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Abstract: Filling in the void between forest ecology and remote sensing through monitoring
biodiversity variables is of great interest. In this study, we utilized imaging spectroscopy data from
the ISRO–NASA Airborne Visible InfraRed Imaging Spectrometer—Next Generation (AVIRIS-NG)
India campaign to investigate how the measurements of biodiversity attributes of forests over wide
areas can be augmented by synchronous field- and spectral-metrics. Three sites, Shoolpaneshwar
Wildlife Sanctuary (SWS), Vansda National Park (VNP), and Mudumalai Tiger Reserve (MTR), spread
over a climatic gradient (rainfall and temperature), were selected for this study. Abundant species
maps of three sites were produced using a support vector machine (SVM) classifier with a 76–80%
overall accuracy. These maps are a valuable input for forest resource management. Convex hull
volume (CHV) is computed from the first three principal components of AVIRIS-NG spectra and used
as a spectral diversity metric. It was observed that CHV increased with species numbers showing
a positive correlation between species and spectral diversity. Additionally, it was observed that
the abundant species show higher spectral diversity over species with lesser spread, provisionally
revealing their functional diversity. This could be one of the many reasons for their expansive reach
through adaptation to local conditions. Higher rainfall at MTR was shown to have a positive impact
on species and spectral diversity as compared to SWS and VNP. Redundancy analysis explained
13–24% of the variance in abundant species distribution because of climatic gradient. Trends in
spectral CHVs observed across the three sites of this study indicate that species assemblages may have
strong local controls, and the patterns of co-occurrence are largely aligned along climatic gradient.
Observed changes in species distribution and diversity metrics over climatic gradient can help in
assessing these forests’ responses to the projected dynamics of rainfall and temperature in the future.

Keywords: species diversity; spectral diversity; convex hull volume; AVIRIS-NG; tropical forests;
ISRO–NASA campaign; climatic gradient

1. Introduction

Forest communities across the globe are constantly affected by a combination of biotic and abiotic
factors that impact their composition, structure, and function [1]. Understanding how regional and
global environmental forcing act as drivers towards impacting species abundances [2], and how
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different facets of biodiversity affect ecosystem functioning at different scales [3], are critical aspects
of research. Owing to a longer lifespan, trees have the ability to adapt to spatio-temporal variations
in environmental conditions [4], and also play a vital role in determining ecosystem structure and
function by large contributions to biomass [5]. These are more important for tropical forests with larger
diversity, and the understanding of mechanisms determining ecosystem structure and distributions is
significantly lacking [6,7].

Field-based biodiversity estimates are generally used to measure species richness and
abundance [8]. Trait variability within a species may not be reliably measured with field-based
studies [9] as it requires collecting large samples of data over wider regions. Linking field and remote
sensing-based metrics can help in getting better estimates of trait variability and species distribution,
and ecological and remote sensing communities are making efforts to blend these disparate areas of
research towards more effective biodiversity assessment [10]. It is reported that intra- and inter-specific
variations in plant functional traits are normally reflective of environmental variation across the species’
ranges of occurrence, and are indirectly observable as emergent patterns of spatial variations in trait
characteristics [11]. Wide area mapping with remote sensing [12] provides a divergent approach over
field methods of sampling to monitor biodiversity. Hill et al. [13] highlighted the possible application
of hyperspectral remote sensing towards monitoring forest functional diversity by comparing spectral
variability. Proximal and airborne hyperspectral sensors, such as the Airborne Visible InfraRed Imaging
Spectrometer (AVIRIS and AVIRIS—Next Generation (AVIRIS-NG)) have shown immense promise and
potential in exploring inter- and intra-species variability and divergence in trait characteristics [14–16].
However, there are limited empirical investigations, thereby restricting our ability to find general
mechanisms that link traits and competition in the main functional realms of the plant world [17].

It has been observed that measures of variation in the spectral characteristics of a remotely sensed
image are related to species richness [18,19]. The observed spectral heterogeneity can act as a proxy
of species diversity and has been linked to variability in plant community assemblages [20] and
environmental gradients [21]. As an example, Dahlin [22] has demonstrated that the convex hull
volume (CHV) computed from the first three principal components of AVIRIS-NG spectral data can be
used to reveal key insights on the relative importance of drivers of community assembly, even in the
absence of additional data about plant functional traits. So, CHV not only reduces the dimensionality
of spectral data through principal component analysis (PCA), but can also be used as a spectral
diversity metric [23]. Wang and Gamon [10] observed that spectral diversity metrics can provide cues
about the “dimensionality” of spectral data of a target area, and future work on these lines can bring
clarity about regulations linked to the “plant phylogenetic–functional–spectral relationship” that may
enhance understanding about the remote sensing of biodiversity. A myriad of factors impact plant
growth, response, and performance, and reports indicate that variability in environmental settings,
such as grazing, climate change [24], climatic gradient [25], and precipitation gradient [26], impact
plant functional trait responses. The present study is an attempt to check how well spectral diversity,
measured as CHV, can infer tropical tree species response to climate variability, such as different rainfall
patterns and atmospheric temperature differences.

Some earlier studies presented a correlation between spectral diversity observed through remote
sensing to species diversity and species response to climatic change in Amazonian forests [27] and
North American biomes [28]. However, such studies are limited in the tropics and more so in regions
with high heterogeneity and immense anthropogenic pressure. The tropics support most of the global
diversity, and climate change has a significant impact on these diverse systems [1]. Climate impacted
changes in the tree functional compositions of forests magnify the feedback of forest biomass [3].
Linking trait data to climate inputs can help in understanding how biodiversity and the associated
functioning of the species are affected by climate change [29]. Other reports [30–32] show that tropical
forests are directly affected by rainfall patterns. The forest ecosystems of India are not well studied
using remote sensing data in spite of being diverse and vast [33], with a large number of areas
listed as UN biodiversity hotspots [33]. Some earlier studies around the Godavari basin [34] and the
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Eastern Ghats [35] reported that multispectral data can be utilized in mapping forest cover features.
Gairola et al. [36] presented a review of methodologies for ecological studies and suggested that high
resolution remote sensing data are better suited to study the Indian Himalayan region due to the high
diversity and heterogeneity of the landscape. Wieczynski et al. [29] advocated for the inclusion of
trait and abundance data of the forest cover of underrepresented regions of the world to have a better
understanding of the effect of climate change on the overall aboveground biomass content. To address
this ecologically important aspect, the abundant species mapping of forest cover using remote sensing
becomes an important target to achieve. The tropical forests of India are exposed to highly variable
rainfall dynamics and the corresponding changes in their structure, function, and distribution have
not been fully studied. This study aims at filling some of the gaps in our understanding about Indian
forests and the changes happening in the diversity and distribution of tree species in the context of
climate variability.

Trees with bigger canopy sizes can be easily distinguished with the spatial resolution of airborne
remote sensing sensors [10]. AVIRIS-NG data, over some of the forest cover of India, were used to map
dominant species and diversity metrics at a community level [37]. This study builds on earlier work
and explores the possibility of linking field observations and diversity metrics derived from remote
sensing data to assess the variability due to rainfall and temperature (henceforth referred to as climatic
gradient). To this end, we investigate the following questions:

• How species diversity correlates with spectral diversity calculated from remote sensing;
• Can measured CHVs assist in elucidating the intra- and inter-species variability of abundant

species;
• To what extent climatic gradient impacts the distribution of species and the associated

spectral diversity.

2. Materials and Methods

2.1. Site Description

Three forest sites in India, Shoolpaneshwar Wildlife Sanctuary (SWS), Vansda National Park
(VNP) in Gujarat, and Mudumalai Tiger Reserve (MTR) in Tamil Nadu, were selected for this study
(Figure 1). The three sites are designated as protected areas and experience highly variable rainfall
patterns, along with increasing anthropogenic pressure (Table 1). Mean annual rainfall is different
in the three zones, with the lowest record at SWS and the highest at MTR. A temperature gradient is
also observed, with MTR recording the lowest mean values and the highest being at SWS, which is an
opposite trend to that of rainfall (Table S1). Such variation in climate is expected to affect the species
distribution, diversity, and abundance, which is of interest in this work. Different steps carried out in
the study are schematically represented in Figure 2.

Table 1. Physiographic characters and decadal means of rainfall and temperature data of the three sites.

Sites
Location Area

(km2)
Average

Elevation (m)
Rainfall

(mm)
Temperature

(◦C)Lat (◦N) Lon (◦E)

SWS 21.88 73.65 607.70 287 1210.66 27.00
VNP 20.82 73.44 23.99 169 1557.72 26.52
MTR 11.73 76.46 688.00 1233 1731.88 24.84
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Figure 1. Map showing the location of the three study sites, Shoolpaneshwar Wildlife Sanctuary (SWS),
Vansda National Park (VNP), and Mudumalai Tiger Reserve (MTR). The color gradient indicates
decadal mean rainfall across the country.

Figure 2. Schematic view of the workflow carried out.
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2.2. Vegetation Characteristics

The forests of all three sites support tree species with diverse physiognomies and phenological
characteristics. The tree species of SWS and VNP are largely deciduous with a few evergreens. MTR
also supports both deciduous and evergreens, with a larger proportion of evergreen species (~25%).
Plantations of teak and bamboo at SWS and VNP, and teak, bamboo, eucalyptus, and silver oak at
MTR constitute sizable proportions of tree cover. Amongst the tree species recorded during field study
at each site, some of the species showed widespread distribution (referred as abundant species), while
others are sparse (referred to as lesser distributed species). Table S2 illustrates common tree species
found in the three sites.

2.3. Field Data Collection

Initial field surveys were conducted ± 5 days from the image acquisition dates (Table 2) for
each site. Field work includes the marking and registering of field plots, recording the phenological
phases of tree species, and the collection of foliar samples from representative individuals of each
species observed in these plots. Sites were revisited in subsequent months to perform detailed species
inventories. Registered field plots and additional ones were laid across the length and width of the
flight path at the three sites over accessible terrain (Figure 3). During the initial field visits, it was
noticed that individual trees of some of the commonly occurring species were spread over > 4 m, and
the expected spatial resolution from the flight campaign was 4–8 m. Keeping in view of the observed
distribution of tree species in the field, and the suggestive spatial resolution of the sensor, quadrats of 8
m × 8 m were randomly laid down across trails of forest cover, some away from the trail (nearly 200 at
each site). In addition to these, three to five polygons of varying sizes (500–750 m2) were laid out. The
number of quadrats at each site, and the size of the polygons considered, was primarily based on the
observed vegetation characteristics and remarks of the local forest officials. All trees of more than 4
cm in diameter at breast height (dbh), falling within each quadrat and polygon, were counted. Tree
species diversity, stem density, height, and canopy spread were measured and trees were identified to
the species level with the help of field manuals, consultations with local residents, and forest service
personnel. Tree crowns and field plots were geolocated using a handheld global positioning system
(GPS) unit (Garmin Ltd. Olathe KS, USA) with < 3 m accuracy. The GPS readings were noted after
three minutes of position averaging for better accuracy. Qualitative observations showed that the
progression and duration of the senescent phase differed amongst species and across the three sites.
The proportion of leaves fallen from the canopy also differed between species and the three sites. Few
species were fully foliated with greener crowns.

Table 2. Summary of Airborne Visible InfraRed Imaging Spectrometer—Next Generation (AVIRIS-NG)
image data.

Sites Flight
Elevation (km)

Image
Acquisition

Date

Image
Acquisition Time

(GMT +5:30)

Flight
Footprint

Length (km)
Cloud Cover

MTR 4.83 05-Jan-2016 10:62:47–12:81:39 42.22 Clear to hazy
SWS 4.15 08-Feb-2016 12:58:43–13:61:58 44.85 Clear
VNP 4.16 09-Feb-2016 11:02:17–11:57:46 13.32 Clear
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Figure 3. Sampled quadrats (yellow) and polygons (blue) established during field study. (a) SWS,
(b) VNP, and (c) MTR.

2.4. Climatic Data

Following Diaz et al. [25], variability in the measurements of temperature and rainfall together are
referred to as climatic gradient. We assessed two different datasets for sourcing temperature and rainfall
data on annual, decadal, and long-term timescales from European ReAnalysis-Interim (ERA-Interim)
and Climate Hazards Infrared Precipitation with Station data (CHIRPS). Data were projected to a
spatial resolution of 5.12 km (0.05◦) for CHIRPS data and 12.5 km (0.125◦) for ERA-Interim data and
extracted for all sampling locations at the three sites. The meteorological data from 1984–2016 indicated
a spatial rainfall gradient from MTR (wetter) to VNP to SWS (lesser wetter, more arid). Annual, decadal,
and long-term mean minimum and maximum temperatures had with minor variations at the three
sites. Decadal mean rainfall and temperature at MTR are ~40% higher and ~4% lower compared to
SWS (Table S1).

2.5. AVIRIS-NG Data Acquisition and Processing

As part of a joint campaign between the Indian Space Research Organization (ISRO) and the
National Aeronautics and Space Administration (NASA, USA), the AVIRIS-NG sensor was flown
over a large number of sites in India between October 2015 and February 2016. AVIRIS-NG acquired
data at wavelengths from 380 to 2510 nm with 5 nm spectral sampling. The sensor was flown on a
King Air B200 at a 4000–8000 m elevation, with resulting pixel sizes of 4–8 m, depending on flight
altitude. The spatial resolution of the AVIRIS-NG data of the three sites considered in this study
was 4 m. The instrument measurements were calibrated and atmospherically corrected following
Thompson et al. [38]. Airborne imaging spectroscopy data were subject to significant sun–sensor
surface illumination effects due to both topography and anisotropic reflectance by vegetation. These
were corrected following methods in Soenen et al. [39] and Wanner et al. [40] (code available at
https://github.com/EnSpec/HyTools-sandbox) resulting in topographically and bidirectional reflectance

https://github.com/EnSpec/HyTools-sandbox
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distribution function (BRDF)-corrected images. Details of the AVIRIS-NG image data acquisition are
given in Table 2.

The topographically and BRDF-corrected data were mosaicked into contiguous blocks for all
sites. Noisy bands (<411 nm) and water absorptions bands (1348–1428, 1778–1949 nm) were removed,
resulting in final image spectral subsets comprising a total of 366 usable bands (from a total of 425). The
normalized difference vegetation index (NDVI) of each image was used primarily to generate non-forest
masks with thresholds of 0.4 (SWS and VNP) and 0.6 (MTR) based on visual observations. The difference
in NDVI threshold values is because of the observed variability in canopy greenness and senescent
phases at the time of the flight pass over the three sites. To lower the overall brightness variation, a
continuum removal (CR) transformation was also applied (as in [22]). These CR-transformed data
were considered for further processing.

NDVI =
ρ860 − ρ650

ρ860 + ρ650
(1)

2.6. Data Analysis

2.6.1. Field Data Analysis

The data of the quadrats laid down in field plots were pooled (10 quadrats in each field plot),
resulting in 20 field plots for SWS, 19 for VNP, and 21 for MTR. Abundance data of each site at the laid
down quadrats and polygons indicated that ~20 species are abundant at each site, covering 75–80%
of the forest of each site (henceforth referred to as abundant species). Species with lesser occupancy
of each site are together referred to as lesser distributed species. The BiodiversityR package [41] has
been used for analyses of field data. Kindt’s exact method [41] was used for plotting tree species area
accumulation curves using 1000 permutations for each site. These curves were developed for all the
recorded species and the abundant species of each site. We tested different methods to obtain estimates
of the number of tree species for each site (first- and second-order Jackknife, Chao, and Bootstrap), with
an expectation that the tree species richness estimates of a site would be better characterized by using a
range than a single one. Bray–Curtis dissimilarity graphs were developed to assess the dissimilarity in
the composition of any pair of field plots of a site. Estimated values for the Bray–Curtis dissimilarity
distance ranged between 0 and 1 depending on the 100% similarity (0) or complete dissimilarity (1) of
existing species in a pair of plots. Akin to species–area curves, Bray-Curtis graphs were developed for
all the recorded species and abundant species.

2.6.2. Abundant Species Mapping with the Support Vector Machine (SVM) Model

A spectral library of crown-level reflectance spectra for the abundant tree species of each site
(20 species at SWS and VNP, 19 in MTR) was developed for all the three sites using field records. At
many points, we could obtain abundant species having a canopy spread of > 5m or as pure patches
with > 15 m spread (Table 3). These locations were utilized to extract the canopy spectra of each
abundant species. Data from the canopy spectral library were used to develop species maps of each
site. The classification of the images to map the abundant species required an abundant species map of
each site to assess differences, if any, in these tree species distributions, and spectral diversity as CHVs,
across the climatic gradient. Minimum noise fraction (MNF) transformation [42] was applied to the
CR-transformed spectral dataset for feature reduction. A supervised classification of the abundant
species of each site was performed using the support vector machine (SVM) method [43] using the
MNF-transformed canopy spectra of each species. The parameters of the SVM model are optimized
using three-fold cross-validation based on the available training data. After visual screening, the first
16 bands (for SWS and MTR) and the first 17 bands (for VNP) of MNF were selected as inputs for the
SVM model to develop an abundant species map of the three sites. The field data were separated as
training and testing data with a 60:40 ratio. For the SWS and VNP sites, additional field visits were
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carried out to validate randomly selected locations from the species map for an additional level of
verification of classification accuracy.

Table 3. Measured biophysical parameters of the tree species at each site.

Sites
Height (m) Canopy Area (m2)

Mean (± SD) Min Max Mean (± SD) Min Max

SWS 12.48 ± 4.80 2.60 25.80 55.91 ± 65.27 2.41 613.80
VNP 18.31 ± 6.30 3.50 35.00 71.89 ± 70.44 2.55 446.93
MTR 22.90 ± 7.56 6.00 39.00 75.45 ± 74.66 2.41 638.20

2.6.3. Spectral Diversity Area Curves and Metrics

Spectral diversity metrics were generated both from NDVI masked standalone images and from
the abundant species maps of each site. Three different ways were followed to assess the applicability
of spectral diversity metrics towards gauging tree species diversity. In the first approach, to understand
the applicability of hyperspectral data in measuring diversity sans field study inputs, 175 squares
(10 × 10 pixels) per site were randomly extracted from an NDVI masked image of each site. The
CR-transformed spectral data of the extracted squares of each site were analyzed based on Dahlin [22].
Principal component analysis (PCA) was performed to reduce the dimensionality of the data with the
resulting components accounting for most of the total variance. The first three principal components
accounted for 94% of the variation in the recorded spectral data. Two spectral diversity measures,
the sum of variance of the first three PCs and the convex hull volume value, were calculated [22].
The CHV quantifies the volume of the trait space occupied by species in a community regardless of
the shape of the distribution and represents the multivariate equivalent of range [44]. The sum of
variance of the first three PCs and CHV values derived from spectral data of this study were empirically
considered as proxies towards showcasing the tree species functional trait diversity of each site, as
noted in Dahlin [22]. These data were also used to verify whether the spectral diversity metric was
altered in lieu of the changes in species diversity expected across the forest cover of each site.

In the second approach, to find out the relation between the field-measured species diversity of
the plots and the spectral diversity of the remote sensing measurements over the same, the spectral
data of areas falling within Ground Control Points (GCPs) locations of the plots (20 of SWS, 19 of VNP,
and 21 of MTR) of each site were extracted and CHV values from the CR-transformed spectral data of
each plot were calculated and used to make a moving average-based spectral diversity area curve.
This curve represented the spectral diversity of the species recorded during field study.

In the third approach, a number of plots of similar sizes, coinciding with the field study, were
selected from the abundant species maps of each site, spectral data were extracted, and CHVs were
calculated. The patterns identified in this approach were considered as abundant species spectral
diversity–area curves, as the spectral data were based on the derived classification map indicating
abundant species in the regions of interest. To analyze the one-to-one relationship between the number
of abundant species and cumulative spectral diversity, equal numbers of canopy spectra (n = 10) of
each abundant species were successively added and CHVs were calculated. A linear regression line
was drawn between species numbers and CHVs. In another way, equal sized plots (0.5 ha, n = 5)
were chosen from subsets of abundant species maps with a varied number of species. The CHVs of
extracted spectral data were calculated to observe whether the value changed with species number.

2.6.4. Intra- and Inter-Species Variability, CHV Values

The abundant species maps derived from the remote sensing data were used to test the strength
of spectral data as proxies for functional trait diversity in explaining the impact of climatic gradient on
tree inter- and intra-species variability. Fifty spectra of each of the common abundant species (five tree
species) of three sites were extracted from each of the CHIRPS 0.05◦ grid cells based on the abundant
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species maps. The CHVs of the extracted spectral data of each of the common abundant species falling
in CHIRPS grid cells at each site were calculated and plotted against CHIRPS decadal mean rainfall
data. The expectation was that the CHV values of each of these five common tree species did not vary
significantly without being impacted by the observed climatic gradient.

2.6.5. Redundancy Analysis

To look at the impact of climatic gradient on the tree species diversity, distribution, and spectral
diversity of the three sites, redundancy analysis (RDA) was performed. RDA is a constrained ordination
technique that directly relates the relative abundance of species across environmental gradients [41] and
allows for establishing relationships between observed gradient of abundances vis-à-vis environmental
drivers considered here as a climatic (rainfall–temperature) gradient. Analyses were performed using
field plot data, the CHVs of plots for all recorded species, and abundant species (response variables)
against recorded climatic gradient (explanatory variable).

3. Results

3.1. Tree Species Diversity, Distribution

A total of 123 tree species were recorded during field study at the three sites, of which 31 species
were found to be common at all three sites. The recorded tree species richness was similar at VNP and
SWS (68 and 70, respectively) but relatively higher at MTR (80 species). Amongst different the methods
employed to estimate the species richness of each site, the Bootstrap method showed relatively closer
values to the observed ones, as shown in Table S3. Estimates also showed a greater richness of species
at MTR over the other two sites. A list of the common species at the three sites and the abundant
species at each site are given in Tables S2 and S4. Species abundance data obtained from field plots was
corroborated with observed distributions in larger polygons (Figure 2) laid down during field study,
and were found to be matching. Log-based rank abundance curves of the abundant tree species, and
all the recorded species of each site, showed variable width and similar slopes, indicating variability in
the occurrence of these species (Figure S1). Lesser distributed species were in the lower part of the
abundance curve, with many having the same rank. Site specificity was evident in the recorded tree
species diversity, and the distribution of tree species, across the rainfall gradient. The most abundant
and common tree species across three sites were Ficus racemosa, Tectona grandis, Terminalia bellirica, and
Terminalia tomentosa. Bamboo (Dendrocalamus strictus at SWS and VNP and Bambusa bambos at MTR)
was the fifth most common abundant species at the three sites. The relative distribution of common
abundant species and their hierarchy, as seen in the abundant species maps, was not the same at the
three sites (Figure 4). The distribution of T. grandis increased with an increase in rainfall, while bamboo
species showed a reverse trend. T. bellirica showed lesser spread at VNP, while T. tomentosa showed
higher spread, indicating intra-genus inconsistency in spread.

The phenology of deciduous and evergreen tree species showed diverse phases at the three sites
at the time of the AVIRIS-NG flight pass. Differences within deciduous species were also noticed.
Deciduous species at MTR appeared greener compared to the other two sites. The recorded biophysical
parameters of trees, such as height and canopy spread, were higher at MTR compared to the other two
sites. Marked trees with larger dimensions (Table 3), and the recorded clusters of some of the species
during field study, made it possible to develop a canopy spectral library of abundant species. This
effectively assisted in developing abundant species maps of each site with better accuracy.
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Figure 4. Proportional distribution of five common abundant species across the three sites from
abundant species maps.

3.2. Abundant Species Maps

The support vector machine (SVM) classification model for the abundant species of each site
performed well, with accuracies of 80.15%, 76.32%, and 78.54% and kappa 0.79, 0.75, and 0.76 for SWS,
VNP, and MTR, respectively, as shown in Tables S5–S8. Accuracy measures were cross-verified with
receiver operating characteristic (ROC) curves for each species, and the area under the curve (AUC) was
calculated (Figure S2 and Table S9). The mean AUC value for each site was 0.99, 0.98, and 0.94 for SWS,
VNP, and MTR, respectively, showing the subtlety and specificity of the accuracies of the developed
species maps. These maps were used to inquire about how spectral diversity metrics derived from
remote sensing data can reveal species diversity and distribution. Figure 5 shows how the abundant
species were spread at each site. The spread of common species was distinctive and site-specific.
Spectral diversity, calculated as CHV, increased with species number and their relationship showed
high R2 values (Figure 6), indicating that metrics of spectral data can be used/tested as a proxy for
species diversity inputs for unexplored and relatively inaccessible forest cover. The CHVs of spectral
data obtained from plots of 0.5 ha size selected from abundant species maps showing different species
numbers increased with an increase in species numbers, as shown in Figure 6. Species specific to MTR,
such as C. tetraandra and F. tsjahela, showed higher CHVs. Seed-propagated abundant species showed
relatively higher CHV values compared to vegetation-propagated ones, as can be observed in Table
S10. This supports the common understanding that diversity is usually greater in seed-propagated
species compared to species showing vegetative propagation.
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Figure 5. RGB image (R = 862 nm, G = 652 nm, B = 552 nm) and zoomed in subset of abundant species
classification maps of the three sites (a,b: SWS, c,d: VNP, e,f: MTR). The abundant species color code is
the same as for Figures 4 and 5. The names of common abundant species at the three sites are marked
in red-colored font.
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Figure 6. Convex Hull Volumes CHVs of 0.5 ha plots (n = 5) selected from abundant species maps
of the three sites (A: SWS, B: VNP, C: MTR) with different numbers of occupant species; CHV values
are: a = 2.41 (n = 4), b = 6.05 (n = 12) for SWS, a = 3.31 (n = 5), b = 5.65 (n = 12) for VNP, and a = 1.86
(n = 4), b = 6.1 (n = 11) for MTR; Regression lines are of cumulative CHVs and the number of abundant
species. (a) represents 0.5 ha plot with lower diversity (n = 4 or 5); (b) represents 0.5 ha plot with higher
diversity (n = 11 or 12); (c) Regression lines of cumulative CHVs.

3.3. Diversity–Area Curves

Species diversity–area curves revealed a higher diversity at MTR compared to SWS (Figure 7).
Spectral diversity–area curves developed for the three sites by following three different approaches
showed distinguishing patterns. Firstly, to test the approach given in Dahlin [22] for these lesser
studied sites, the sum of variance of the first three PCs and CHV were used to compare spectral
diversity within and across the three sites. This approach revealed the utility of remote sensing data
in measuring biodiversity variables sans field inputs. The results of this approach account for the
spectral diversity of standalone tree cover diversity in the forests of each site. Spectral diversity–area
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curves of the summed variance of 175 plots showed an increase in variance over the observed climatic
gradient, with the lowest value at SWS and the highest at MTR (Figure 7). The CHVs of 175 plots at
MTR were nearly twice the value of SWS (Table S11), indicating greater spectral diversity over the
climatic gradient. Spectral diversity–area curves from the other two approaches also showed that
spectral diversity increased over the observed climatic gradient. Abundant species at each site showed
higher spectral diversity compared to the recorded tree species (Figure 7).

Figure 7. Diversity area curves (A: SWS, B: VNP, C: MTR). Spectral diversity–area curves for the
summed variance of 175 plots (a–c); Species diversity–area curves (d–f); Cumulative CHVs and area
curves (g–i).

Heat maps of Bray–Curtis dissimilarity graphs between plots developed for all the recorded
species and abundant species showed differences in the values of species and spectral diversity (as
CHVs) metrics. For the SWS and VNP sites, values measured from the spectral diversity metrics were
higher compared to the ones coming from field metrics. At MTR, the values were the same for both
field and spectral data metrics (Figure 8 and Figure S3).
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Figure 8. Heatmap of Bray–Curtis dissimilarity graphs of abundant species. The mean dissimilarity
value of species abundance (blue) and that of spectral diversity as CHVs (yellow) are (a) 0.64 and (d)
0.81 for SWS, (b) 0.56 and (e) 0.68 for VNP, and (c) 0.81 and (f) 0.81 for MTR.

3.4. Intra- and Inter-Species Spectral Diversity, Rainfall Gradient

The abundant species maps developed from AVIRIS-NG datasets were found to be very useful in
finding the intra- and inter-spectral variability of species spread over ~80% of cover at all three sites.
The CHV values of the sets of 50 spectra of each common abundant species from each of the 0.05◦

CHIRPS grid cells across rainfall gradient showed that rainfall has a positive effect on intra-species CHV
values, indicating a dynamic range in their functional diversity. CHVs increased over rainfall gradient
consistently across the sites (R2 0.86–0.98). Across species, CHV variability was relatively narrow for T.
grandis (Figure 9) and substantially higher for F. racemosa and bamboo species. Inter-species variability
was found to be relatively higher at MTR (Figure S4).

Figure 9. Common abundant species intra-species spectral variability (as seen in CHVs) across the
climatic gradient of the three sites. (n = 5 in a, n = 7 in b).
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3.5. Redundancy Analysis

Redundancy analysis was performed using climatic data as explanatory variables and species
abundance and CHV values as response variables. RDA plots revealed that species are broadly spread
across the climatic gradient. The climatic gradient explained 12–17% of the variance in the species
and spectral diversity distribution of all recorded species at the three sites (Figure S5). The Spectral
diversity metrics were observed to be more sensitive compared to the species abundance metrics by
showing higher explained variance towards the climatic gradient. The field and spectral diversity
metrics of the abundant species as response variables showed higher explained variance, as shown in
Figure 10, indicating that 13–24% of the variance in the distribution of the species by site matrix was
because of the climatic gradient.

Figure 10. Redundancy analysis output of abundant species distribution values (left) and spectral
diversity as CHVs (right) (considered as response variables) with climatic gradient (explanatory
variable). The variance explained for species distribution ranged between 13–24%, and for spectral
diversity as CHVs, varied between 14–23%. (a) SWS, (b) VNP, and (c) MTR.

3.6. Caveats

The level of uncertainty in spectral diversity measurements can be impacted by the classification
accuracy of species maps and the available number of spectra for lesser distributed species. Our results
indicate that the selected field plots numbers were reasonable for these sites. Other regions with
variable species and spectral diversity metrics may require different sampling scales for correlating
with the measured inputs.
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4. Discussion

4.1. Tree Species Diversity Metrics

The present study focuses on measuring the tree diversity of three sites of a megadiverse tropical
country, India, using field-based and remote sensing techniques, which is of importance to forest
managers and conservationists [45]. Measured dissimilarity indices indicated that spectral diversity
metrics can provide a better understanding of the diversity compared to sampling-based field study
metrics. Amongst the tree species recorded (70–80 species), field-based metrics revealed that around
a quarter of them are seen as abundant, and this pattern is referred to as an established attribute of
communities [46]. Similar to previous findings [47,48], of the 31 common species of the three sites,
11 were found to co-occur as abundant species at MTR, 14 at VNP, and 15 at SWS, showing site- and
climatic gradient-specific distributions, resulting in disparate inter-specific interactions. The differences
in species composition, seen here across climatic gradient, are congruent to the studies reported
earlier across rainfall gradients and drought [49,50]. A few of the species, such as Gmelina arborea,
showed sparse distribution at all the three sites, indicating that some of the species inherently show
restricted spread, irrespective of the observed climatic variability. These observed shifts in community
composition can eventually determine the growth rates and productivity [3] of the three sites, which
have a long-term impact on prevailing forest structure and function. The trends in spectral CHVs
observed across the three sites of this study indicate that species assemblages may have strong local
controls, and the corresponding patterns of co-occurrence are largely aligned along major climatic
gradient. As observed earlier in [51], ecological and remote sensing products together, as reported in
this study, can improve the verity of ecological models for effective forest management.

The congruence observed in the field- and spectra-based diversity metrics and the increase in
the measured CHVs proportionate to abundant species per unit area (Figure 4) affirm the utility of
spectral diversity metrics in measuring biodiversity. A similar association was reported between
species richness and spectral diversity [52]. The higher rainfall observed at MTR resulted in a larger
number of recorded tree species (by 15%), and significantly higher spectral diversity, as observed in
the CHVs of abundant species (nearly twice that of the readings at SWS) compared to the other two
sites. Spectral diversity positively increased across the climatic gradient, affirming the positive impact
of rainfall on diversity. The flattening of the species–area curves appeared first for abundant species
and later for all the recorded species. This pattern was reversed for spectral diversity–area curves,
indicating that greater intra-species variability, as seen in the abundant species of this study, may have
a surprise impact on biodiversity estimates coming from remote sensing [16], and this is to be factored
in while projecting biodiversity estimates of the tropics using remote sensing. Higher intra-species
variability amongst the abundant species of the three sites, as seen from CHVs, could be one of the
many reasons for their expansive reach at the three sites. As mentioned by Avolio et al. [46], our study
makes an effort in estimating abundant species distribution over larger spatial scales through remote
sensing and conveys functional diversity through spectral diversity metrics, which may not be visible
in traditional field-based studies.

Random plots of each site, selected from the forest cover maps of the three sites, showed
different spectral diversity values (Figure 7) from the ones reported by Dahlin (whose study area
was forests sof southwestern Michigan, USA) [22], demonstrating how effectively the spectral data of
AVIRIS-NG correlates with tree species diversity observed in the tropical cover of this study. Similar
to the observation of Wang and Gamon [10], our work supports and strengthens the efficacy of high
resolution remote sensing data in the assessment of biodiversity variables of forest cover through
spectral diversity metrics.

4.2. Abundant Species Maps

The abundant species maps of the three sites showed a higher accuracy and matching similarity
with field-observed data. The corroboration of the developed species maps with additional field visits
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showed a > 85% match. Classification accuracy is mostly dependent on intra- and inter-species spectral
variability [53,54]. This is evident in the spectra of abundant species, which resulted in developing
classification maps showing > 75% accuracy in the classification of ~20 tropical tree species spread over
~80% of the forest cover of the three sites, revealing the advantage of AVIRIS-NG in tree enumeration
studies over expansive regions. As reported earlier, the distribution and spread of abundant species
canopies [55] and the quality of extracted endmember spectra [10] made it possible to have abundant
species maps of the three sites with better accuracy. Earlier, Ferreira et al. [54] reported 81–84% user’s
accuracy for eight tree species of tropical deciduous forests using hyperspectral data with a 1-m spatial
resolution. With seven individual tree species and an additional class of broadleaved ones in forest
cover in Poland, Modzelewska et al. [56] reported 77% accuracy in classification using 5-m resolution
hyperspectral data. The user’s accuracy values of this study (83.54–86.70%) for ~20 tropical tree species
with 4-m spatial resolution data are reasonable. The distribution maps of abundant species developed
here by using high resolution sensors provide valuable inputs for forest ecological studies [57] and
also for forest management.

4.3. Intra- and Inter-Species Spectral Variability

Jetz et al. [58] indicated that spectra reveal biochemical and structural aspects of vegetation,
assisting in tracking plant functional diversity remotely. Schweiger et al. [14] underlined the importance
of plant spectral diversity in predicting the ecosystem functionality of Cedar Creek. These reports
broadly support the foundation of this study. Though transformations, such as PCA, do not directly
represent measured traits, the CHV metric calculated here indirectly expresses the multivariate range
of trait values captured through the variability of spectra collected via the high-fidelity AVIRIS-NG
instrument, as in [44]. Patterns of intra- and inter-species variability in CHVs across the three sites
(Table S10) help show the variability in canopy traits and simultaneously help elucidate the variations
in traits along a major climatic gradient. The CHVs of species with restricted distributions are relatively
lower when compared to the abundant species, indicating a high degree of trait conservatism.

Albert et al. [59] emphasized considering intra-specific variability in plant ecology, and
Siefert et al. [60] reported that 25% of trait variation in a community is because of intra-species
variability. The observed intra-species variability of abundant species in measured CHVs, and on
species assemblages over the three sites, is in sync with these reports. Functional variability can be
looked at from an individual perspective or at the species-based [61] and community level. These are
evident from the consistent increase in the CHVs of the common abundant species across the climatic
gradient over the three sites (Figure 9). Poorter et al. [61] reported 44% trait variation within the most
abundant species. The amplitudes of intra-specific variability among abundant species, seen in this
study, are large. Additionally, the dynamics in CHV values are species-specific. Bolnick et al. [62]
suggested how intra-specific trait variation can modulate species abundance and interaction, impacting
community dynamics. Similar reasoning can be given for the observed dynamics of abundant species
distribution over the three sites of this study.

4.4. Climatic Gradient and Species Response

RDA, performed primarily as a constrained ordination technique, showed the impact of the
climatic gradient on the spread of tree species. The impact of the climatic gradient is evident in the
direction and spread of the arrows in the RDA plot (Figure 10), indicating a constrained response of
species spread towards environmental variables with high positive, negative, and near zero correlations.
Climatic gradient explained more variance about the abundant species distribution, revealing their
explicit response, with ~80% occupancy at each site. The explained variance increased from SWS to
VNP to MTR, showing positivity in the distribution dynamics of recorded tropical tree species over
the climatic gradient. The measured variance values went down for the RDA of all recorded species,
indicating that sensitivity towards climatic gradient could be different for abundant species compared
to others. Though the percentage of variation in species distribution, explained by the observed
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gradient, appears smaller at the lower end, values at the upper end can match with the ones given for
the three different factors of woody plants of the Panama Republic [63]. Though further confirmations
are needed, it is interesting to notice how the same common species place themselves in site-specific
community conformations in response to rainfall variability. Stavros et al. [64] raised the question, “do
diverse communities respond to climate change differently from simpler communities?”. The outputs
of the multivariate analysis of this study are indicative of a similar approach by the recorded species of
this study.

5. Conclusions

This study utilized a large field-sampled dataset over a climatic gradient to leverage imaging
spectroscopy data from the joint ISRO-NASA AVIRIS-NG India campaign to help generate an
understanding of the patterns of linkage between tree species field and spectral diversity metrics.
High resolution datasets worked effectively in developing abundant species maps, finding out intra-
and inter-species variability as CHVs within and over three sites in the tropics. Similar to the report
of [65], which mentioned that climate primarily drives the distribution of regional species, the climatic
gradient in this study was shown to impact the spread and dispersion of abundant tree species of
three sites differently, leading to site-specific strategic species assemblages. The response of two of the
important species, T. grandis and bamboo species, depict how well these species can tune their inherent
functional diversity towards climatic gradient. The findings of this study are relevant in providing
vital inputs to the management of these precious and vulnerable forest covers, and support the view
in [66] that an integrative approach of remote sensing and vital field data has huge potential in the
conservation of nature. The outputs of this study, coming from regions less represented in the global
database, can contribute to global models. Observed changes in species distribution and diversity
metrics over climatic gradient can help in assessing these forests’ responses to the projected dynamics
in rainfall over the coming decades.
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