Comparison of Poyang Lake in August 2018 from the HSWDC and the GSWE. The region
where both HSWDC and GSWE are recognized as water is shown in grey. Based on GSWE, the
over-extracted water surface of HSWDC is shown in orange, and the under-extracted water surface of
HSWDC is shown in blue. (a,b) are two local regions of Poyang Lake.

Taking Dongting Lake as a sample, we also analyze the temporal consistency between the HSWDC,
the GSWE and lake water level from 9 January 2016 to 25 December 2018 with a 10-day temporal
resolution. The water level from satellite altimetry comes from Envisat, ERS-2, Jason-1, Jason-2,
TOPEX/Poseidon, and SARAL/AltiKa, and the root mean square difference between it and in situ data
ranges from 4 to 36 cm [21]. Li et al. [35] also used the water level dataset to make a comparison with
the water body dataset they produced. The reason why the water area detected by HSWDC is larger
than GSWE is that HSWDC has a higher spatial resolution. With the decrease of water storage, the
area of some small water bodies becomes smaller, so that GSWE cannot detect them. The difference
between the water surface detected by HSWDC and the water surface monitored by GSWE in winter
are more significant. Since the changes in water area and elevation are inconsistent, we can only
compare the trends of water extent detected by HSWDC and water level in Figure 8. The HSWDC and
the water level have highly consistent seasonal variation (Pearson correlation coefficient is 0.92), while
the consistency between GSWE and water level is relatively poor (Pearson correlation coefficient is 0.84)
(Figure 8). The results show that the HSWDC can effectively reflect the dynamics of the water body.
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5.2. Open Water Wetland Classification Based on HSWDC

The short revisit period of Sentinel-1 sensor has a good advantage in open water wetland
classification. For example, the inundated duration is important for many wetland-dependent animals
and plants, and even the greenhouse gas sequestration and emissions of wetlands. We can use the
HSWDC data (water occurrence) to further classify waters into permanent and seasonal water types,
which is key to the above ecological and environmental issues. According to the classification system of
Ramsar Wetland Convention, seasonal swamps show characteristics of water during the flood period
during one year, mud flats are submerged during the rainy season and exposed during the dry season,
and permanent water bodies are regions that always show the characteristics of the water body in a year.
By referencing the above wetland definitions and Xu et al. [36], we can identify permanent water body,
mudflats, seasonal marshes and rice fields in Dongting Lake by using the water occurrence information
of the HSWDC (Figure 9a). Results show that the wetland classification results by water occurrence
information are consistent with the classification results of Chen et al. [37]. The difference between rice
fields in Figure 9a and agricultural land in Figure 9b is that the agricultural land defined by Chen et al.
includes dry crop land. One challenge in wetland mapping is water dynamics; therefore, the HSWDC
could be applied to future wetland mapping to improve the accuracy of wetland classifications.
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Figure 9. (a) Wetland classification of Dongting Lake based on water occurrences of the HSWDC.
(The number of flooding 1 is defined as rice fields, 2–4 as seasonal marshes, 5–11 as mudflats, and 12 as
permanent waters during one year). (b) Classification results of Dongting Lake from Chen et al. (2016).
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5.3. Identification of Frozen Water Body

The existing water dataset products derived from the optical images could have many omissions
of mapping water bodies during the icing period, which mainly results from the limitations of the
optical sensors in identifying waters and ices/snows. The free water and frozen water, however, have
similar scattering coefficients on the Sentinel-1 images (Figure 2). Consequently, the SAR-based water
mapping can break through the limitations of optical images and map the frozen water. Taking the
Selinco Lake located on the Tibetan Plateau as an example, it begins to freeze in December and does
not completely freeze until the end of January, begins to ablate in March of the following year, and
achieves full ablation in April [38]. As shown in Figure 10, compared with the ISWDC, the HSWDC
can map the complete water surface even during the freezing months. The advantage of the SAR-based
water mapping means the HSWDC can extract a more complete surface water body when it comes to
China’s water bodies.
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5.4. Uncertainty of This Study

This paper proposes a threshold method based on Sentinel-1 SAR imagery to develop an
unprecedented high spatiotemporal resolution water body dataset. We use 14,070 samples to verify
the accuracy of HSWDC. These points are mainly derived from stratified random sampling. They may
not have enough points to fall on the edge of the water body and small water body, so the actual error
may be higher than the error value we obtain. The error mainly comes from two aspects: the limitation
of the Sentinel-1 image itself and the error of auxiliary data.

The C-band electromagnetic wave of the Sentinel-1 sensor makes the detection of open water
relatively simple, with almost no signal returning to the antenna. When the water level is high or
the transmission is low, the radar signal is usually attenuated, while when the water level is low
relative to the vegetation, double rebound scattering may occur [16]. Some studies have tried to detect
water with obvious vegetation canopy on its surface [26,39,40], but most of these studies require the
relative heights of vegetation and water surface and the distribution characteristics of vegetation
leaves as input parameters of the model. These parameters need to be measured in the wild, so
these existing studies are basically limited to small scales. The influence of the complex scattering
mechanism between vegetation and water is difficult to unify in a large region, and the water with
significant vegetation canopy over its surface contributes very little to the total amount of water in
China, so we ignore it in the method we design. In addition, during the radar-scanning process,
the amplitude of sub-spherical waves between pixels may be repeated or attenuated, and finally the
addition, subtraction, and difference generate random variables. This phenomenon is reflected as
speckle noise in SAR images. For speckle noise, previous researches provide two schemes: one is to
filter the Sentinel-1 image before water extraction [41], and the other is to perform a morphological
operation after water extraction to remove speckle noise [33,34]. We have conducted experiments on
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these two methods, and the results show that while these methods reduce noise, they also eliminate
some small waters in the HSWDC, such as narrow rivers (Figure 11). Therefore, we retain the original
results in our study, but the post-processing could be carried on according to their specific needs.Remote Sens. 2020, 9, x FOR PEER REVIEW  12 of 15 
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Figure 11. (a) Result obtained by the Refined Lee filter before water body extraction, (b) result of
original image, (c) result obtained by morphological operators (first erosion, then dilation) after water
body extraction.

In checking the classification results by visual inspection, we find the confusion of the sand dunes
and waters mainly occurs in the west region of China. The NDWI can be used to distinguish between
sand dunes and water; therefore, we use NDWI calculated based on Landsat OLI images to generate
Water Mask-OLI. In order to avoid the restriction of a static mask, the annual water mask is buffered
10 m outwards to obtain Water Mask-OLI, using a morphological dilation operation. We overlap Water
Mask-OLI and the water body we produce to exclude the impact of the dunes in the west. This method
is based on the assumption that the dynamic change of the surface of the western water body is less
than 10 m, which could bring some uncertainty to the west region. In addition, the use of STRM DEM
and GSWE maximum water extent map may limit the water surface area of HSWDC or introduce their
errors to HSWDC. In the future, a new classification method that does not use these auxiliary data
can be developed. Sentinel-1 data in GEE is only processed through primary processing such as noise
removal, calibration and geocoding. As we all know, layover and shadow will bring some errors to the
extraction of water based on radar images [17]. In this study, compositing ascending and descending
SAR scenes have reduced this error but do not fully eliminate it. It is also urgent to invent a suitable
method for eliminating the effects of layover and shadow on radar images at a large scale.

6. Conclusions

In this study, we develop a threshold method for the large-scale SAR-based water mapping based
on massive experiments with different land-cover type samples across China. The threshold-based
water mapping method, which is more universal than previous studies on individual water bodies
mapping, is proven to be robust and applicable across different seasons in a year. The Sentinel-1
images from 2016 to 2018 are then employed to construct the HSWDC using the cloud-based GEE
platform and other auxiliary data. Compared with the existing surface water datasets, the HSWDC
has the advantages of unprecedented spatial resolution (10 m) and period observation at the month
scale. In addition, the HSWDC can effectively provide surface water distribution even in the freezing
period. Due to the characteristics of SAR, which are not affected by clouds, the HSWDC can be an
ideal alternative data source for future wetland mapping in cloudy regions.
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