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Abstract: Changes in spatial and temporal variability in yield estimation are detectable through
plant biophysical characteristics observed at different phenological development stages of corn.
A multispectral red-edge sensor mounted on an Unmanned Aerial Systems (UAS) can provide spatial
and temporal information with high resolution. Spectral analysis of UAS acquired spatiotemporal
images can be used to develop a statistical model to predict yield based on different phenological
stages. Identifying critical vegetation indices (VIs) and significant spectral information could lead to
increased yield prediction accuracy. The objective of this study was to develop a yield prediction
model at specific phenological stages using spectral data obtained from a corn field. The available
spectral bands (red, blue, green, near infrared (NIR), and red-edge) were used to analyze 26 different
VIs. The spectral information was collected from a cornfield at Mississippi State University using a
MicaSense multispectral red-edge sensor, mounted on a UAS. In this research, a new empirical method
used to reduce the effects of bare soil pixels in acquired images was introduced. The experimental
design was a randomized complete block that consisted of 16 blocks with 12 rows of corn planted in
each block. Four treatments of nitrogen (N) including 0, 90, 180, and 270 kg/ha were applied randomly.
Random forest was utilized as a feature selection method to choose the best combination of variables
for different stages. Multiple linear regression and gradient boosting decision trees were used to
develop yield prediction models for each specific phenological stage by utilizing the most effective
variables at each stage. At the V3 (3 leaves with visible leaf collar) and V4-5 (4-5 leaves with visible
leaf collar) stages, the Optimized Soil Adjusted Vegetation Index (OSAVI) and Simplified Canopy
Chlorophyll Content Index (SCCCI) were the single dominant variables in the yield predicting models,
respectively. A combination of the Green Atmospherically Resistant Index (GARI), Normalized
Difference Red-Edge (NDRE), and green Normalized Difference Vegetation Index (GNDVI) at V6-7,
SCCCI, and Soil-Adjusted Vegetation Index (SAVI) at V10,11, and SCCCI, Green Leaf Index (GLI),
and Visible Atmospherically Resistant Index (VARIgreen) at tasseling stage (VT) were the best indices
for predicting grain yield of corn. The prediction models at V10 and VT had the greatest accuracy
with a coefficient of determination of 0.90 and 0.93, respectively. Moreover, the SCCCI as a combined
index seemed to be the most proper index for predicting yield at most of the phenological stages.
As corn development progressed, the models predicted final grain yield more accurately.

Keywords: Gradient Boosting; Multispectral red-edge sensor; Random forest; UAS imagery;
Vegetation index; Yield prediction.
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1. Introduction

Estimation of corn yield during the crop-growing season is essential for efficient management
of corn at strategic phenological stages. Agricultural surveys and field sampling of standing crops
are supposed to be reliable approaches to estimate corn production. However, the spatiotemporal
variability of biophysical characteristics of the crops due to inconsistency in soil nutrients and water
availability, as well as other environmental parameters affecting plant growth presenting challenges
in estimating yield on a large spatial scale accurately. The Normalized Difference Vegetation Index
(NDVI) [1] can be used to quantify biomass production [2] by measuring the difference between
near-infrared (NIR) and red wavelengths and is widely used in agricultural crop studies [3–5].
In this study, several vegetation indices (VIs) such as Normalized Difference Red-Edge (NDRE),
Optimized Soil Adjusted Vegetation Index (OSAVI), Simplified Canopy Chlorophyll Content Index
(SCCCI), and Visible Atmospherically Resistant Index (VARIgreen), were used to determine their
importance in predicting corn grain yield.

Remote-sensing technologies have been used across a wide range of applications in agriculture
to detect and monitor the biophysical characteristics of plants. The spectral information collected
by pixels is used to compute VIs, which are algorithms derived from the spectral transformation of
reflectance at two or more specified wavelengths and are used to evaluate vegetative cover or biomass
and plant growth or health status. Differencing, rationing, rationing sums and differences, and linear
combinations of different spectral wavelengths are standard methods used to calculate different VIs.
One of the advantages of using a remotely sensed VI products is that they are computed in a uniform
manner and comparable during time and location [6].

Unmanned aerial systems (UAS) with dedicated sensors and communication packages are gaining
popularity across a range of disciplines. As per requirements, the system can be designed for specific
missions or applications. The UAS equipped with the RedEdge™multispectral camera can be used to
detect spatial and temporal variability in biophysical characteristics of corn, such as spectral reflectance
for the specified wavelengths, which can be used to compute multiple VIs. Satellite imagery is routinely
used to estimate yield of different crops [7–9]. Ongoing past examinations show that the red-edge
waveband is useful for estimating the chlorophyll content and N status of plants. NDVI-Red-edge is
increasingly profitable and helpful for later stages when contrasted with the early V6 stage for in-season
N application [10]. Despite several applications of satellite imagery in agricultural studies, a lack
of consistency and reliability of satellite products due to noise or errors and atmospheric and cloud
interferences are unavoidable issues. Clouds, shadows, and atmospheric scattering of light can be a
significant obstacle to obtaining high-quality data which can make it difficult to detect and analyze
land-surface features due to interference [11]. A UAS can acquire data from low altitude; where,
interference by clouds is not an obstacle between the sensor and land surface [12,13], but shadows
created by them can still be an issue. Another advantage of a UAS is they can provide greater spatial
resolution, and flights can be scheduled for key periods of designated phenological stages considering
the weather conditions.

In comparison to satellite images, which are blurred and in which objects are difficult to distinguish,
the data collected by the UAS has a high spatial resolution that provides a reasonable basis to identify
and analyze crop development. Satellite images are affected by the scattering and absorbing effects of
atmospheric gases and aerosols. From an altitude of 60 m, a camera mounted on a UAS can collect
more detailed and important local landscape information at around 4 cm spatial resolution. The spatial
resolution can be improved by using a more accurate camera sensor or decreasing the UAS flight
altitude [14]. Therefore, a UAS can provide images with smaller pixel sizes, and it is possible to acquire
spectral images as far as required for research objectives more frequently. The revisit time is more
crucial for the plant growth assessment. Since the plant responses and requirements are different at
their different phenological growth stages. The UAS image acquisition process, as well as spatial
resolution, are flexible and more economical than point measurements [15].
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Crop yield prediction can provide information for improving crop management, food production
monitoring, economic trading, and global food security. The emergence of new statistical learning
models such as ensemble methods based on decision trees can estimate yield before harvesting.
The decision tree approach is increasingly being used for different purposes such as corn optimal
fertilizer estimation [16] and corn yield estimation [17]. Gradient boosting machines (GBMs) are
ensemble learning models to empower the weaker models such as decision trees by combining
the results from them. GBMs are widely used in a broad range of practical applications [18] and have
demonstrated remarkable success for regression and classification applications.

The objectives of this study were to track five different spectral bands obtained through sensors
mounted on the UAS at five different phenological stages of corn and use 26 calculated VIs at each
specific stage of growth. Feature selection approaches were applied to reduce the number of predictors.
Consequently, relationships between the spectral bands and 26 VIs (as predictors), and corn yield
(as a response variable) were investigated to determine more correlated covariates with the response
variables. Finally, machine-learning techniques were hired to developed models for corn yield
prediction at each phenological stage.

2. Materials and Methods

The study was undertaken on an experimental plot at Mississippi State University.

2.1. Study Area

The study area was located at the W.B. Andrews Agriculture Systems Research Farm at Mississippi
State, MS, USA (33◦28′13.5”N, 88◦45′48.0”W) (Figure 1). The total area of the field was 0.8 ha mapped
as a Marietta fine sandy loam (fine-loamy, mixed, siliceous, thermic, Aquic Fluventic Eutrochept).
The imagery data were collected during the corn growing season for the years 2017, 2018, and 2019.
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Figure 1. Geolocation of the study area monitored during the growing season.

Growing season precipitation totals measured at the experimental field varying between 58 cm
in 2017, 42 cm in 2018, and 76 cm in 2019, as shown in Figure 2. The data were retrieved from
the Mississippi Delta weather information monitored by the Delta Agricultural Weather Center at
the Delta Research and Extension Center, which is located at a distance of 1 km from the research field.
The precipitation in 2019 was the greatest of the three years, whereas 2018 was the lowest year. Because
of the low precipitation, signs of water stress were observed in the plants. The water deficiency issue
was addressed through furrow-irrigation in early June 2018. The mean temperature was almost similar
throughout all three growing seasons, which was 23 degrees Celsius.
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Figure 2. Monthly precipitation chart for the growing seasons: 2017, 2018, and 2019.

2.2. Experimental Design

The experimental field was divided into 16 plots, including 12 rows of corn, which were planted
at a row spacing of 97 cm, and plot length was 38 m, and there was a 3 m alleyway in between each
plot. The experimental design was a randomized complete block. Corn (DeKalb Brand-DKC67-72
variety) was planted on 13 April 2017, 19 April 2018, and 23 April 2019. There were four treatments
of N, including 0, 90, 180, and 270 kg/ha, applied randomly with four replicates. Figure 3, illustrates
the spatial distribution of each treatment and associated replication in the study field. The goal of
the spatially varied N application was to identify the optimal N requirements for the corn crop and to
address the spatial variability of the soil. Treatments were randomly assigned to the plots and have
been repeated each year on the same experimental units.
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Figure 3. Nitrogen treatments and four replicates in 2017-2019 at the Research Farm, Mississippi State, US.

The first N application was made just after emergence in each year at V2-3 (2–3 leaves with visible
leaf collar), followed by a second application at V6-7 (6–7 leaves with visible leaf collar). Figure 4
illustrates N applications, planting/harvesting, and flight dates during the different phenological
stages of corn for 2017, 2018, and 2019. Fertilizer N was side dressed as liquid urea ammonium
nitrate (UAN) (32-0-0) with an applicator equipped with colters, and liquid knives spaced 23 cm
from one side of each corn row and 7.62 cm deep. Limited irrigation was supplied through furrow
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irrigation to prevent drought stress. Strip tillage was utilized for these years, although plots were
disked, and beds were formed following the 2017 growing season. Following the 2017 corn harvest,
a Persian clover (Trifolium resupinatum L.) cover crop was planted at a percent live seeding rate of
6.74 kg seed ha−1 across the whole experimental area using a no-till grain drill. Plots were fertilized
based on soil test results and received uniform applications of P-K-Mg-S before planting for all parcels.
The fertilizer blend consisted of two parts muriate of potash (0-0-60), one part concentrated super
phosphate (0-46-0), and one part sulfate of potash-magnesia (0-0-22-11Mg-22S) and was applied at a
material rate of 224 kg ha−1. Weeds and pests were controlled based on Mississippi State University
Extension recommendations. The field under study has been used for corn cultivation since 2012 with
the same fertilize N rates applied each year. Corn grain was harvested using a two-row plot combine,
which collected the yield from rows 2 and 3 and rows 10 and 11 (Figure 5).
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2.3. Data Collection

The MicaSense RedEdge™multispectral band sensor mounted on a UAS was used to capture
images in five different spectral bands simultaneously. The unit weight was 150 grams with a dimension
of 12.1 cm × 6.6 cm × 4.6 cm. The UAS was flown at an altitude of 60 m in 2017 and 2018, whereas in
2019 it was flown at an altitude of 30 m. Decreasing the altitude from 60 m to 30 m provided better
images with approximately four times greater resolution. The enhanced resolution was beneficial in
separation of soil and vegetation. The sensor was mounted on the bottom of the UAS with a viewing
angle not exceeding 10 degrees from nadir. The multispectral sensor measured the wavelength at
five different spectral bands, including blue (475 nm center, 32 nm bandwidth), green (560 nm center,
27 nm bandwidth), red (668 nm center, 16 nm bandwidth), red-edge (717 nm center, 12 nm bandwidth),
and near-infrared (842 nm center, 57 nm bandwidth). All five bands were collected simultaneously at a
speed of one capture per second. Optimal image acquisition time is within plus or minus two and a
half hours of local solar noon [4,19–22], therefore, all the flights were performed around 10:30 am under
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cloud-free conditions. The length of the flight was around 10 minutes for the 0.8 ha field area; therefore,
environmental conditions such as solar radiation, temperature, and humidity were nearly constant
during the data acquisition process. The UAS images were acquired with a horizontal overlap of at
least 75%. Images were stitched and mosaicked with the Pix4D mapper software (Pix4D SA, Lausanne,
Switzerland) to obtain unique and compiled images for the study area. Superimposed images obtained
through the stacking of images were disoriented during the first flight. This may be due to the errant
movement of the camera. To address this issue a co-registration process was adopted. A calibrated
reflectance panel (CRP) was used for the radiometric calibration of the acquired images. The CRP
offers calibration information associated with the acquired images across the visible and near-infrared
images. Images of the CRP that had been taken before and after the flight were used to convert raw
pixel values into reflectance. The initial processing of the raw images was done at the Geosystems
Research Institute (GRI) at Mississippi State University.

2.3.1. Vegetation Indices

Vegetation indices are mathematical combinations of wavelength-specific spectral reflectance
developed to detect and monitor vegetation’s phenological conditions remotely. For vegetation,
reflectance by itself is low in both the blue and red bands of the spectrum due to maximum chlorophyll
absorption in those bands while reflectance has a peak in the green band. Because of the cellular
structures of leaves, the reflectance is much more significant in the NIR bands compared to visible
bands. In this study, several VIs were derived from a 5-band multispectral sensor. Multispectral
bands are visually and numerically similar; on the other hand, they are often highly correlated [23,24].
To avoid the issue associated with VI calculation, row data was converted to percentage reflectance
to signify the quantitative data. The name of the indices and associated spectral bands are listed in
Table 1. The choices of indices by the researchers may vary according to their need but for biomass
content, most indices involving red, infrared, and red-edge bands were preferred. These bands are
supposed to explain even the subtle changes in biomass content.

Table 1. Mathematical representation of vegetation indices and ratios calculated from
spectral reflectance.

Vegetation Indices
(VI) Name Formula Study Groups

(Reference)

1 DVI Difference Vegetation Index NIR − Reds [25]

2 GDVI Green Difference Vegetation Index NIR − Green [26]

3 RDVI Renormalized Difference Vegetation Index (NIR − Red)/
√

NIR + Red [27]

4 TDVI Transformed Difference Vegetation Index 1.5 (NIR − Red)/
√

NIR2 + Red + 0.5 [28]

5 NDVI Normalized Difference Vegetation Index (NIR − Red)/(NIR + Red) [1,29]

6 GNDVI Green Normalized Difference Vegetation Index (NIR − Green)/(NIR + Green) [30]

7 NDRE Normalized Difference Red-edge (NIR − Red-edge)/(NIR + Red-edge) [31,32]

8 SCCCI Simplified Canopy Chlorophyll Content Index NDRE/NDVI [32]

9 EVI Enhanced Vegetation Index 2.5 * (NIR − Red)/(NIR + 6Red − 7.5Blue + 1) [33]

10 TVI Triangular Vegetation Index 0.5 [120 (NIR − Green)] − 200 (Red − Green) [34]

11 VARIgreen Visible Atmospherically Resistant Index (Green − Red)/(Green + Red − Blue) [20]

12 GARI Green Atmospherically Resistant Index NIR − Green − (1.7 (Blue − Red))/(NIR + Green
− (1.7 (Blue − Red)) [35]

13 GCI Green Chlorophyll Index (NIR/Green) − 1 [36]

14 GLI Green Leaf Index (Green − Red − Blue)/(2Green + Red + Blue) [37]

15 TGI Triangular Greenness Index (Red − Blue) (Red − Green) − (Red − Green)
(Red − Blue))/2 [38]

16 NLI Non-Linear Index (NIR2
− Red)/(NIR2 + Red) [39]

17 MNLI Modified Non-Linear Index (NIR2
− Red) * (1 + 0.5)/(NIR2 + Red + 0.5) [40,41]

18 SAVI Soil-Adjusted Vegetation Index 1.5 * (NIR − Red))/(NIR + Red + 0.5) [42]

19 GSAVI Green Soil-Adjusted Vegetation Index 1.5 * (NIR − Green)/(NIR + Green + 0.5) [43]

20 OSAVI Optimized Soil-Adjusted Vegetation Index (NIR − Red)/(NIR + Red + 0.16) [42]
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Table 1. Cont.

Vegetation Indices
(VI) Name Formula Study Groups

(Reference)

21 GOSAVI Green Optimized Soil-Adjusted Vegetation Index (NIR − Green)/(NIR + Green + 0.16) [43]

22 MSAVI2 Modified Soil-Adjusted Vegetation Index 2 (2NIR + 1 −
√
(2NIR + 1)2

− 8(NIR−Red) )/2 [44]

23 MSR Modified Simple Ratio (NIR/Red) − 1/
√

NIR/Red + 1 [5]

24 GRVI Green Ratio Vegetation Index NIR/Green [25]

25 WDRVI Wide Dynamic Range Vegetation Index (0.1 NIR − Red)/(0.1 NIR + red) [19]

26 SR Simple Ratio NIR/Red [45]

Where Red, Green, Blue, Red-edge, and NIR are the reflectance values at 0.67 µm, 0.56 µm, 0.45, 0.72 µm, and 0.84
µm respectively.

2.3.2. Masking Soil Pixels

To estimate the spatial average of VIs for each corn row, it was essential to mask bare soil pixels
located between corn rows. After the VIs calculation, the bare soil pixels were removed since these
pixels do not provide further information in the yield estimation modeling Eliminating these pixels
reduced the image processing time and attributed to better estimate the spatial average of VIs for
each row. Moreover, reflectance data from the corn rows contain information associated with the corn
leaves and the scattered wavelength from the background soil within the leaves. The background
soil reflectance potentially decreases the effectiveness of the leaves in VI values [46]. The occurrence
of such a phenomenon is explicitly noticed when the leaves are in the primary phenological stages.
To reduce this effect, different VIs such as the Soil-Adjusted Vegetation Index (SAVI), Optimized
Soil-Adjusted Vegetation Index (OSAVI), Green Soil-Adjusted Vegetation Index (GSAVI), Green
Optimized Soil-Adjusted Vegetation Index (GOSAVI), and Modified Soil-Adjusted Vegetation Index
2 (MSAVI2) have been used. These VI’s takes care of the contribution of the soil reflectance in VIs
calculation, specifically in the leaf edge pixels which may have soil and vegetation information together,
therefore, the pure soil pixels were removed. As a result, an empirical equation (Equation 1) was used
to mask the unshaded and shaded bare soil pixels.

Gindex = 2 ∗Green−Red− Blue (1)

The Gindex values greater than 0.06 were selected as vegetation pixels based on trial and error.
Although NDVI has been used to remove soil pixels [47,48], it does not detect and remove shaded pixels.
Therefore, the proposed Gindex filter can remove all shaded and unshaded bare soil pixels precisely.

2.3.3. Harvesting Process

Corn grain was harvested by a two-row plot combine for the whole plot length. Rows 2 and 3
and rows 10 and 11 of each plot were combined. Some of the plots suffered extensive raccoon damage in
2018; hence, ears were harvested by hand from uniformly standing undamaged rows. Hand harvesting
was performed by pulling ears from two 6.1-m row lengths of each harvest row pairs (rows 2, 3,
and rows 10, 11). The regions of damage were skipped during the hand harvesting. All grain yield
data were adjusted to 15.5% moisture content. Since yield data were collected for rows 2–3 and rows
10–11, VIs derived from pixels reciprocating the rows were calculated. The bare soil pixels between
rows were eliminated by applying Equation 1, and then the spatial average of pixels was taken for
each row. Figure 5 shows the spatial location of the rows within each treatment.

2.4. Outlier Detection

After calculating VIs for each phenological stage, outliers for each VI and at each stage were removed
from the data set by utilizing a well-known z-score (z = (x − x)/σx) [49,50]. Here, the observations with
z-score greater than 2.5 were considered as outlier data. The threshold number flexible between 2.5
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and 3 were used to remove outliers [51]. A smaller threshold number of results in a greater selection of
outliers. All in all, approximately 3–8% of the data for each growth stage were removed as outliers.

2.5. Feature Selection

The process of identifying the most important features is called “feature selection”. The random
forest method is one of the most popular machine-learning methods used in data science workflows.
This method is a combination of tree predictors used commonly as a tool for classification, regression,
and ranking of candidate predictors [52,53]. In this research, the most important variables for each
phenological stage were identified by the random forest feature selection method. The random
forest method uses a training dataset and creates multiple subsets of the data randomly. Then, trees
(samples) are used to create a ranking of classifiers and perform a vote for each predicted result. Finally,
prediction results are selected which have the most votes [53]. Random forest is considered a highly
accurate and robust method [52] because of the number of decision trees participating in the process.
This method has acceptable predictive performance, low overfitting, and simple interpretability.

2.6. Statistical Analysis

Many of the statistical parametric tests such as correlation analysis, regression modeling,
and analysis of variance (ANOVA) assume the data follow Gaussian distribution. In this research,
the density plot and the Shapiro–Wilk’s test [54–57] were used to evaluate whether the data follow
Gaussian distribution or not. Although some statisticians suggest that in case of the large sample
size (n > 30), we can ignore the distribution of the data and use parametric tests [55,58], the observed
yield data were not large enough (32 samples size for each year) and were not following the normal
distribution; therefore, two approaches were used to make yield prediction models: (1) the data
were normalized and then multiple regression models were fitted using the important features,
and (2) a gradient boosting decision tree model was hired as a non-parametric method to estimate
corn yield. Gradient boosting machines (GBMs) is a method of converting weak learners into strong
learners like the random forest, however, in GBM the kth tree is trained from the first k-1 trees
and updated the residual for the ith example of the difference between prediction and observations [59].
In other words, the predictors were sequentially trained and tried to correct the predecessors. One of
the advantages of using GBM is that this method is highly customizable to the specific necessity of
the application, such as being learned with regard to various loss functions [18].

For the multiple regression models, some of the input variables were not associated with
the response variables that triggered excessive complexity in the final model. Therefore, possible
combinations of the essential variables were used to fit different multiple regression models.
Linear model selection was used to determine the number of significant variables that improve the model
by maximizing the adjusted R2, minimizing Bayesian information criterion (BIC), and minimizing
the cross-validated prediction error (Cp) [60]. Furthermore, cross-validation (CV) [61] was used as a
backup method to ensure the predictors were correctly determined. Cross-validation is a method used
in the selection of models to test the ability of different models in their accuracy in the prediction of
results. In this research, the data were split into two subsets. Eighty percent of the data were used
as training samples or the model-building set, and 20% of the data were used for prediction or as a
validation set. Each variable was included in the model, and then the average of the cross-validation
error was estimated. Overall, after removing outliers, the random forest and cross-validation methods
were used to find the number of influential variables for predicting the corn yield. Random forest
feature selection illustrates the importance of variables at each stage. Different variables were selected
for each phenological stage of corn.

In this research, the software programs ArcMap 10.7.1 (Environmental Systems Research Institute,
Inc. (ESRI), Redlands, CA, USA) [62], QGIS v.3.12.0 (Böschacherstrasse 10a CH-8624 Grüt (Gossau
ZH), Zurich, Switzerland) [63], and R version 3.6 (R Core Team: Vienna, Austria) [64] were used to
manipulate and analyze the data.
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3. Results and Discussion

Graphical (density plot) and numerical (Shapiro–Wilk’s test) assessment of the normality of
the data illustrated that the data does not follow a normal distribution (Figure 6). It can be observed
that the corn yield data distribution shape does not match the normal distribution (dashed lines).
Since the normality test is sensitive to sample size, therefore, it is important to combine visual inspection
and significance tests in order to make the right decision. The Shapiro–Wilk’s test confirmed the same
result and therefore, the data was normalized. The correlation between yield and 31 independent
variables is shown in Figure 7 at V4-5 and VT stages.
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The taller the data bar, the greater is the correlation between each variable and yield. As shown
in Figure 7, the SCCCI, NDRE, MSAVI2, and Green Difference Vegetation Index (GDVI) at V4-5
stage and Triangular Greenness Index (TGI), SCCCI, Green Atmospherically Resistant Index (GARI),
and GOSAVI at VT were more correlated with yield as a response variable. However, all of these
variables were not included in the final model due to their interaction between the independent variables.

Random forest selected different features for each corn phenological stage. For instance, the SCCCI,
NDRE, and MSAVI2 were the most striking features to predict the yield at the V4-5 stage (Figure 8a).
The TGI, Green Leaf Index (GLI), VARIgreen, and SCCCI were the most significant VI’s to estimate yield
at the VT stage (Figure 8b).
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Regarding the model selection method, for the VT stage, three predictors had a significant impact
on increasing yield prediction accuracy (Figure 9). The three variables lead to almost the greatest
adjusted-R2 and the lowest BIC and Cp. Although adding a 4th variable increased the adjusted-R2 or
decreased the BIC and Cp, these improvements were not significant. Therefore, three predictors were
used in the yield prediction model for the VT stage, which explained approximately 95% of the corn
yield variation.
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Moreover, the mean CV error confirmed that the same number of variables were needed for
the final model (Figure 10). As a result, the best subset selection on the full dataset with the lowest
mean square error (MSE) was the 3-variable model used to predict grain yield at the VT stage.
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To achieve a mathematical yield prediction algorithm, multiple linear regression models were
fitted for each phenological stage (Table 2).

Table 2. Regression models and performance for each model to predict yield at different
phenological stages.

Phenological Stage Yield Prediction Models R2-adj

V3 Yield = − 23 + 144.4 OSAVI 0.63

V4-5 Yield = − 13.36 + 45.48 SCCCI 0.69

V6-7 Yield = − 161 + 590.3 GARI + 151.7 NDRE − 456.9 GNDVI 0.70

V10-11 Yield = − 22.64 + 68.93 SCCCI − 19.13 SAVI 0.90

VT Yield = − 10.96 + 26.07 SCCCI − 68.25 GLI + 13.25 VARIgreen 0.93

Although TGI was the most important feature at VT (Figure 8b), it was not statistically significant
among other selected variables. Similarly, all these processing methods were applied for each of the five
growth stages in order to predict grain yield. Since plant leaf area and metabolism are different at
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phenological stages, the relationships between yield and spectral bands/VI are likely to differ; therefore,
a model for each stage was developed. The coefficients of determination (R2) for different models at
each phenological stage are shown in Table 2. All the variables used in these models are statistically
significant (at the α = 95% significance level).

Furthermore, the measured yield data were compared to the fitted models to evaluate
the performance of the algorithms. Figure 12a–e illustrate the scatter plot of observed yield values
versus predicted yield values at different stages using multiple linear regression. In these figures,
the blue line is the 1:1 line, which has a slop of 1, and the red line is the modeled prediction regression
line. The regression line indicates how a response variable changes as predictors change. The increasing
similarity in the slope and intercepts of the regression line to the 1:1 indicates a more significant model
predictive capacity.
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The yield model at V3 with one single variable, OSAVI, resulted in the simplest yield estimation
model, which has the advantage of simplicity and ease of calculation. As Rondeaux (1996) concluded,
OSAVI excels in regions with sparse vegetation where the soil is visible through the plants [42,65] and,
thus, utilization of a VI that corrects for soil interference such as OSAVI worked the best when corn
leaf area was at the lowest and bare soil was the greatest among all the sampling times. This model
predicted corn grain yield using only one variable at the V3 stage, and the model explained the 63%
variation in the corn yield. At the V4-5 stage, the SCCCI predict grain yield with the highest level of
accuracy. The variable selection method indicated that including more variables did not significantly
improve the efficiency of the model at V3 and V4-5 stages. Adding a 2nd variable (VI) only increased
the R2 to 0.7 which was not significant. At the V6-7 stage, the GARI, NDRE, and Green Normalized
Difference Vegetation Index (GNDVI) together resulted in the best prediction accuracy of grain yield.
Although the NDVI is a commonly used index to predict yield, this index saturates when the leaf
area index is greater than 1.5 [66]. The green NDVI (GNDVI) was most strongly related to grain yield
because it has a broader dynamic range than NDVI and combines the green and NIR wavelengths,
which are more strongly associated with leaf chlorophyll, N content, and grain yield than the red
wavelength [22,35,67]. The SAVI is a VI related to biomass to predict yield in highly vegetated areas [66].
At the V10-11 stage, SAVI was one of the most effective variables in predicting yield with an R2 of
0.90. The SCCCI, GLI, and VARIgreen were found to provide the best predictive accuracy at the VT
stage (R2 = 0.93). Moderate to high R2 values (0.63, 0.69, and 0.70) at V3, V4-5, and V6-7 were observed
respectively, and high R2 values (0.90 and 0.93) at V10 and VT were obtained, respectively. As a result,
at V3 and V4-5, the models with a single index, and after V6-7, the predictive models with multiple
indices produced the most solid relationships between observed and predicted grain yields. Similar
results were reported for lettuce yield prediction [68]. To conclude, the VIs used in the predictive
models (Table 2) were exchangeable with the next importance VIs (Figure 8); however, this replacement
led to a reduction in the accuracy of the model by about 5%.

Assessment of the gradient-boosting models used for prediction of corn yield for five phenological
stages suggested that VI’s derived from MicaSense observations can predict corn yield with relatively
higher accuracy (Figure 12a –e). The R2 ranging from 0.84 at V3 to 0.97 at VT. Although GBM for
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the V3 stage has relatively high R2, the root means square error is high (RMSE = 2.1 ton/ha). Compared
with multiple regression models, ensemble learning models performed better estimation. For instance,
at the V4 to V5 stages, gradient boosting consistently performed better in the prediction of corn yield
during both the cross-validation and validation phase. The advantage of the non-parametric ensemble
learning models over the regression-based model could be associated with the existence of non-linear
relationships between the yield and VIs that random forest-based algorithms can integrate during
model development. Additionally, the flexibility in the hyperparameters configuration of the boosting
methods can result in higher performance in yield prediction.
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Two critical results were observed from this study: first, as shown in Table 2, the SCCCI as a
combined index seems to be the most appropriate index for predicting yield [32]. Second, as corn
development progressed, the GBM and regression models predicted final grain yield more accurately,
indicating that there is some relationship between the VI and the biomass content of the corn. It appears
that the variation in fertilizer N rates provided a good basis for differentiating growth and, ultimately,
grain yield, which provided adequate sensitivity for model building and testing.

4. Conclusions

Spatial mapping of corn yield is required for proper field management which is needed for
improving crop productivity. This study utilized five distinct wavelengths and 26 calculated VIs
as input variables to develop regression-based and tree-based learning models at different corn
phenological stages to predict corn grain yield at V3, V4-5, V6-7, V10-11, and VT phenological stages.
The influence of the variables was found to vary with the phenological stages. In general, the VI that
contributed to the majority of the models was SCCCI, suggesting the importance of red-edge-based VIs
during yield estimation. At V3 and V4-5 stages, OSAVI and SCCCI were the single dominant features
in the yield-predicting models, respectively. The most suitable GBM models with the greatest R2 values
of 0.97 and 0.95 resulted at the V10 and VT stages, respectively. Similarly, the highest R2 values were
obtained at the same stages using regression-based models. When the models’ performances were
compared for individual stages in both regression-based and tree-based models, however, the accuracies
were higher as corn development progressed. One of the goals of this research was to find the models
for each stage with minimum error (maximum R2) by using the appropriate number of predictors.
The methodology used in this research can be extended to predict yield for other crops or in other
regions as well, where yield prediction is mainly reliant on weather and climatic conditions.

The accuracy of the models in this research might have been affected by different things, including
a smaller number of yield samples collected for each year and the use of limited machine-learning
algorithms. In this study, we observed considerable improvement in yield prediction with the use
of ensemble learning model than the linear regression algorithm. For corn yield prediction, spectral
information, preprocessing, and preprocessing algorithms were important.
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In conclusion, results of this research demonstrated the use of the smallest number of predictive
variables that are statistically significant which resulted in an improved explanation for corn yield
prediction. Contributing to the accuracy in the predictive capacity of these models included
the following: preprocessing of data, including removal of soil pixels, deletion of 3–8% of outliers before
conducting the statistical analysis, evaluating for appropriate variables, and selecting appropriate
machine-learning model.
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