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Abstract: We introduce a multiscale superpixel approach that leverages repeat-pass interferometric
coherence and sparse AGB estimates from a simulated spaceborne lidar in order to extend the
NISAR mission’s applicable range of aboveground biomass (AGB) in tropical forests. Airborne
and spaceborne L-band radar and full-waveform airborne lidar data are used to simulate the
NISAR and GEDI mission, respectively. In addition to UAVSAR data, we use spaceborne
ALOS-2/PALSAR-2 imagery with 14-day temporal baseline, which is comparable to NISAR’s 12-day
baseline. Our reference AGB maps are derived from the airborne LVIS data during the AfriSAR
campaign for three sites (Mondah, Ogooue, and Lope). Each tropical site has mean AGB of at
least 125 Mg/ha in addition to areas with AGB exceeding 700 Mg/ha. Spatially sampling from
these LVIS-derived AGB reference maps, we approximate GEDI AGB estimates. To evaluate our
methodology, we perform several different analyses. First, we partition each study site into low
(<100 Mg/ha) and high (>100 Mg/ha) AGB areas, in conformity with the NISAR mission requirement
to provide AGB estimates for forests between 0 and 100 Mg/ha with a RMSE below 20 Mg/ha. In the
low AGB areas, this RMSE requirement is satisfied in Lope and Mondah and it fell short of the
requirement in Ogooue by less 3 Mg/ha with UAVSAR and 6 Mg/ha with PALSAR-2. We note that
our maps have finer spatial resolution (50 m) than NISAR requires (1 hectare). In the high AGB
areas, the normalized RMSE increases to 51% (i.e., <90 Mg/ha), but with negligible bias for all three
sites. Second, we train a single model to estimate AGB across both high and low AGB regimes
simultaneously and obtain a normalized RMSE that is <60% (or <100 Mg/ha). Lastly, we show the
use of both (a) multiscale superpixels and (b) interferometric coherence significantly improves the
accuracy of the AGB estimates. The InSAR coherence improved the RMSE by approximately 8% at
Mondah with both sensors, lowering the RMSE from 59 Mg/ha to 47.4 Mg/h with UAVSAR and
from 57.1 Mg/ha to 46 Mg/ha. This work illustrates one of the numerous synergistic relationships
between the spaceborne lidars, such as GEDI, with L-band SAR, such as PALSAR-2 and NISAR, in
order to produce robust regional AGB in high biomass tropical regions.

Keywords: NISAR; GEDI; ICESat-2; L-band SAR; ALOS-2/PALSAR-2; microwave remote sensing;
AGB estimation; AGB; data fusion; Gabon
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1. Introduction

The sequestration of atmospheric carbon storage as Above Ground Biomass (AGB) is an important
mitigating factor of the warming climate due to anthropogenic CO; [1,2]. Accurate, large-scale remote
sensing of forests to monitor our global AGB stock is required for climate models and carbon policy [2,3].
L-band SAR is a powerful tool for monitoring Earth’s AGB, particularly in lower biomass ecosystems,
such as woodlands [3-5]. Techniques that are based on L-band backscatter alone suffer signal saturation
at approximately 100-150 Mg /ha [6-8] and are impeded by environmental factors affecting vegetation’s
dielectric properties [7,9]. While new Polarimetric INSAR techniques, such as Random Volume over
Ground [10,11] and Random Motion over Ground [12,13], promise to improve the characterization
of forest structure and AGB in the future, there is currently no spaceborne instrument that is capable
of providing required non-zero interferometric baseline measurements for these measurements. In
anticipation of the upcoming NASA-ISRO SAR Mission (NISAR) mission, which is planned for
launch in 2022, we seek to extend the capabilities of L-band products to estimate AGB across a larger
AGB range, in particular dense tropical environments [14]. The NISAR science requirement is to
estimate AGB within 20 Mg/ha RMSE with a spatial resolution of 1 ha for forest below 100 Mg/ha [6].
Although NISAR is an interferometric mission, albeit with zero-baseline repeat-pass orbit, current
NISAR algorithms are based solely on the use of radar backscatter [6]. Here, we propose and evaluate
the use of repeat-pass interferometric coherence to improve the estimation of AGB and extend the
range of applicability beyond 100 Mg/ha. NISAR will operate in repeat-pass interferometric mode
throughout its lifetime, monitoring surface deformation that results from earthquakes, volcanic activity,
and other geologic and glacial processes. NISAR will repeat its orbit within 350 m to observe changes
in phase that result from surface displacement rather than elevation or volumes. Nonetheless, this
so-called zero spatial baseline interferometric measurement is related to forest structure [15-17], due
to the temporal decorrelation of the repeat-pass interferometric signal [12,13,18]. Generally speaking,
as noted in [15], the repeat-pass coherence is dominated by temporal decorrelation for shorter temporal
baselines, barring significant weather or phenological events. In such cases, we expect areas with
larger, more complex canopy structures to have lower coherence precisely due to the inevitable motion
of such canopy structures between image retrievals.

Spaceborne lidar data from Ice, Cloud, and land Elevation Satellite’s (ICESat) Geoscience Laser
Altimeter System (GLAS) has been shown to provide invaluable calibration data to estimate global and
continental-scale vegetation structure, such as canopy height [19,20] and AGB [21,22]. While GLAS was
not originally designed to study forests, the new spaceborne lidar system, NASA’s Global Ecosystem
Dynamics Investigation (GEDI) [23] was designed to estimate global AGB stock within £51.6 degrees
latitudes [23,24]. The global high resolution sparse lidar AGB estimates from these satellites represent
an extraordinary data set to calibrate high resolution regional vegetation models based on imaging
instruments, such as Landsat [25,26], TanDEM-X [27-29], or L-/P-band SAR data [5,30].

In this paper, we investigate a methodology that is based on an L-band repeat-pass interferometric
radar operating at HH and HV polarizations (similar to NISAR) to map AGB in tropical forests.
The proposed approach calibrates a set of radar-to-biomass models with simulated spaceborne lidar
samples, and utilizes interferometric coherence and multiscale superpixel-derived features from the
L-band imagery to enhance AGB estimates. We represent spaceborne lidar data by sampling from
our reference LVIS-derived AGB map, so that our shots and tracks are spaced in a manner similar to
GEDI [23]; a simulation of end-of-mission GEDI or ICESat-2 precisely is beyond the scope of this work.
We plan to apply this methodology to the available spaceborne lidar data in future work.
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2. Materials

2.1. Canopy Cover Map

We only evaluate our methodology on forested areas as determined with the Hansen et al. canopy
cover product [31]. This product describes the percent canopy within a 30 m Landsat pixel in the
year 2000. We adopt the definition that a forested pixel has at least 30% canopy cover, which is in the
generally accepted range of 10% to 30% of canopy cover [32,33]. We select a strict condition of forest to
reduce falsely identified forest pixels, as suggested in [33]. Such a forest criterion has also been used
by Hansen et al. for tropical forest analyses [31,34]. Our reported AGB ranges and accuracy metrics
only consider pixels within this canopy cover mask.

2.2. AGB Reference Map

We validate our biomass estimation framework with an LVIS-derived AGB reference map [35].
Lidar-derived AGB is obtained from models for tropical lidar biomass models on the LVIS data,
as described in [35-37]. Using these lidar-derived maps, we train our model along the hypothetical
spaceborne tracks across our study area, in which along and across track spacing is similar to GEDI.
We describe the simplified sampling strategy precisely in Section 3.2. In future work, we plan to apply
this approach directly to the GEDI end-of-mission catalog. For the analysis of potential biomass errors
from GEDI-backscatter fusion, we refer to [37].

In Table 1, we record the descriptive statistics of the AGB at each of the sites and sensors, including
the coefficient of variation. Note that the two different L-band sensors will have different coverage at a
particular site. Thus, the intersection of the SAR data with the reference AGB map will differ for each
sensor and so too will the observed AGB range. In Figure 1, the intersection of the AGB reference data
and the extents of the corresponding SAR image products are shown at each of the three sites. We note
that Lope has the highest mean AGB, but Mondah has the highest coefficient of variation, given its
lower mean AGB but comparable variance. In the table, we also note the descriptive statistics of the
areas with AGB above and below 100 Mg/ha. From the last column of Table 1, Ogooue and Lope are
predominantly composed of high AGB, whereas Mondah has more equally distributed low and high
AGB areas.

Table 1. Below, descriptive statistics of the LVIS-derived reference AGB in the study areas with respect
to sensor coverage area. The uagp, #AGB <100, and paGB> 100 are the mean AGB, the mean AGB
for areas with AGB below 100 Mg/ha, and the mean AGB for areas with AGB above 100 Mg/ha,
respectively. Similarly defined are caGp, oAGB < 100, and 0aGp > 100 for standard deviations over our
study areas. The last column records the ratio of high AGB (above 100 Mg/ha) area to the total forest
in the study area.

Al
HAGB UAGB ;::gs HAGB > 100 UAGB > 100 HAGB < 100 OAGB < 100 %‘i;ﬂm

Sensor Site (Mg/ha) (Mg/ha) (%) (Mg/ha) (Mg/ha) (Mg/ha) (Mg/ha) (%)
PALSAR-2  Lope 380.10 130.42 34.31 399.20 104.06 29.69 29.89 5.17

Mondah 137.06 146.97 107.23 271.63 115.59 24.77 27.51 54.51

Ogooue 286.95 123.51 43.04 310.50 102.06 45.88 31.73 8.90
UAVSAR Lope 332.55 159.51 47.97 382.99 107.70 27.86 29.33 14.20

Mondah 125.03 142.58 114.04 271.55 110.16 23.20 27.13 59.00

Ogooue 256.37 137.97 53.82 302.04 103.55 37.54 31.37 17.27
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Figure 1. The AfriSAR above ground biomass (AGB) raster data and related SAR coverage at three
sites in Gabon. Blue outlines the ALOS-2/PALSAR-2 stripmap tile extents and yellow outlines the
UAVSAR backscatter flight lines.

2.3. SAR Products

For each of our three sites, we separately estimate AGB for each L-band sensor: once using
UAVSAR data and once using PALSAR-2 data. To do this, we obtain a backscatter image and a
coherence image, as described in the next sections. Figure 2 shows a flowchart briefly summarizing
our methodology from input SAR products and sparse lidar training data to the final AGB estimates.

) Superpixels

Backscatter
(HH, HV) \
Multiscale Random Final AGB
Features Forest Model Estimates
Coherence / I
(HH, HV) |
]

Sparse Lidar
AGB Estimates

Figure 2. A summary of our methodology for AGB estimation. Blue indicates an input product, red
indicates an intermediate product or model, and yellow indicates the final AGB estimates. The dashed
line indicates that the sparse lidar data is only used for training the random forest model.

2.3.1. Backscatter

We apply radiometric terrain correction (RTC) from [38] on dual-polarization (HH and HV) 7°
backscatter images from PALSAR-2 and UAVSAR in order to remove the effects of topography on SAR
backscatter. For both sensors, we download imagery in radar coordinates, i.e. slant-range products.
While UAVSAR collected fully polarimetric data, we restrict ourselves to HH and HV channels as
these have the greatest availability across the existing PALSAR-2 catalog and will be globally available
with NISAR [39]. For UAVSAR, we use the multilooked slant-range products from the UAVSAR data
page [40] and the RTC methodology described in [38]. For PALSAR-2, we used Level 1.1 slant-range
products and subsequently geocode the imagery with the Gamma software package [41] to obtain
similarly corrected backscatter images from the PALSAR-2 products. The RTC process removes the
effects of viewing and target geometry on the observed backscatter imagery.
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We despeckle each polarization of the RTC images to reduce erroneous speckle correlations with
biomass and obtain superpixel segments that represent landscape features rather than noise-related
shapes. We apply total variation (TV) denoising [42] within the homomorphic framework described
in [43]. Total variation denoising removes zero mean additive Gaussian noise, preserving edges and
discouraging localized oscillations [42,44]. We follow the image transformations, as in [43], so that the
multiplicative noise from the L-band imagery is removed with this filter. Before TV denoising, we also
perform a floor (|-|) and ceiling ([-]) of the top and bottom percentile of backscatter, respectively,
to address the small number of pixels that were not successfully corrected due to layover and shadow
in the backscatter imagery. We select the weight for total variation denoising by estimating the noise
variance according to [45] and then selecting the regularization parameter according to [44,46]. Because
images are frequently too large to hold in memory, we perform this despeckling in a 1000 x 1000
moving window with 980 stride, linearly interpolating between the two windows. We did not visually
observe artifacts from this windowed denoising. We report the important backscatter statistics over
canopied areas for each sensor in Table 2. We note that Mondah has the lowest mean backscatter,
which is expected because of its lower biomass range (Table 1).

Table 2. Below, AfriSAR sites with various SAR metadata and image statistics associated over the
coverage area.

Coherence First Date  Backscatter Image Date ~ Temporal Baseline ~ Area  SRTM Normal Angle HV Coherence
Sensor Site (ha)  plaeg (Cdeg) as (0aB) (o)
PALSAR-2  Lope 2015-03-12 2015-03-12 14 days 7,521 9.1(6.0) —12.4(3.5) 0.34 (0.14)
Mondah ~ 2015-04-14 2015-04-14 14 days 2479 3.3(3.2) —13.8(7.9) 0.32(0.18)
Ogooue 2015-06-04 2015-06-18 14 days 5735 6.2(5.2) —12.8 (4.1) 0.59 (0.11)
UAVSAR  Lope 2016-02-25 2016-03-08 2h 2150  7.5(5.5) ~136(58)  0.86(0.1)
Mondah  2016-03-06 2016-03-02 2h 1170 3.2(3.2) —15.3(10.4)  0.73 (0.35)
Ogooue  2016-02-27 2016-02-27 8 days 5627  55(4.5) —13.6 (9.5) 0.4 (0.13)

We construct an RGB image while using the despeckled HH and HV backscatter images. We use
HH, HV, and HH/HV as the red, green, and blue channels, respectively, as described in [47].
We regularize the polarization ratio HH/(HV + ¢) with e = 1 x 10~ to prevent division by 0. We then
scale each channel to the interval [0, 1] for visualization. We remark that the polarization ratio HH/
HYV has the physical interpretation of the ratio between non-volumetric and volumetric scattering [48].
In Figure 3, we compare the RTC image with the final despeckled product that we use for the
subsequent estimation. Indeed, the despeckling preserves important boundaries between vegetated
areas and river systems while removing the small local oscillations noticeable in the inland forest.

We reproject the backscatter into the reference frame of our lidar-derived AGB map with 50 m
resolution. Therefore, the spatial resolution of our SAR products are reduced from 10 m to 50 m.

2.3.2. Coherence

Coherence is the magnitude of the correlation between two retrieved complex SAR images [49].
For UAVSAR, the temporal baselines range from a few hours (Mondah, Lope) to as long as eight
days (Ogooue). For PALSAR-2, the temporal baseline is 14 days, which is the shortest available; we
found that longer temporal baselines were not as useful for this correlative analysis due to higher
levels of temporal decorrelation. We found only one 14-day PALSAR-2 pair for each of the tropical
sites in the PALSAR-2 repository [50]. To obtain coherence with PALSAR-2, we used the open-source
ISCE2 software package using the default parameters associated with their stripmap application [51]
and used the 30 m Digital Elevation Model (DEM) from [52]. The window, in which the coherence
is computed, is automatically determined with ICSE2, so that the resolution of the coherence image
approximately equals the resolution of the DEM used during processing [51]. For UAVSAR, we utilized
the open-source Kapok software [11] and applied Kapok to the coregistered image stacks available
at the UAVSAR data page [40]. We use the window size from [53], which provides approximately
10 m resolution coherence images. We remark that the slant-range products used to generate the
coherence and the backscatter imagery are different and, therefore, have different availability on [40].
We made sure that all of the products used in our analyses were captured within a window of a few
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weeks. We also note that both our original SAR products (coherence and backscatter) have finer spatial
resolution than our reference AGB map. We perform the aforementioned processing of each SAR
product at the finer resolution to ensure that our input SAR products that are projected to the reference
AGB frame have high fidelity to the higher spatial resolution SAR products.

(a) (b)

(0)

Figure 3. Top row: PALSAR-2 HV backscatter image over a subset of Mondah that (a) has been
RTC-ed and (b) additionally despeckled with total variation. Bottom row: (c) the RGB product used for
segmentation and estimation. Red is HH, green HV, and blue the polarization ratio HH/HV. All of the
polarizations are in linear 'yo; each RGB channel is scaled to [0, 1].

3. Methodology for AGB Mapping

3.1. Generating Features from Multiscale Superpixels

Superpixels provide a coarse spatial segmentation of a scene into contiguous areas of
homogeneous image intensity, in this case backscatter. Superixel analysis, also called “object-based”
analysis in remote sensing [54,55], is applied to object detection [56,57], image classification [58,59],
and change detection [60,61].

Here, we use superpixel segmentations of increasing size to generate features for our regional
estimation model. Our method allows for us to characterize features of the SAR images at multiple
scales simultaneously without the need to specify a scale a priori (e.g., [59,60]). We determine our
segments using the backscatter RGB image from Section 2.3.1 while using the graph-based approach
from [62]. The graph-based approach translates the image pixels into an 8-connected grid with each
pixel as its own segment. Subsequently, the algorithm iteratively merges segments with its neighbors
if a similarity criterion between segments is met in addition to ensuring that all segments have at
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least a user-defined minimum size [59,62]. To generate our multiscale features, we experimented
with SLIC [63], an alternative superpixel methodology whose resulting segments have more uniform
size than those derived from the graph-based approach. However, our AGB accuracy was almost
always higher when using the graph-based segments. The superpixel features that are used in our
study are the mean and standard deviation of the pixel values of each SAR product (coherence and
backscatter) within the segments. The mean coherence features are particularly useful to smooth large
spatial variability in observed coherence. A schematic of the multiscale features are shown in Figure 4,
indicating how a pixel is related to these segmentations of increasing sizes. This multiscale approach
was first proposed for object detection in [64] and it is similar to the image pyramid [65] applied in
deep learning frameworks, such as [66]. Here, our generation of superpixel features is similar in spirit
to those texture features generated by a 3 X 3 moving window in [14]. In Figure 5, the mean backscatter
from the HV backscatter and HH coherence image within these multiscale superpixels are shown on a
subset over Mondah. We also use standard deviation within a segment to derive features, though they
are not shown. For the three superpixel scales, we selected minimum sizes 5, 25, 50, and fixed the
scale parameter at 0.5. The size parameters were selected to ensure that the segments approximately
doubled in mean size with each additional segmentation scale. We note the minimum size parameter
is correlated with the mean segment size when the superpixel algorithm is applied to a fixed image,
but a general relation across all imagery is not possible. The segmentation parameters used above are
applied to all SAR backscatter imagery in this study. We did not use additional segmentation scales
as the additional features did not markedly improve performance in our numerical investigations.
We emphasize that we observed improvements in our AGB estimates with all sensors while using
these fixed multiscale segmentation parameters.

Pixel Scale
Segment Scale 1
Segment Scale 2
Segment Scale 3

Figure 4. A multiscale superpixel pyramid for feature extraction.
3.2. Training and Validation: Simulating Regional Calibration with GEDI

We train our model on a sparse subset of pixels from our reference AGB map to approximate the
coverage afforded with end-of-mission GEDI data [26,29,30], albeit our approach is highly simplified
and does not represent the precise of spatial sampling of any existing spaceborne lidar. In our approach,
we add tracks 120 m eastward modulo the image extents until we return to or pass our first track.
We select pixels along lines oriented 51.2 clockwise below the equator starting at the corner of the
reference AGB map spacing the sampled shots 60 m apart. We did not include the orthogonal tracks
that will be available with GEDI, but note that the more data for training that we used, the better
our model performed. We erred on the side of using less training data, as we expect GEDI data to be
obscured by clouds in Gabon and, more generally, in tropical forests. We did not notice significant
changes when translating the initial track across the site for different training sets; we observed no more
than than 0.5 Mg/ha variation in the RMSE for such experimental translations of the training samples.



Remote Sens. 2020, 12, 2048 8 of 22

(b)

(e) ®) (® (h)
Figure 5. PALSAR-2 HV backscatter and HH coherence features (top and bottom row, respectively)
derived from Felzenszwalb and Huttenlocher graph-based superpixels with increasing minimum
size. From left to right, (a) original pixel data projected to biomass frame (50 m resolution), (b) mean
backscatter with minimum segment size 5 pixels (1.25 ha), (c) mean backscatter with minimum segment
size 25 pixels (6.25 ha), and (d) mean backscatter with minimum segment size 50 pixels (12.5 ha). Figures
(e-h), are the analogous images derived using the mean HH coherence within superpixels. The maps
are with respect to the reference AGB frame. The white areas in the imagery indicate where no data
was collected by the lidar.

There are several advantages to the proposed regional training scheme, as noted in [4,9].
First, the training set contains a large range of AGB represented in the scene, which can help our
model to overcome the model saturation that is typically associated with such AGB mapping [67].
Second, the calibration scheme is based on remotely sensed data and, therefore, overcomes the burden
of collecting an adequate volume of field measurements in an area of interest. Thirdly, this calibration
over the area of interest mitigates phenological and environmental conditions that could potentially
degrade an L-band biomass model, particularly when the model is calibrated with respect to field
measurements over a different area [9]. Although environmental factors can still degrade our AGB
estimates, the calibration is done with respect to the relevant SAR imagery and the model adjusts
accordingly. To expand on this last point, Ogooue’s UAVSAR coherence proved to be less informative
of AGB due to apparently uneven distributed rain over large parts of inland forest that occurred
between the two acquisitions, causing temporal decorrelation in addition to its longer temporal
baseline. However, the model training proceeded identically.

We note that we train our model on the entire sparse set of our lidar tracks whether or not they
sample forest or non-forest areas, as defined in Section 2.1. We provide as many training points as
possible over the region of interest because our sites are predominantly vegetated. If multiple land
cover types are included in the area of interest, certain non-forest areas may need to be excluded
during training to ensure our model can capture accurate correlative relationships between the SAR
products and AGB. Our validation set is filtered according to the canopy mask from Section 2.1 in
order to ensure that our errors are reported over strictly forested areas and not savanna or sparse
low vegetation.

Random forest (RF) models have been successfully used for AGB estimation [14,68,69] and they are
used in this work to estimate AGB [70] from the L-band features. The RF models can model non-linear
relationships relating AGB to backscatter and handle multiple correlated inputs [70], which is especially
important for our multiscale approaches in which features from segments over the same pixel will be
correlated. The most relevant features can be determined post-training using impurity-based analysis
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with the GINI coefficient [70]. Additionally, the parallel implementation of RF models is efficient [71]
and permits us to more easily train models with different inputs for comparison.

Our RF models ensemble 1000 trees with out-of-box scoring and an L, loss [70,71].
We experimented with binning our training data to simulate uniform sampling across the AGB
range, but this did not improve the RMSE for any site or with any sensor. In Figure 6, we show a
sample of the training and validation set over a small area in Mondah along with the estimates over
the same test area.

We generate multiple realizations of the training data corrupted with additive Gaussian noise in
order to assess potential impacts of uncertainty in GEDI's AGB products:

Ynoisy = Ytrue + N(O/ U) (1)

where y is a biomass value and NV (0, 0) is normally distributed with mean 0 and standard deviation
0. We ensure that ynoisy > 0 setting a numeric floor at 0. Increasing ¢ on the training data amplifies
the size of errors introduced. We consider 100 different realizations of the training data according to
Equation (1) for some fixed o and consider the mean and variance of these errors to measure the noise
impact on the final RMSE. This particular noise model is a highly simplified version of the errors that
will be present in GEDI AGB estimates or other spaceborne lidars, as discussed in [72,73], and such
noise simulation is beyond the scope of this work.

Fl
)
2
2
g

(a) Training Set (b) Validation set (c) AGB estimates on validation set

Figure 6. The train/validation framework to simulate Global Ecosystem Dynamics Investigation
(GEDI) spatial sampling from the lidar-derived AGB reference map.

4. Results and Discussion

4.1. Results with a Low Biomass Mask

For each site and sensor, we use the corresponding reference biomass map to partition our area
into areas that are above and below 100 Mg/ha. We apply our methodology to each area separately,
obtaining a high and a low AGB model with a spatial resolution of 50 m (i.e., 0.25 ha). This will help
to determine whether the results meet the NISAR AGB mapping requirement of less than 20 Mg/ha
RMSE over areas with less than 100 Mg/ha [6], albeit with finer resolution. The partition of our study
areas also allows us to more directly compare the results in [9], which only considers low AGB areas.

Table 3 shows the results of this application. When we consider both high and low biomass areas
separately over each site, the total nNRMSE (here, we normalize according to the mean of the reference
AGB) is <51%. Furthermore, our AGB maps have negligible bias, less than 1 percent of the true mean
AGB in all cases. For areas below 100 Mg/ha, the AGB map in Lope and Mondah have RMSE below 20
Mg /ha at 50 m resolution, meeting the NISAR requirement. However, in Ogooue, the RMSE for both
sensors slightly fell short of the NISAR RMSE requirement by 3 Mg/ha with UAVSAR and by 6 Mg/ha
with PALSAR-2. For UAVSAR, the coherence appears to be degraded by rain that occurred between
the repeat-pass radar acquisitions, causing significant temporal decorrelation not associated with
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vegetation structure, which might explain this poor performance. For areas that are above 100 Mg/ha,
our RMSE is approximately 10 Mg/ha lower than the standard deviation of AGB for all sites and
sensors, indicating that our model outperforms the mean estimator in this AGB regime. In other
words, the model partially overcomes the model saturation typically associated with backscatter-AGB
models [6,9]. In fact, for UAVSAR, our model’s error is approximately 20 Mg/ha less than the standard
deviation in the high AGB areas for all sites.

Table 3. Results from our proposed methodology using a high and low AGB mask. Our estimates have
50 m resolution.

Full AGB Range >100 Mg/ha <100 Mg/ha
RMSE nRMSE Bias RMSE nRMSE Bias RMSE nRMSE Bias

Site (Mg/ha) (%) (Mg/ha)  (Mg/ha) (%) (Mg/ha)  (Mg/ha) (%) (Mg/ha)
PALSAR-2

Lope 89.23 25.24 —0.53 94.84 23.77 —0.69 16.40 110.84 0.69

Mondah 51.23 50.44 —0.17 85.45 31.52 —1.82 16.03 101.71 0.66

Ogooue 86.65 30.81 2.18 91.23 29.41 2.46 26.07 67.06 —0.13
UAVSAR

Lope 7243 25.41 —0.63 84.91 21.79 —0.94 11.90 90.96 0.18

Mondah 47.69 51.00 0.62 83.03 30.33 0.81 15.78 108.91 0.53

Ogooue 78.84 32.69 —0.04 88.54 29.33 —0.33 22.87 80.11 0.96

As expected, the UAVSAR-based estimates were better than those from PALSAR-2, since UAVSAR
has a higher signal-to-noise ratio, finer spatial resolution, and it has shorter temporal baseline (Table 2)
than PALSAR-2.

The RMSE across all sites is more than double the RMSE in the study by Bouvet [9] that used a
similarly derived reference AGB map. However, in [9], their validation area is primarily savanna and
sparse woodlands. In contrast, our low AGB areas consist of short and dwarf Mangroves in Mondah
and boundaries of dense tropical forest in Lope and Ogooue. Additionally, Lope and Ogooue are quite
topographically varied (Table 2). The methodology performs best over Mondah, which has the flattest
terrain and the smallest AGB range of the three sites that we considered here.

4.2. Training on the Entire AGB Range

We also apply our estimation methodology to the full area without partitioning high and low
AGB areas prior to training. This represents a more realistic application of the proposed methodology,
in which a reference map is not available. Unsurprisingly, the accuracy, particularly on the low biomass
areas suffers: the nRMSE for all areas is now <60% and the bias <3 Mg/ha for all sites and sensors
(Figure 7). The plots over Lope and Ogooue in Figure 7 appear to indicate a saturation of the AGB
model between 300 and 400 Mg/ha. Although our AGB estimates frequently overestimate low AGB
values and underestimate high AGB values, particularly in Lope and Ogooue, the overall low bias of
our results indicates that our method provides an accurate regional estimate of aggregate AGB stock.

Several factors can explain the poorer model performance over low AGB areas. Firstly, our RF is
trained using the L, loss and attempts to reduce absolute errors across the AGB range. These absolute
errors are larger over the high AGB areas than the low AGB areas. In fact, since many of the sites
are predominantly high AGB, accuracy in high AGB areas is more important to the RF model than
accuracy in low AGB areas. In Table 4, we observe that the RMSE over the low AGB areas might be
greater than or equal to the RMSE over the high AGB areas. Secondly, RFs are ensembles of regression
trees that typically cluster estimates around the modes of the target distribution; in our case, this leads
to underestimating high AGB values and overestimating low AGB values. Such errors have been
observed in other AGB studies employing RFs [14,68]. Including more high quality optical imagery,
such as Sentinel-2, for example, would allow our RF to better differentiate high and low AGB areas
during training.
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Figure 7. The results of training and validating our methodology on the full area. Left column is
UAVSAR and right column is PALSAR-2 at 50 m resolution.

From the error metrics that are reported in Figure 7, we note, as in the previous section, that
the UAVSAR estimates have lower absolute errors and higher model R? than those from PALSAR-2.
The RMSE at Mondah is lowest when compared to the other sites and we conjecture, due, in part,
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to Mondah'’s flat terrain, lower AGB range and higher coefficient of variation. We also discuss in
Section 4.2.1 that the PALSAR-2 coherence at Mondah is highly correlated with AGB.

4.2.1. Coherence and AGB

We show that the use of INSAR coherence can significantly improve the AGB estimates over those
models that do not use INSAR coherence as an input. Given that these improvements were observed
across all sites and sensors to varying degrees, utilizing the coherence for AGB estimation represents a
significant opportunity for improving the range of observable AGB.

In Table 4, we compare our model across each site and sensor. For the comparison, we use
all available superpixel features to obtain the lowest possible RMSE for both models. We found
the most significant improvement at Mondah, where the addition of coherence reduces RMSE by
approximately 9 Mg/ha for both sensors. The reduction in RMSE over high AGB areas was even larger,
with PALSAR-2, the RMSE was reduced by nearly 14 Mg/ha over high AGB areas.

Table 4. Below, we use the model with all superpixel features and compare the difference when the
model uses backscatter with (“w/”) and without (“w/0”) coherence.

Full AGB Range >100 Mg/ha <100 Mg/ha
RMSE nRMSE Bias RMSE nRMSE Bias RMSE nRMSE Bias
Site Coherence  (Mg/ha) (%) (Mg/ha)  (Mg/ha) (%) (Mg/ha)  (Mg/ha) (%) (Mg/ha)
PALSAR-2
Lope w/o 99.98 26.30 —1.01 98.28 24.61 —5.12 127.14 428.26 74.16
w/ 96.49 25.38 —1.35 95.24 23.85 —4.97 117.13 394.56 65.04
Mondah  w/o 84.66 61.70 —2.93 108.79 40.05 —45.95 57.11 231.06 33.05
w/ 72.82 53.08 —2.08 95.19 35.04 —30.84 46.48 188.05 21.97
Ogooue  w/o 99.44 34.66 2.97 94.98 30.60 —7.01 137.01 298.37 105.30
w/ 96.25 33.55 1.85 92.46 29.79 —7.41 128.85 280.61 96.79
UAVSAR
Lope w/o 83.98 25.24 1.54 86.46 22.57 —2.91 67.02 240.69 28.45
w/ 81.87 24.61 291 84.00 21.93 —1.45 67.59 242.76 29.30
Mondah  w/o 80.74 64.61 1.76 104.34 38.43 —42.11 59.03 254.70 32.21
w/ 71.72 57.40 141 96.51 35.54 —33.17 47.42 204.61 2543
Ogooue  w/o 97.36 37.94 —2.49 95.22 31.52 —18.76 107.06 284.75 75.86
w/ 92.00 35.85 —1.84 91.16 30.17 —16.21 95.93 255.14 67.30

In Figure 8, we plot the PALSAR-2 HH coherence against AGB within superpixel segments of
minimum size 25 pixels (6.25 ha) with at least 30 percent of pixels being canopy, as specified by our
forest mask from Section 2.1. We report the Spearman p there (—0.87), because there is a monotonically
decreasing nonlinear correlation. This basic correlative analysis between coherence and AGB echoes
those results from [18,28]. Unfortunately, the clear correlative relationship between coherence and
AGB observed at Mondah with PALSAR-2 was not present elsewhere (in many cases, the Spearman
correlation coefficient is not even defined). The apparent correlation of coherence with AGB at Mondah
might be related to its high coefficient of variation of AGB, its lower AGB range, the flat terrain there,
or some combination. We reemphasize that, in all of our numerical experiments, the inclusion of
coherence reduced the RMSE of our AGB estimates.

We empirically illustrate that the inclusion of INSAR coherence improves our estimates, even
when including noise to the training data using the noise model from Equation (1), because the GEDI
mission’s AGB estimates will still contain errors. In the top row of Figure 9, we compare the RF models
trained with and without InNSAR coherence when corrupted using this noise model. We select 50
equally spaced values of ¢ in [0,200]. For each fixed o, we generate training data corrupted by the
additive noise of Equation (1) 100 times and apply the same training and validation methodology for
each set of noisy training data. The figure shows the mean RMSE and one standard deviation of these
errors for these two scenarios. As expected, the RMSE increases when our AGB model is trained on
noisier training data. Our assertion that coherence reduces the RMSE of the AGB estimates remains
valid for the majority of these models.
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Figure 9. Mean RMSE of 100 models trained on different realizations of the additive noise model of
Equation (1) with fixed o in [0,200] over the three UAVSAR sites. The top row are the comparisons
between AGB estimates using and excluding InSAR coherence; the bottom row is a comparison of
models using the multiscale superpixel features with those models using only pixel-derived features.

4.2.2. Multiscale Superpixels

The multiscale superpixel-derived features improve our regional AGB biomass estimates. Indeed,
our results significantly improve across all sites and sensors as we add more superpixel-derived
features as inputs; for UAVSAR, the improvement in RMSE is consistently over 12 Mg/ha and in some
cases over 20 Mg/ha. Table 5 shows the results for the comparison of segment-derived features.

We visually compare the UAVSAR estimates that were made from models using exclusively
pixelwise features and models using the additional three superpixel-derived features in subsets over
Mondah (Figure 10), Lope (Figure 11), and Ogooue (Figure 12). Visually, the results are more accurate
using all of the superpixel features than those using just pixelwise features. However, the final
estimates from the models using the superpixel-derived features still appear to be smoother than
the reference AGB due to the spatial averaging used to generate such features. As in Section 4.2.1,
we inspect the mean RMSE from 100 models trained on data generated using the noise model from
Equation (1) for fixed ¢ in [0,200] to compare models trained with just pixelwise data with those
trained with all of the superpixel-derived features. This comparison is found in the second row of
Figure 9. As expected, the RMSE increases with ¢ for both cases, but the models utilizing all the
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superpixel features consistently outperform those models that use only pixelwise data across the noise
scenarios considered.

Table 5. Below, we add various Felzenswalb superpixel segments as features into the RF model. The #
of scales indicates the number of superpixel segments used to generate features. No scales indicates
only pixelwise features are used.

Full AGB Range

Site #of Scales RMSE (Mg/ha) nRMSE (%) Bias (Mg/ha)
PALSAR-2

Lope 0 104.70 27.54 —2.40
1 99.20 26.09 —1.84
2 97.02 25.52 —1.38
3 96.49 25.38 —-1.35

Mondah 0 96.91 70.64 —-1.15
1 83.44 60.82 —2.89
2 74.68 54.43 -1.75
3 72.82 53.08 —2.08

Ogooue 0 116.78 40.70 0.82
1 106.57 37.15 1.84
2 98.62 34.37 2.29
3 96.25 33.55 1.85

UAVSAR

Lope 0 94.12 28.29 7.24
1 84.84 25.50 4.47
2 82.28 24.73 3.89
3 81.87 24.61 291

Mondah 0 89.87 71.92 0.85
1 79.53 63.65 1.99
2 73.82 59.08 1.43
3 71.72 57.40 1.41

Ogooue 0 118.99 46.37 —4.53
1 103.91 40.49 —1.86
2 94.07 36.66 —1.88
3 92.00 35.85 —1.84

4.3. Inspecting Model Importances

We can inspect the feature importance of the RF using the method from [70]. Because our approach
is non-parametric and not physically derived, looking at feature importances provides insight into
this “black-box” machine learning approach. Roughly speaking, the most important features are
those that when removed from the model input result in the highest decrease in estimation accuracy
evaluated with respect to our training data. The feature importances are encoded in a vector of length
that is equal to the number of inputs whose entries sum to 1 and whose relative value represents
the corresponding feature’s importance. In Table 6, we show the feature importances of a model
trained on areas having AGB above 100 Mg/ha while using all of the possible superpixel-derived
features. We label superpixel scales as 1, 2, 3 according to the minimum size 5, 25, 50 pixels used in
our segmentation. We highlight that HH coherence is the most important feature at Mondah when
using PALSAR-2 data, which is where we noticed the high Spearman correlation between AGB and
coherence in Figure 8. Indeed, a coherence product at a particular scale appears in the top three features
for all sites and sensors, except Lope imaged with UAVSAR; Lope had the largest fraction of high
biomass and the lowest coefficient of variation with respect to biomass of the three sites considered and
these could contribute to the fact that coherence was less useful there. We see that the polarization ratio
(HH/HYV) also appears as an important feature for numerous sites. This feature roughly represents the
ratio of non-volumetric to volumetric scattering in canopy areas [48] and it can be used to distinguish
dense forest and sparser vegetation structures.
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Residuals are shown in bottom row. Model is trained on and applied to full AGB range. (d) Multiscale
Superpixel Estimate Residuals; (e) Pixel Estimate Residuals.
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Table 6. Feature importances from the RF model as defined in [70] trained on areas with AGB above
100 Mg/ha using InNSAR coherence and backscatter and all three superpixel-derived features.

Feature Names Feature Importance

Sensor Site Rank (%)
PALSAR-2  Lope 1 HYV backscatter w (scale 1) 8.52
2 HH coherence (pixel level) 597

3 HV backscatter (pixel level) 4.72

Mondah 1 HH coherence p (scale 3) 25.18

2 HH coherence p (scale 1) 6.19

3 HYV Coherence p (scale 3) 3.93

Ogooue 1 Polarization ratio ¢ (scale 3) 6.20

2 HH coherence (pixel level) 497

3 HYV coherence (pixel level) 496

UAVSAR Lope 1 Polarization ratio (pixel level) 11.80
2 Polarization ratio p (scale 1) 10.41

3 Polarization ratio o (scale 1) 7.34

Mondah 1 Polarization ratio p (scale 1) 15.17

2 HV coherence p (scale 2) 6.28

3 Polarization ratio o (scale 1) 5.00

Ogooue 1 HH coherence (pixel level) 5.39

2 Polarization ratio (pixel level) 524

3 HYV coherence (pixel level) 4.93

5. Conclusions and Future Work

We introduced a regional above ground biomass (AGB) estimation framework leveraging sparse
lidar training data and utilizing INSAR coherence and multiscale superpixels. We evaluated this
framework over dense tropical forests in Gabon in order to demonstrate the efficacy of this approach
for high AGB mapping while using NISAR-like data.

If we are able to partition our study area into low and high AGB areas, our regional AGB
estimation methodology was able to meet NISAR RMSE requirement over low AGB areas in Lope and
Mondah and fell slightly short of the requirement in Ogooue. We note that all of our AGB maps are at
finer spatial resolutions than NISAR specifies. Although we could have more easily met the NISAR
requirements using 1 ha resolution, we did not to pursue this here, because our multiscale superpixel
approach would likely be superfluous on lower spatial resolution products, and our training and
validation sets would be significantly reduced in size. Our proposed approach was partially able to
overcome model saturation in the high AGB areas, particularly at Mondah while using both PALSAR-2
and UAVSAR, even at this higher resolution.

When we did not partition our study area into low and high AGB areas, the nRMSE increased,
and in such cases was bounded by 60%. Additionally, the AGB maps no longer met the NISAR
requirements in low AGB areas. We highlight that our AGB estimates all had low bias over the tropical
sites providing reasonable estimates of the aggregate regional stock. We also note that Ogooue and
Lope are predominantly high AGB areas, so our methodology might be suitable for AGB mapping in
tropical forests with high AGB. We conjecture that including additional high quality image products,
such as Sentinel-2, may allow our proposed estimation framework to better distinguish between high
and low AGB areas during model training.

We also showed how the addition of INSAR coherence and multiscale features can significantly
improve our AGB estimates. With PALSAR-2 InSAR coherence, the RMSE was reduced by over
8 Mg/ha (over 8% increase in nRMSE) over Mondah with both sensors. We observed improvements
for all of our sites and sensors though none as significantly. Because PALSAR-2 InSAR coherence
resembles what will be globally available with NISAR, the integration of such products for regional
AGB retrieval represents a promising opportunity and will be investigated further. In future work,
we hope to apply our framework to larger areas while using the GEDI mission data to calibrate our
regional model.
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Abbreviations

The following abbreviations are used in this manuscript:

AGB Above Ground Biomass

ALOS-2 Advanced Land Observing Satellite-2

GEDI Global Ecological Dynamics Investigation

GLAS Geoscience Laser Altimeter System

ICESat-1/-2 Ice, Cloud, and land Elevation Satellite-1/-2

NISAR NASA-ISRO Synthetic Aperture Radar

PALSAR-2 Phased Array type L-band Synthetic Aperture Radar 2

RMSE Root Mean Squared Error

RTC Radiometric Terrain Correction

SAR Synthetic Aperture Radar

TV Denoising  Total Variation Denoising

UAVSAR Uninhabited Aerial Vehicle Synthetic Aperture Radar
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