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Abstract: Detecting individual trees and quantifying their biomass is crucial for carbon accounting
procedures at the stand, landscape, and national levels. A significant challenge for many organizations
is the amount of effort necessary to document carbon storage levels, especially in terms of human
labor. To advance towards the goal of efficiently assessing the carbon content of forest, we evaluate
methods to detect trees from high-resolution images taken from unoccupied aerial systems (UAS).
In the process, we introduce the Digital Elevated Vegetation Model (DEVM), a representation that
combines multispectral images, digital surface models, and digital terrain models. We show that the
DEVM facilitates the development of refined synthetic data to detect individual trees using deep
learning-based approaches. We carried out experiments in two tree fields located in different countries.
Simultaneously, we perform comparisons among an array of classical and deep learning-based
methods highlighting the precision and reliability of the DEVM.

Keywords: tree detection; convolutional neural networks; unocuppied aerial systems; digital elevated
vegetation model; synthetic data set

1. Introduction

Programs to reduce emissions from deforestation and forest degradation (e.g., REDD+ [1]) intend
to mitigate the effects of climate change by providing forest landowners with economic incentives
reflecting the value of the carbon stored within the trees. However, despite advancements in remote
sensing technology, manual labor still needs to accomplish many measurements, such as estimating
the overall vegetation biomass and the carbon stored in individual trees and forests. For example,
it is common for field crews to travel to inventory plots and perform tasks such as counting and
measuring tree sizes using visual estimations and manual measurements. This approach requires a
considerable amount of time and resources, e.g., the USDA Forest Service spends more than 75% of
the inventory costs on data collection [2].

This study describes methodologies that efficiently detect trees automatically using remote
sensing technology (see Figure 1). In our approach, we collected data using unoccupied aerial systems
(UAS) equipped with multispectral cameras sensitive to the green, red, red edge, and near-infrared
wavelengths. Using structure from motion techniques (SfM) [3], we obtained 4-band orthophotos,
digital surface models (DSM), and digital terrain models (DTM) [4] in the form of orthomosaics.
Then, we calculated the Normalized Difference Vegetation Index (NDVI) [5] from the multispectral
orthophotos. After the orthophotos registration, we utilized the DSM, DTM, and NDVI to obtain
a Digital Elevated Vegetation Model (DEVM). We then generated a synthetic data set of DEVM
images that we used to train classic and modern machine learning algorithms to detect trees. Finally,
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performance tests using two tree plots in different countries indicated the precision of the new method.
Our results show that Convolutional Neural Network (CNN)-based methods have become the leading
performer. Nonetheless, classic approaches remain competitive and may offer advantages in settings
where data collection and available computing resources for training are an issue.

Our main contributions include:

• The introduction of the DEVM, an image representation that blends aboveground structural
information and quantification of vegetation suitable for the detection of trees;

• the development of a scheme to generate synthetic data sets of trees in DEVM space for training
classical and modern tree detection methods;

• the assessment of classical and modern techniques, trained with synthetic images,
to detect treetops.

We structure the rest of the document as follows. In the next section, we describe the current
state-of-the-art and practice regarding tree detection. Then, in Section 3, we formulate the foundation
of the newly developed DEVM, provide further detail about the method to generate synthetic tree
data sets, and detail the classical and modern techniques we benchmark in the paper. In Section 4,
we describe the effects of implementing the methods to detect treetops in two tree plots and compare
their performance. We continue the paper discussing our results in Section 5 and finally conclude
summarizing our findings and delineating possible directions for future research.

Figure 1. A pipeline to automatically detect treetops. Aerial photogrammetry, obtained from
unoccupied aerial systems (UAS) using multispectral cameras, allows us to construct orthomosaics
representing the digital surface model (DSM), digital terrain model (DTM), and Normalized Difference
Vegetation Index (NDVI), from which we eventually build the Digital Elevated Vegetation Model
(DEVM). We split the DEVM into sub-images and evaluate them with an object detector, which predicts
the bounding boxes for each sub-image. Then, we express the results in a common reference system.
Once we obtain a prediction for the whole image, we apply non-maximal suppression to eliminate
redundant detections.
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2. Related Literature

This section reviews the scientific literature describing classical and modern approaches for tree
detection with particular emphasis on aerial images. In addition, related to our work, we discuss the
research aiming to generate synthetic images for training deep learning methods and describe the
image sources for automatic tree detection.

2.1. Classical Tree Detection

Classical methods for detecting trees rely mostly on crafted features (see [6–8] for reviews of
approaches to detect individual tree crowns). The proposed methods include local maxima filtering,
template matching, valley following, watershed region growing, circular structures fitting, and Support
Vector Machines with Histograms of Oriented Gradients (HOG) features. Some recent research
follows this trend. For instance, basing tree’s detection on edge votes required applying tree crown
delineation for the candidates using watershed segmentation (Özcan et al. [9,10]). The eccentricity of
the ellipses to fit these segments was used to discard human-made objects. Another method filtered out
non-vegetation utilizing NDVI (Ozdarici-Ok [6]). The selection of tree crows employed the gradient to
detect high radial symmetry and increased diameter thresholds. A third method was based on the
binarization of RGB images (Reza et al. [11]). An adaptive median filter removed noise and distortion
before a morphological operation outlined the boundaries between the plants.

Alternatively, Maillard and Gomes [12], and Bao et al. [13] used template matching to detect trees.
The former detects deciduous trees using a geometrical–optical model as a template, which includes
parameters such as illumination angles, maximum and ambient radiance, and tree size specifications.
The latter method selects several templates from the original image and computes mutual information
for matching. When local maxima and watershed models were evaluated for the individual detection
of trees, both approaches performed well for dominant and co-dominant trees but underperformed for
small trees (Goldbergs et al. [14]). In contrast, Random Forest regression can estimate the number of
trees using the local maxima and the result of a classification process which can distinguish between
trees, soil, and shadows (Fassnacht et al. [15]). These features are fed to a Support Vector Machine
(SVM) with a Radial Basis Function (RBF) to classify the tree species. Similarly, Wang et al. [16] first
separated images between vegetation and non-vegetation with an SVM. After the extraction of HOG,
these features were used to train an SVM to detect palms. This method appears limited to identifying
palms, and it showed more reduced performance when the palms are intermingled with trees.

Recently, several approaches for tree detection used the local maximum filtering algorithm.
For instance, Li et al. [17] implemented a Field-Programmable Gate Array (FPGA) for the detection of
tree crowns, speeding up the computations considerably without loss of performance. Xiao et al. [18]
used the DSM obtained from the 3D information provided by multiview satellite images to detect
individual trees and delineate their crowns. Treetops are recognized from the local maxima, and outliers
are eliminated with allometric equations. Finally, Garcia et al. [19] presented a framework for individual
citrus tree detection based on Digital Surface Models that included a segmentation method based on
Extended Maxima Transforms followed by a controlled-marker watershed for single tree segmentation.
Other tree detection approaches include shallow neural networks. For instance, a two-stage method
trained a backpropagation (BP) neural network to detect trees from color images in stage one. In the
second stage, properties, such as energy, entropy, mean, skewness, and kurtosis, are used to correct the
BP neural network and build a cascade neural network classifier (Tianyang et al. [20]).

2.2. Deep Learning for Plant Detection

Lately, there has been a surge in methods to detect and count plants using deep learning.
Researchers have already employed tested architectures [21], such as LeNet, VGG, AlexNet,
or GoogLeNet for classification or regression. Freudenberg et al. [22] developed a palm detection
method using satellite images with 40 cm/pixel resolution. They employed a U-Net Convolutional
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Neural Network (CNN), which performs semantic segmentation between palms and background.
This method performs particularly fast, especially when compared with traditional CNNs such as
AlexNet. Similarly, Li et al. [23] detected oil palms in satellite images using a two-stage CNN. In the first
stage, they classified land cover, and in the second, they detected the palms. For training, they employ
20,000 samples, and during operation, they apply a multiscale sliding window.

There are numerous examples of the use of CNN to detect orchard trees such as citrus [24,25],
coconut, oil palm [24,26–28], palm [29], and tobacco [30]. In addition, species found typically
in forests have been the subject of researchers’ interest, such as spruce, birch, and pine [31,32];
while Pribe et al. [33] have studied the detection of urban trees. CNN architectures have received
a lot of attention including LeNet [26,28,29], SqueezeNet [34], AlexNet [27,29,33], GoogLeNet [35],
and DarkNet [36]. Windrim and Bryson [32] explored the combined use of candidates generation,
with Faster R-CNN, and 3D detectors with VoxNet. Still, Zorte et al. [24,37], Fan et al. [30],
Csilik et al. [25], and Trier et al. [31] studied the use of simple custom-made CNN architectures with
two or three convolutional layers followed by two or three fully connected layers. Zortea et al. [24]
first applied a CNN to detect tree rows, located center lines, and finally used another CNN to detect
trees. Puttemans et al. [36] showed that CNNs are a feasible alternative to boosted cascade [38] and
aggregated channels [39]. Csillik et al. [25] utilized CNN on NDVI images to distinguish between trees,
bare soil, and weeds; while Mubin et al. [28] detected and distinguished between mature and young
trees. Zortea et al. [37] were the first to apply an ensemble of CNN-based classifiers. Windrim et al. [32]
further separated the background class into shrubs, partial trees, and the tree class as foliage, lower
stem, upper stem, and clutter components. Trier et al. [31] used the green–blue ratio to remove shadows
and the NDVI image to remove dead vegetation and non-vegetation, similarly to Pribe et al. [33].
Finally, Fan et al. [30] selected their tree candidates using morphological operations. In contrast,
Chen et al. [34] presented a pipeline for fruit counting, where they used a custom crowd-sourcing
platform to label large data sets. After using a CNN to extract candidate blobs, they employed a
secondary convolutional network to count. Finally, Ribera et al. [40], experimenting with AlexNet,
Inception v2, Inception v3, and Inception v4, proposed a linear regressor to estimate the final fruit count.

In research similar to ours, Xiao et al. [41] used a Fully Convolutional Network (FCN) [42] to
detect treetops in satellite imagery. They fused the NDVI values, the DSM, and the red band into a
3-channel input. To train the FCN, they obtained samples using the top-hat morphological operation
on the DSM to detect the local maximum as treetops. In contrast, we used synthetic DEVM images
to train the CNN. Regarding RGB images, Santos et al. [43] used a deep learning-based approach to
detect and classify trees in aerial images. They captured and manually annotated a set of 392 images.
They then trained and compared Faster R-CNN, YOLOv3, and RetinaNet, three different detection
and classification models. Similarly, Fromm et al. [44] trained Faster R-CNN, SSD, and R-FCN CNN
architectures to detect seedlings using images taken from UAS along seismic lines. This brief overview
of the different methods suggests an increasingly predominant role of CNN-based techniques to tackle
tree detection.

2.3. Synthetic Data Set Generation

Deep learning commonly requires vast amounts of labeled data to train a CNN. As the manual
labeling of images is very demanding, synthetic data sets are attractive for researchers working
in machine learning. Using an approach similar to our work, Ubbens et al. [45] count leaves of
Arabidopsis thaliana rosettes. They render 3D models of plants and use these to create data sets for
training. Han and Kerekes [46] reviewed simulation methods for multispectral images, such as the
ones used in our approach. They concluded that technological trends, including emerging computing
power, powerful graphics processing units, and deep learning techniques, will continue to push for
more realistic images. Recently, Fassnacht et al. [47] introduced a method to simulate realistic tree
canopy by combining the SILVA individual-tree forest simulator [48] with real LiDAR point clouds of
individual trees. They employed their system to assess remote-sensing models for biomass estimation.
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2.4. Image Sources

To obtain the data for the detection of trees, researchers have employed satellites [26–29] and
airborne sources, such as UAS [24,25,30,37], helicopters [32], and piloted airplanes [31,33,35,36].
For instance, Millard and Gomes [12], Özcan et al. [9], and Fassnacht et al. [15] have employed
high-resolution images taken from the Landsat 8 and WorldView-2 to detect mango, orange, and apple
trees, as well as estimating stand density aboveground biomass. Ozdarici-Ok [6] detected and
delimited citrus trees using the images obtained from the GeoEye-1 satellite, whose image resolution
is 50 cm/pixel. Bao et al. [13] also used GeoEye-1 to extract individual tree crowns from panchromatic
satellite images, covering areas of 5 and 25 km2. Using CNN, Li et al. [26] detected oil palm plants
from satellite images in Malaysia.

Nowadays, UASs are becoming a popular tool for high-resolution, timely, and low-cost image
capturing. For instance, Ribera et al. [40] counted plants using a regression CNN from images taken
from a UAS flying over a sorghum field. Chen et al. [34] presented a pipeline for fruit counting in a
supervised deep learning framework where they use a custom crowd-sourcing platform to label large
data sets. They took their images from a multi-rotor UAS, and evaluated their method’s performance
using ground truth produced by humans. Selim et al. [49] used an object-based method to detect trees
from images obtained from UAS. Their approach got 1 (one) cm resolution scene reconstructions using
SfM. They implemented a set of rules to identify trees based on their height, scale, shape, and integrity.
Finally, Reza et al. [11] proposed a method to recognize and count rice plants using low altitude
flying UAS.

Sensors employed to obtain information to detect trees from airborne platforms include RGB
cameras [24,28–30,35–37], multispectral cameras [25–27,31], and LiDAR [32]. Using RGB images,
Krisanski et al. [50] proposed a novel method to measure trees’ diameter. They flew a UAS manually
under the trees canopy while taking photos. Offline, they obtained a 3D representation from which
they automatically measured the trees’ diameter within a plot. Their results are promising and will
undoubtedly boost the exploration of fully automatic approaches. Employing multispectral imagery,
Qiu et al. [51] introduced an individual tree delineation map on multispectral images from cameras
on a UAS overflying a forest stand. Using the gradient map, they extracted treetops and refined
the delineation employing spectral differences. They segmented the gradient map using watershed
with the treetops as markers and improved the segmentation to yield the crown map. In addition,
Picos et al. [52] detected and measured the height of Eucalyptus trees in a plantation. They investigated
two methods for detection: One based on constructing overlapping polygons around each point in the
stem cloud, and another employing density estimation with an axis-aligned bivariate quartic kernel.
Finally, Yan et al. [53] observed that the fixed-bandwidth mean-shift based methods work well to
extract the same size of individual trees. Thus, they introduced a self-adaptive bandwidth estimation
method. Starting from the global maximum point, they divided the 3D space into angular sectors
simulating the canopy surface. They employed the potential crown boundaries to estimate the crown
width and from it, the kernel bandwidth.

Our literature review highlights that the identification of trees from aerial images using either
classic and deep learning-based methods remains an active area of research, with recent approaches
competing in aspects such as detecting rate, computing time, and hardware requirements. There are
some strengths and weaknesses of the different methods we are aware of before starting their
benchmarking. Local Maximum Filtering methods achieve good results in the presence of peaks,
while Hough-based methods perform well with circular crowns. On the other hand, correlation
methods do not perform well under changes of scale, HOG-based methods are robust to geometry
and photometric transformations. In contrast, deep learning-based methods are robust to translational
transformations of the database of images. Therefore, to assess their potential and limitations,
there seems to be a need for comparisons. However, as deep learning methods deliver promising
results, there is a requirement to develop databases for evaluation and improvement. As some recent
work has precluded [54], shortly, there will be significant and rich-enough data sets of trees taken from
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aerial images to cover data-hunger approaches. In the meantime, it is of immediate interest to generate
synthetic data that fuses structural and multispectral information sources. Such novel and efficient
representations allow testing different image capturing platforms, particularly those based on UAS.
It is within these opportunities that we develop our approach.

3. Materials and Methods

In this section, we introduce DEVM, an image representation suitable for tree detection. In the
process, we present a model for the generation of synthetic images. In addition, we describe the
classical and modern methods we will use in our assessment.

3.1. DEVM: A Blended Representation of Structure and Multispectral Information

The database for this study is a set of multispectral images captured from UAS. We describe how
these images were processed to generate the input for the convolutional neural networks we utilize in
this study.

3.1.1. Characterizing Vegetation

To characterize surface reflection, we employed the NDVI [55], a classical index that practitioners
have used extensively because of the ample availability of sensors from which it can be extracted.
For a pixel at position x ∈ R2, Weier and Herring [56] calculated the NDVI from the visible red
(R, 640–680 nm) and near-infrared (NI, 770–810 nm) radiation as

NDVI(x) =
NI(x)− R(x)
NI(x) + R(x)

. (1)

when using NDVI, we assume that healthy vegetation absorbs most of the radiation and,
simultaneously, reflects a large portion of the near-infrared radiation [56]. Researchers have observed
that the NDVI saturates rapidly in dense vegetation canopies. In these cases, one may employ a
saturation adjusted NDVI, such as the ones proposed by Gu et al. [57] or Fang et al. [58].

3.1.2. The Digital Elevated Vegetation Model

DSM are 2.5D pictures (2D images that facilitate the visual perception of depth) that represent
the elevation over the terrain, i.e., the land surface, vegetation, or human-made structures that one
could obtain from images processed with SfM reconstruction techniques [3]. In contrast, DTM are
2.5D pictures that show the bare surface of the soil, ignoring any vegetation or human-made objects,
leading to the challenges of computing the DTM from the DSM. In our approach, we used the
orthomosaics (for the DSM and DTM models, and the NI and R spectral bands) produced by Pix4D,
a photogrammetry program for 3D reconstruction from a series of images. Using the NDVI, DTM,
and DSM orthomosaics, we expressed the concept of DEVM as

DEVM(x) = (DSM(x)−DTM(x))NDVI(x), (2)

where the subtraction of the DTM from the DSM represents the objects over the terrain. Then,
we multiplied the result by the NDVI, aiming to highlight those objects that correspond to vegetation
above ground level (see Figure 2). Thus, the DEVM bundles characterizations of vegetation and
terrain into a description which facilitates the generation of synthetic images for training. In its
present form, the DEVM characterization gives a head start to the detection of trees algorithms.
However, it also offers an ambivalence where tall/small trees with low/high NDVI values may be
comparable. Adapting to that ambivalence may be a feature of a tree detection algorithm, resulting in
a corresponding performance.
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(b) (c)

(d) (e)

(a)

Figure 2. We generated orthomosaic models from multispectral images corresponding to (a) RGB,
(b) DSM, (c) DTM, (d) NDVI, and (e) DEVM. The patch of 867 m × 801 m terrain corresponded to an
agricultural landscape with scattered trees in Zimatlan, Oaxaca, Mexico.

3.2. Synthetic Data Set Generation

Convolutional Neural Networks (CNNs) have become the dominant approach for object detection
in computer vision. However, its application requires massive amounts of labeled images. The work
needed to obtain the data sets tends to be costly, challenging, and error-prone. Even though people
are using UAS in photogrammetry in recent years and have captured many pictures of terrain, it is
still expensive to obtain a human-labeled training data set of aerial multispectral images. Thus,
we generated a batch of simulated and computer-labeled DEVM images designed to look similar to
the real ones (see Figure 3).

Inspired by the resulting structure of trees in DEVM space as observed from overhead, we created
synthetic images using as a basis the multiple occurrences of a shape with closed-form analytical
expression. In our procedure we generated an image I(x), for x = (x, y), where x ∈ [1, w] and
y ∈ [1, h], containing at most n trees, where n is a random variable with probability density function
(pdf) given by n ∼ U (nmin, nmax). In our case, U (ui, u f ) represents a uniform distribution with value
1/(u f − ui) between the extremes of the interval [ui, u f ] and zero outside. To ensure that the DEVM
representation of each tree is inside the image, we defined each tree center at (xi, yi), where xi and yi are
random variables with pdf defined as xi ∼ U (amax, w− amax) and yi ∼ U (bmax, h− bmax), respectively.
Here i refers to the i-th tree, and thus i ∈ [1, . . . , n]. Each tree will have lateral orthogonal widths
given by ai and bi, where ai and bi are random variables with pdf given by ai ∼ U (amin, amax) and
bi ∼ U (bmin, bmax).

In addition, we modeled each tree as a set of at most mi overlapping domes (see (3)), where we
defined mi as a random variable with pdf given by mi ∼ (mmin, mmax). We defined the center of each
dome (xij, yij) around the tree center as xij = xi + ∆x and yij = yi + ∆y, where ∆x and ∆y are random
variables defined as ∆x ∼ U(−∆xy, ∆xy) and ∆y ∼ U(−∆xy, ∆xy). Meanwhile, we randomly varied
the lateral widths of each dome by aij and bij respectively, for j ∈ [1, . . . , mi], where aij and bij were
random variables with pdf given by aij ∼ U (ai − ∆ab, ai) and bij ∼ U (bi − ∆ab, bi), respectively.

For our method, we found it suitable to define the domes using the closed analytical form
expressed as

D(α, β) = hij · cos

(
απ

2aij

)
· cos

(
βπ

2bij

)
, (3)
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for given values of aij, bij, and hij, where α ∈ [−aij, aij] and β ∈ [−bij, bij], and hij was a random
variable with uniform pdf given by hij ∼ U (hmin, hmax). The dome could be conveniently represented
in image space using the linear transformation x = Kθ+ x, where x = (x, y)T are the coordinates of
a point in the image, K2×2 was a matrix which diagonal contains k, a constant k that relates pixels in
the image with metric units, θ = (α, β)T contains the dome parameters, and x = (xij, yij)

T is the center
of the dome. In Algorithm A1, Table 1 we present a pipeline describing how we created domes.

Given an image resolution and a set of parameters defining bounds, we created synthetic
images by randomly varying the number of trees, their width, their height, and with a random
amount of domes with random location and diameter, which themselves depend on the parameters
previously computed. Along with the images, we saved the bounding boxes’ location, describing each
tree’s position.

(a) Real example of a DEVM patch.

(b) (c)

(d) (e)

(f) (g)

Figure 3. Example of a training data set using DEVM to highlight trees. We built a synthetic data set
of trees in the DEVM representation using random ellipses. In (a), we show an example of a DEVM
image. We illustrate the orthogonal (b–d) and isometric (e) views of a single dome, which forms the
basis for the construction of the synthetic representation of a tree in DEVM space. We show an example
of the side (f) and top (g) views of the synthetic description.

Table 1. Constant values used for the generation of synthetic images in Algorithm A1, described in
Appendix A.

r c nmin nmax mmin mmax hmin hmax amin amax bmin bmax ∆xy ∆ab

1248 384 2 7 5 10 1.4 2.3 65 75 65 75 5 20
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3.3. Treetop Detection Methods

We implemented several classical and deep learning-based alternatives for treetop detection.
We employed DEVM images as inputs, using synthetic images when the methods required training,
to establish a baseline to evaluate theirperformance. Thus, our results could differ from those
reported in the literature because either the input images contain different information or our
implementation changes in subtle details from other studies. We developed the approaches using
Matlab, Nvidia DIGITS, and Tensorflow with the Google Object Detection API [59] for classical and
deep learning-based methods, respectively. In all cases, we compared the inferred bounding boxes
against the manually-obtained ground truth data.

3.3.1. Classical Methods

For our comparison, we have included implementations for Local Maxima Filtering, Correlation
with a Template, HOG features with an SVM classifier, and a Hough-based circular structures detector.

Local Maxima Filtering (LMF). In this method (inspired by Pouliot et al. [60]), we detected trees
as peaks in the DVEM image. First, we smoothed the DVEM image with a Gaussian filter, with σ = 2,
and proceeded to find the regional maxima, which we defined as the set of connected pixels with equal
value surrounded only by pixels with a lower value. Although rarely necessary, we selected a random
pixel when several pixels have the same regional maximum values. We considered a successful tree
detection when pixels survived a non-maxima suppression stage, where, starting from the highest
valued pixel, we eliminated all those pixels within a neighborhood of radius τ ∈ [1, 500] that have a
smaller value.

Correlation with a Template (Template). In this method (inspired by Ke and Quackenbush [61]),
we compared portions of the DVEM image with a template we extracted from using Pearson’s linear
correlation coefficient. We selected the local maxima peaks as the centroids of the detected bounding
boxes, with the same size as the template. We generated the templates using eCognition, a computer
program aimed to determine detections from a set of sub-images extracted by the user from the
orthomosaics. In eCognition, the user gives relevant feedback based on the proposed examples to
improve the detector’s performance. The program defines the template as the average over the
correct predictions.

HOG Features with an SVM Classifier (HOG+SVM). In this method (inspired by Wang et al. [16]),
we characterized the DVEM image using HOG features [62] and used a SVM classifier to distinguish
between the classes tree and no-tree. Using the DVEM image corresponding to the Almendras,
we selected 64 × 64 ground truth bounding boxes corresponding to trees. Afterward, we chose areas
randomly without trees to construct a data set of true negatives. Then, we augmented the data set with
five images corresponding to rotations of 90◦, 180◦ and 270◦ degrees, vertical and horizontal mirroring,
resulting in 27,055 images. Using this data set, we extracted HOG features for each image, resulting
in a feature vector of 1764 values. Next, we fit an SVM with a linear kernel that ended up with 578
support vectors. Using this classifier, we slid a window over all the test images to obtain the SVM
score in each location. To get the position of the trees, we first detected the position of the maxima.
Then, for a given SVM score threshold, we applied non-maximal suppression for those detections
around it. To assess the performance, we varied this threshold from −11.28 to 10.05 in steps of 0.1.

Circular Structures (Hough). In this method (inspired by Ke and Quackenbush [61]), we detected
trees by the similarity of the contours in the DVEM image with circular rings. Firstly, we computed
a Canny edge detector. Then, we found the circles between a minimum and maximum radius.
We estimated the parameters for the minimum and maximum threshold for the Canny edge detector,
and the minimum and maximum radius for the circular rings, using the DVEM image for the Mancañas
field. To evaluate the performance, we varied the minimum radius from 10 to 65 pixels and tested
these parameters on the DVEM image for the Almendras field.
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3.3.2. Deep Learning-Based Methods

We used deep learning to detect the trees because this technique automatically extracts complex
features, is well suited detecting objects and generalizes well in the presence of new data. Our deep
learning-based alternative methods include implementations for DetectNET, Faster R-CNN with
Inception v2, Faster R-CNN with ResNet-101, Single Shot Multibox with Inception v2, and R-FCN
with ResNet-101.

DetectNET. Barker et al. [63] derived DetectNet from the classification engine GoogLeNet [64,65].
In turn, GoogLeNet corresponds to the incarnation of Inception v1. It is a 22 layer CNN that receives
as input a 224 × 224 RGB image with mean subtraction. To detect multiple objects during training,
DetectNET extracts the bounding boxes of each image from the annotations overlaid on the coverage
map. Given the coverage map for object k, Ck(x), for x = (x, y)T and 1 ≤ x, y ≤ S, we set positions to
1 (one) where objects are present and 0 (zero) otherwise [63]. Once DetectNet predicts the coverage
map and the bounding boxes, it expressed the result as a three-dimensional label format describing
the class of the present object and the pixel coordinates of the bounding box’s corners relative to the
center of the grid. A clustering function produces a list of M bounding boxes (see Figure 4). We trained
with Nvidia/Caffe, a modified version of Berkeley’s Caffe framework for deep learning, and used
transfer-learning to establish the initial weights from a model previously trained with the KITTI data
set [66] to achieve faster convergence.

Faster R-CNN with Inception v2 (Faster R-CNN/Inception v2). Faster R-CNN consists of two
stages, a Region Proposal Network (RPN) and a detection network [67]. The former simultaneously
predicts bounding boxes and objectness scores at each position of its last feature map layer. In the latter,
a detector attends the proposals and refines them, i.e., one pools the features from bounding boxes from
where one detects a class of objects. In our implementation, we scaled the image to 600 × 1024 pixels.
We initialized the weights with a checkpoint of MSCOCO data set from the Tensorflow’s object
detection zoo [59]. We then refined the model with our DEVM synthetic database for 30,000 steps,
using the stochastic gradient descent (SGD) with momentum optimizer with an initial learning rate
of 2× 10−4 that changes to 2× 10−5 after step 15,000. To evaluate the performance, we divided the
validation DEVM maps into smaller overlapping images.

Faster R-CNN with ResNet-101 (Faster R-CNN/ResNet-101). In this case, we initialized the
weights with a checkpoint of the KITTI data set (cars and pedestrian) [66] from the Tensorflow’s object
detection zoo [59]. We then trained the model with our DEVM synthetic database for 30,000 steps, using
the momentum optimizer with an initial learning rate of 10−4 that changes to 10−5 after step 15,000.
To evaluate the performance, we divided the validation DEVM maps into smaller overlapping images.

Single Shot Multibox Detector with Inception V2 (SSD/Inception v2). Similarly to Faster R-CNN,
SSD consists of a neural network-based strategy where one extracts feature maps from images and
infers bounding boxes and classes using a multi-scale bounding box predictor [68]. We initialized the
weights with a checkpoint of MSCOCO data set from the Tensorflow’s object detection zoo [59].
Then, we refined the model with our DEVM synthetic database resized to 300 × 300 pixels for
30,000 steps, using RMSprop [69] optimizer with an initial learning rate of 4× 10−3 that changes
to 4× 10−4 after 15,000 steps. To evaluate the performance, we divided the validation DEVM maps
into smaller overlapping images.

R-FCN with ResNet-101 (R-FCN/ResNet-101). R-FCN is a method for object detection that uses
a region-based, fully convolutional network (R-FNC) that proposes candidate regions of interest that
are later voted to decide which one accurately covers the object. We initialized the weights with
a ResNet-101 checkpoint of MSCOCO data set from Tensorflow’s object detection zoo [59]. We refined
the model with our DEVM synthetic database resized to 300 × 300 pixels for 30,000 steps, using
a Stochastic Gradient Descent (SGD) with the momentum optimizer with an initial learning rate of
3× 10−4 that changes to 3× 10−5 after 15,000 steps. To evaluate the performance, we divided the
validation DEVM maps into smaller overlapping images, which in turn, we resized to 300× 300 pixels.
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(a)

(b)

Figure 4. Training and inference of neural network models for treetop detection. We fed a Convolutional
Neural Network (CNN) with synthetic DEVM images I . During training (a), we utilized synthetic
DEVM images I to fine-tune the pre-trained weights of the fully connected layers. Then we
compared the estimated bounding boxes BB with the respective ground truth BB∗ to compute the
loss. During evaluation (b), the CNN infers the bounding boxes for real DEVM images to generate
predictions P .

3.4. Image Acquisition and Processing

We mounted a Parrot Sequoia camera on a UAS and flew over the Almendras and Mancañas
fields using a self-built multicopter for the former and a 3DR Solo quadcopter for the latter. For these
settings, we performed nadir double grid missions with an overlap of 85% at an altitude of 25 m
aboveground, commanding the UAS to fly at a speed of 3 m/s. The Parrot Sequoia produced
multispectral images with spectral response peaking in wavelengths of 550 nm (Green), 660 nm
(Red, R), 735 nm (Red Edge), and 790 nm (Near Infrared, NI). Each of these images has a spatial
resolution of 1280 (horizontal) × 960 (vertical) pixels for all the flight missions.

The hardware employed to run the computer vision and image analysis algorithms consisted of a
computer to implement the classical approaches and a second one for the deep learning-based methods
(see Section 3.3 and Table 2). The former consists of a Windows 8.1 machine with an i7-3770 CPU at
3.4 GHz, 16 GB of RAM. The latter is a computer running Ubuntu 16.04 xenial with a liquid-cooled
Intel Xeon E5-2650 CPU, 32 GB of RAM, four Nvidia Titan X Pascal GPUs, each one with 12 GB of
video memory.

4. Experimental Results

To assess the effectiveness of treetop detection methods, we implemented the algorithms described
above, set experimental environments to gather data, and evaluated their performance. We divided
the validation images into multiple overlapping sub-images of 1248× 384 pixels and trained using
the different methods. Since we partitioned the original image into sub-images, integrating the
results in a common reference frame can give rise to multiple boxes for the same tree. We used
non-maximal suppression to select the bounding box corresponding to the highest confidence score
from the overlapping bounding boxes with IoU ≥ 0.5 [38] (see Figure 1).
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For our experiments, we flew over two different locations (see Figures 5 and 6): Almendras and
Mancañas. The Almendras is a 3.5 hectare (ha) leaf-on almond (Prunus dulcis) tree plantation with a
mean distance between the trees of 7.9 m located near Valencia, Spain. The Mancañas, in Guanajuato,
Mexico, is a 0.76 ha leaf-on pine (Pinus greggii) with rows of trees and a mean distance between rows
of 5.9 m. However, within the rows, the trees have a mean distance of ≈ 1 m.

(a) Almendras (b) Mancañas

(c) Almendras detail

(d) Mancañas detail

Figure 5. Test fields. In (a,b), we present the orthomosaics for the whole area of the two places we used
to test our method. The Almendras (a) corresponds to almond (Prunus dulcis) trees in Spain, and the
Mancañas (b) corresponds to pine (Pinus greggii) trees in Mexico. The DEVM shows that while the trees
in the Almendras are isolated (c), in the Mancañas (d) the rows of trees are isolated between them but
clustered together within. The bounding boxes in (c,d) show the detections with our method. Please
note that viewed from above, almond trees seem to have a hole in the middle.
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(a) LMF (b) Template-matching (c) Hough (d) HOG+SVM

Figure 6. Tree detection with classic methods. In (a), the gradient points toward the maximum,
where we place a red dot. In (b), we show the correlation between trees and a template made with
synthetic images in the Almendras field. In (c), we show the edges (gray) and a circle fitting the edge
points. In (d), we show the HOG descriptors superimposed on the corresponding DEVM patch.

The hardware employed to run the computer vision and image analysis algorithms consisted
of a computer to implement the classical approaches and a second one for the deep learning-based
methods (see Section 3.3 and Table 2). The former consists of a Windows 8.1 machine with an i7-3770
CPU at 3.4 GHz, 16 GB of RAM. The latter is a computer running Ubuntu 16.04 xenial with
a liquid-cooled Intel Xeon E5-2650 CPU, 32 GB of RAM, four Nvidia Titan X Pascal GPUs, each one
with 12 GB of video memory.

4.1. Tree Detection

We trained our treetop detection methods using synthetic images and evaluated the performance
on the images produced at the Almendras and Mancañas test fields. To train the deep learning-based
approaches for treetop detection, we generated a synthetic-labeled data set of 12,500 synthetic DEVM
images of 1248× 384 pixels that simulate a resolution of 1 cm/pixel with the values described in Table 1.
We split the 12,500 images synthetic data set into two subsets of 10,000 images for training and
2500 images for validation at refinement. We refined the neural network weights during ten epochs.
The structure of the neural network models that we tested require three-channel images. Thus,
to feed the network, we converted the DEVM to RGB images using OpenCV’s cvtColor function,
which replicates the DVEM image in each of the three channels. This process facilitated using the
synthetic database on off-the-shelf neural network models requiring three-channel images, of course,
at the expense of additional weights in the first convolutional layer.

We tested the efficiency of the different methods in the Almendras and Mancañas DEVM
orthomosaic images containing pine (Pinus greggii) and almond (Prunus dulcis) trees, respectively.
We evaluated our approach’s performance by comparing the detections with manually obtained
ground truth data (see Figures 7 and 8). We considered a detection when the Intersection of the Union
(IoU) is at least 0.50 between the predicted and the ground truth bounding boxes.

We processed the individual images from our test fields with Pix4D to generate GeoTIFF
orthomosaics with a size of 3843× 4386 and 7063× 8410 pixels for the Almendras and Mancañas,
respectively. Since these images are too large for the computer’s memory, we divided them into smaller
overlapping clips of 1248× 384 pixels (resulting in 176 images for the Almendras and 504 images
for the Mancañas) which in turn were fed to the different methods for treetop detection. Afterward,
we expressed the results on a global reference system and applied non-maximal suppression.
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(a) (b) (c) (d)

Figure 7. Tree detection. We show the trees in DEVM images with the detected bounding boxes on
it. The columns show examples of (a) true positive, (b) false-positive, (c) true-negative, and (d) false
negative detection.

(a) Almendras. (b) Mancañas.

Figure 8. Precision-Recall curves for the methods described in Section 3.3 for the Almendras (a) and
the Mancañas (b) tree stands (best seen in color). The curves describe the precision of the methods at
different recall levels, varying the confidence score to discard those detections under the threshold.
See Table 2 for some quantitative highlights describing the performance.
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Table 2. Performance results. We tested in the Almendras and Mancañas tree plantations. AP, AR,
and F1max stand for the Average Precision, Average Recall, and maximum F1 measures. Bold numbers
correspond to the maximum per column. The methods in this table include Local Maximum Filtering
(LMF), Template-matching correlation, Hough Transform to detect circles (Hough), and Histograms
of Oriented Gradients (HOG) as features followed by a Support Vector Machine (SVM) Classifier
(HOG+SVM), DetectNet, Faster Region-based Convolutional Neural Network with Inception v2 as
the backbone (Faster R-CNN/Inception v2), Faster Region-based Convolutional Neural Network
with ResNet-101 as the backbone (Faster R-CNN/ResNet-101), Single-Shot Multibox Detector with
Inception v2 as the backbone (SSD/Inception v2), and Region-based Fully Convolutional Networks
with ResNet-101 as the backbone (R-FCN/ResNet-101). The columns show the Average Precision for
an IoU of 0.5, AP0.5, Average Recall for an IoU of 0.5, AR0.5, and the maximum value for the F1 metric,
F̂1. Computing Time columns show the time that it takes to execute the different algorithms during the
training (CTtrain) and validation (CTtrain) stages.

Method Computing Time Almendras Mancañas
CTtrain CTval AP0.5 AR0.5 F1max AP0.5 AR0.5 F1max

C
la

ss
ic

M
et

ho
ds LMF 00:00:00 10:17 0.79 0.55 0.92 0.70 0.77 0.78

Template-matching 00:26:00 07:53 0.72 0.79 0.86 0.61 0.65 0.73
Hough 12:00:00 21:53 0.78 0.95 0.72 0.70 0.42 0.78
HOG+SVM 07:27:01 00:02 0.79 0.91 0.92 0.66 0.64 0.66

D
ee

p
Le

ar
ni

ng

DetectNet/GoogleNet 02:45:26 32:24 0.88 0.86 0.91 0.92 0.91 0.94
F. R-CNN/Inception v2 01:06:46 02:59 0.82 0.72 0.88 0.56 0.57 0.72
F. R-CNN/ResNet-101 07:28:26 11:52 0.80 0.72 0.87 0.34 0.36 0.52
SSD/Inception v2 02:59:34 02:02 0.13 0.26 0.25 0.05 0.091 0.21
R-FCN/ResNet-101 01:26:30 09:34 0.87 0.82 0.92 0.57 0.56 0.72

4.2. Results

We trained and fine-tuned the algorithms using the synthetic data set, while employed the
Mancañas and the Almendras data sets to test without making a change to the parameters to obtain
the respective performance metrics. To evaluate the performance of the different algorithms involved
in the comparison, we applied the methods to the Almendras and Mancañas tree stands and evaluated
different metrics, including Precision, Recall, Average Precision, Average Recall, and F1. In Figure 8,
we show the Precision-Recall curves resulting from varying the acceptation threshold for detection.
We obtained each point of the curve by discarding those detections whose confidence score was under
the threshold. The companion Table 2 highlights quantitatively some characteristics of the curves in
Figure 8. In particular, it provides indicators such as the Average Precision, AP, Average Recall, AR,
and the metric F1. The columns AP0.5, AR0.5, and F1max follow the Pascal VOC [70] criterion, where an
object is correctly detected when the IoU between its prediction and the ground truth bounding boxes
is larger or equal to 0.5. Thus, F1max corresponds to the maximum value of the F1 metric for the
criterion IoU≥ 0.5.

For the Template method, we selected the correlation template from the synthetic DEVM database
and applied it to both Almendras and Mancañas fields. Note that consistently, the Almendras tree
stand gave better results than the Mancañas tree stand for the AP0.5, AR0.5, and F1max metrics. Despite
low averages for AP0.5 and AR0.5, the LMF method, with 0.918, obtained the second highest F1max

value for the Almendras. Its behavior in the Mancañas observed just slight fluctuations with values
0.700, 0.774 and 0.797 for AP0.5, AR0.5 and F1max, respectively. The Hough method obtained the highest
AR0.5 value at 0.950 in the Almendras. Interestingly, in the same metric had an abrupt decrement,
at 0.442, in the Mancañas. It is worth noting that both methods are easy to code and exhibit low
computing complexity. Template-matching had a regular performance in both the Almendras and
the Mancañas, perhaps justifying the common practice of selecting the template from samples of the
same image where it is going to operate but underscoring its fragility to diversity. For HOG+SVM,
we computed the HOG features using training examples from the synthetic data set and tested on the
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Almendras and the Mancañas fields, performing better across our metrics in the former (0.794, 0.914,
0.92) than in the latter (0.659, 0.644, 0.663) for AP0.5, AR0.5, and F1max, respectively. These results show
the ability of the DEVM synthetic database to generalize well.

Applying the deep learning-based methods, SSD/Inception v2 observed the lowest performance
for both tree stands. DetectNET performed better for the Almendras in terms of AP0.5, at 0.880, but was
outperformed by R-FCN/ResNet-101 in terms of F1max, at 0.922. In all other cases, the deep learning
methods performance was weaker for the Mancañas data set than for the Almendras one. A noticeable
exception was the DetectNet method, which actually had a better performance for the Mancañas with
AP0.5 = 0.920, AR0.5 = 0.906, and F1max = 0.940. Interestingly, Faster R-CNN, both with the Inception
v2 and ResNet-101 backbones, has comparable performance in the Almendras but the Inception v2
backbone performed better in the Mancañas tree stand. R-FCN with ResNet-101 backbone was the
best for the F1max metric, at 0.922, for the Almendras but its AP0.5, AR0.5 and F1max declined sharply
for the Mancañas at 0.571, 0.577 and 0.723, respectively. In terms of computing time (see Table 2),
LMF was the fastest, and it does not require training. About the methods requiring some form of
training, the Template method was the quickest one during this stage. In addition, among the neural
network-based approaches, Faster R-CNN/Inception was the faster one to train. HOG+SVM was the
fastest one during the evaluation stage, taking about two seconds to process a whole orthomosaic.
Among the deep learning-based techniques, SSD/Inception v2 was the fastest one, taking two minutes
and two seconds to evaluate the entire image.

5. Discussion

The DEVM representation permitted us to blend structural and multispectral information
efficiently. The DEVM facilitated us to generate synthetic images, which can be used effectively
to train classical and modern tree detection methods. This observation aligns with Perez et al. [71],
who have highlighted the importance of incorporating the NDVI as an input to foster the performance
of automatic tree detection algorithms. However, for a precise estimation of vegetation indices, one
needs to consider some crucial factors, including illumination geometry and flying height, which may
play a significant role in surface reflectance determination [72]. In our work, we used the built-in Pix4D
conversion formula to obtain the derived NDVI, but we may need to investigate further whether a
more robust radiometric calibration could enhance tree detection performance [73].

Our synthetic data set includes images with a wide range of tree spacing and crown characteristics,
including size, height, and shape. Therefore, it seems that neural network-based methods may
generalize well for different forest types. In contrast to template matching, such approaches do not
require producing a template describing a particular experimental forest [61]. We believe that the
deep learning approach provides a unified framework where different tree models interact, making
it easier to generalize. One could consider a CNN as a generalization of template matching where
training supports the estimation of the most appropriate convolutional masks for detection [74].
This interpretation could explain the similar performance to DetectNET obtained in the Almendras
tree stand.

Simple methods, such as LMF and Hough, performed consistently well. They can be programmed
easily using widely available computer vision libraries and require humble computing platforms.
From our perspective, this result confirms the often neglected value of classic approaches [75]. Perhaps,
the most surprising result was the differential performance exhibited by the deep learning methods
in the Mancañas test field. Certainly, detecting individual trees in the Mancañas is more difficult
than in the Almendras site (see Figure 5c,d). In the latter, the trees are isolated, while in the former,
the rows are isolated, but the trees within are clustered. Our results show the value of DetectNet
as an object detection model based on coverage maps rather than the anchor-based models such as
Faster R-CNN, SSD, and R-FCN [76]. Although they share the same backbone architecture in some
cases, the bounding box extraction strategy may show different performance for specific scenarios [77].
However, further studies are needed to understand the effects of deep learning architectures in the
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generation of covering maps [78]. In our experiments, the DetectNet representation exhibited better
performance than the region-based proposal architectures.

6. Conclusions

In this paper, we describe methods to assess treetop detection methodologies efficiently.
The DEVM representation made it possible to develop a strategy to construct synthetic ground
truth data useful for training, alleviating the need for the task of labeling images. The representation
compares well when benchmarked with classic and deep learning-based algorithms. Our experiments
with data sets from two different forests provide support for our claims.

Although our results suggest that the methods can accommodate a limited degree of tree overlaps,
further research is required to extend them to more challenging scenarios, such as the conditions of
overlapping crowns often found in dense forests. Nonetheless, our experiments were successful in
two different settings, including broadleaf and evergreen (needle leaf) trees, suggesting that we can
apply the methods to other scenarios.

We plan to formulate the input to the CNN models with the raw data constituted by the
near-infrared and red images, and the DMT and DSM maps. We expect that the neural network will
unveil an optimized combination of the inputs to improve performance. We will also incorporate tree
detection methods to a pipeline where SfM reconstruction and tree identification could be combined
with allometric equations to obtain estimates of the stored carbon dioxide. Finally, we will continue
developing algorithms for the detection of trees in more complex scenarios, such as urban areas
or forests.
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Appendix A. Pipeline for the Creation of Synthetic Images

The following algorithm describes our procedure to create synthetic DEVM images for training.

Algorithm A1 Synthetic DEVM images of trees. We generated domes to define individual tree shapes.
The pdf U (a, b) generated random real values from a uniform distribution in the range between a and
b, inclusive. b·c is the floor function.

1: Call: I← Synthetic_DEVM_Image(r, c)
2: Input: The number of rows r and columns c for the output image
3: Output: Synthetic DEVM image, Ir×c

. Assume the existence

of global constants n = (nmin, nmax), m = (mmin, mmax), and h = (hmin, hmax), the minimum

and maximum number of trees, number domes per tree, and height of the trees, respectively;

a = (amin, amax) and b = (bmin, bmax), the minimum and maximum lateral widths of each dome,

correspondingly; ∆ = (∆xy, ∆ab), the maximum displacement of the centroid and the change of the

width, respectively; and K2×2 and x, a diagonal matrix with the relationship between meters and

pixels, and the center of the dome in the image.
4: I← 0w×h; . Initialize DEVM image to zero
5: n← bU (nmin, nmax)c; . Define the number of trees
6: for i← 1 : n do
7: hi ← U (hmin, hmax); . i-th tree height
8: ai ← U (amin, amax);
9: bi ← U (bmin, bmax); . i-th tree width

10: xi ← U (amax + ∆xy, c− amax − ∆xy);
11: yi ← U (bmax + ∆xy, r− bmax − ∆xy);

. i-th tree center
12: mi ← bU (mmin, mmax)c; . number of domes for the i-th tree
13: for j← 1 : mi do
14: hij ← hi + U (−∆h, ∆h); . height for the j-th domes of the i-th tree
15: xij ← xi + U (−∆xy, ∆xy);
16: yij ← yi + U (−∆xy, ∆xy);

. center of the j-th dome of the i-th tree
17: aij ← U (ai − ∆ab, ai);
18: bij ← U (bi − ∆ab, bi);

. width of the j-th dome of the i-th tree
19: D(α, β) = hij · cos

(
απ
2aij

)
· cos

(
βπ
2bij

)
; . create a dome using (3)

20: J(Kθ+ x) = D(α, β); . transform domains, θ = (α, β)T

21: I← max (I, J); . Add dome to image I
22: end for
23: end for
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