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Abstract: Groundwater resources are expensive to develop and use; they are difficult to monitor and data
collected from monitoring wells are often sporadic, often only available at irregular, infrequent, or brief
intervals. Groundwater managers require an accurate understanding of historic groundwater storage
trends to effectively manage groundwater resources, however, most if not all well records contain periods
of missing data. To understand long-term trends, these missing data need to be imputed before trend
analysis. We present a method to impute missing data at single wells, by exploiting data generated from
Earth observations that are available globally. We use two soil moisture models, the Global Land Data
Assimilation System (GLDAS) model and National Oceanic and Atmospheric Administration (NOAA)
Climate Prediction Center (CPC) soil moisture model to impute the missing data. Our imputation method
uses a machine learning technique called Extreme Learning Machine (ELM). Our implementation uses
11 input data-streams, all based on Earth observation data. We train and apply the model one well at a
time. We selected ELM because it is a single hidden layer feedforward model that can be trained quickly
on minimal data. We tested the ELM method using data from monitoring wells in the Cedar Valley and
Beryl-Enterprise areas in southwest Utah, USA. We compute error estimates for the imputed data and
show that ELM-computed estimates were more accurate than Kriging estimates. This ELM-based data
imputation method can be used to impute missing data at wells. These complete time series can be used
improve the accuracy of aquifer groundwater elevation maps in areas where in-situ well measurements
are sparse, resulting in more accurate spatial estimates of the groundwater surface. The data we use are
available globally from 1950 to the present, so this method can be used anywhere in the world.

Keywords: GLDAS; PDSI; machine learning; Extreme Learning Machine; groundwater levels

1. Introduction

1.1. Challenges

One challenge facing groundwater managers is that the limited amount of available data makes it
difficult to understand long-term aquifer behavior and trends. For example, missing data, or data gaps,
make it difficult to develop groundwater elevation maps, as any well with missing data at a given time
cannot be used to create the map. Groundwater data are only available at wells or piezometers that are
costly to install and monitor [1]. Data collection can be difficult and time-consuming, requiring visits to
each well, and often requires manual sampling. These challenges limit the temporal resolution of the data
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and frequently results in large time gaps in water level records at individual wells, making it difficult to
understand long-term aquifer behavior [2]. The challenges associated with groundwater data availability
are intensified in developing countries because of resource limitations [3]. The ability to impute or estimate
these missing data at individual wells helps address this challenge, especially if the method can use data
available globally and in areas with limited well data.

1.2. Method Background and Overview

This paper presents a method to impute missing water surface measurements for a well. Our approach
uses historical information at any given well to determine local behaviors and trends, then uses correlations
with Earth observations to extend these trends across measurement gaps. This approach generates a
complete time series of measurements at every well in an aquifer. These data can then be used to generate
water surface elevation maps over time, which can be used to evaluate storage changes in an aquifer and
determine if the use is sustainable. We show that this approach provides complete data series at each well,
allowing more accurate groundwater level maps to be generated.

For data imputation, we use existing well data to train the model on aquifer and well characteristics.
Climatic, geographic, lithological, and human factors influence aquifer water levels and storage and can be
used to guide data imputation. The anthropogenic processes are generally local and captured by historic
well data, while geographic and lithological aspects can have both local and regional impacts, and climatic
processes typically affect even larger areas; these processes may be reflected in Earth observation data.
For data imputation, historic well data provides information on local and regional trends and processes,
while Earth observation data provides information on regional weather and climate impacts on aquifers.
Earth observations can also provide information on land use, which influences how wells are used.
For example, pumping patterns and rates in an agricultural area are typically different than those for wells
used for potable water near housing areas; Earth observation data can capture these changes in land use
over time.

We use a machine learning algorithm called an Extreme Learning Machine (ELM), to train a model
using water level measurements at single wells and Earth observations. We then use the trained model
with the available Earth observation data to impute missing data across measurement gaps at a well.
In general, these type of models are used to impute data over relatively small gaps and are less accurate for
data imputation over long time periods. This model, if successful, captures local aquifer properties, trends,
and responses and regional impacts of climate, weather, and land use. We show that our imputation
method for a single well is generally more accurate than using spatial interpolation methods for that
location. After detailing our computational methods, we present two case studies where we compare
the accuracy of the imputed data points at a well versus using spatial interpolation without the imputed
data to estimate data at the well location, a method often done to create water surface elevation maps.
The Earth observation data we use are available globally, supporting use in developed and developing
countries, allowing them to extend the use of wells with missing data.

1.3. Overview of Imputation Methods

Data imputation methods for groundwater levels use temporal patterns in historic data at a well
combined with other data that are correlated and related to groundwater use or levels, to impute missing
data values at a well. There is a wide body of literature on various data imputation methods that
includes very simple methods such as linear interpolation between missing data points, various spline
computational methods, and more complex time series analysis and statistical methods. In many
cases, these same methods can be used for either data imputation across gaps or data extrapolation
(e.g., prediction) with much of the literature focused on the latter. Traditionally, environmental data
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imputation used classical statistics-based time series modeling approaches—an excellent overview
is presented in [4,5]. Examples of these methods include auto-regressive (AR), moving-average
(MA), auto-regressive moving-average (ARMA), auto-regressive integrated moving-average (ARIMA),
and seasonal auto-regressive integrated moving-average (SARIMA) methods, often combined with
multiple linear regression to estimate model parameters [6–8]. Recently, other statistical methods have
been reported in the literature, including decomposition approaches combined with Bayesian and other
statistical models [9–11], other machine learning methods [12,13], kriging temporal data [14], and an
ARMAX model based on the eigenstructure of aquifer dynamics [15]. Rado, et al. [16] provides a recent
review that focuses on machine learning methods for time series data imputation and extrapolation.
These methods all treat water level measurements at a well as a time series with a non-random structure
that can be modeled and used to impute or extrapolate the time series at a given well. These methods are
not used to estimate data at locations where measurements have not been taken.

In this work, we build on machine learning methods that leverage correlation patterns between
groundwater levels and surface conditions that can be measured using Earth observation sensors.
Though literature exists demonstrating the use of correlations between point data and spatial data, such as
Earth observations, to impute missing values for other environmental time series data, to our knowledge,
there is little published literature on using machine learning approaches to exploit correlations between well
measurement point data and Earth observation spatial data for groundwater time-series data imputation.
There are a large number of studies that predict groundwater levels at a well based on measured data
at that well (e.g., time series analysis) but none that exploit other spatial information to inform this
imputation. Reported methods for groundwater level data imputation at a well include, for example,
using genetic programing [17], artificial neural networks [18], and hybrid soft-computing [19] methods.
Sahoo and Jha [8] present a comparison of groundwater-level predictions using multiple linear regression
and artificial neural network methods, which provides a good overview of this field, while Gong, et al. [20]
present a comparison of support vector machines and adaptive neuro fuzzy inference systems for well data
imputation, and this paper includes references to other literature related to machine learning approaches.
However, these studies do not include Earth observation data and mostly focus on extrapolation or
prediction, not imputation issues, which while similar, present different challenges and opportunities.

Groundwater data imputation is somewhat unique, as groundwater levels are influenced by both
regional weather and climate processes which affect water levels on a basin or aquifer scale, this implies
that relatively coarse Earth observation data may be useful. Earth observation data can be used to infer
these weather and climate processes, as these trends in weather and climate conditions affect groundwater
demand and extraction. Water levels are influenced by pumping, which has significant local impacts on
the water level surface. While pumping is based on water demand, this local demand is influenced by
water use requirements, which are driven by processes such as agriculture and weather patterns such as
drought or monsoons. Both water demand and use can be correlated to Earth observations, which can
measure land use and indications of soil moisture.

1.4. Remote Sensing Data

Since groundwater use is influenced by weather, climate, and types of land use in the region or area,
remote sensing data can be used to provide insights into these processes. A number of different remote
sensors and products may provide insight into water use and potentially be correlated to groundwater
levels [21]. These remote sensing measurements include computed indexes related to water supply
or demand such as precipitation [22,23], soil moisture [24], evapotranspiration [25], temperature [26],
plant cover and growth [27,28], and computed indexes such as the Palmer Drought Severity Index
(PDSI) [29] or other drought indexes, such as the Scaled Drought Condition Index (SDCI) [30], which could
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correlate to either groundwater demand or groundwater recharge. There are also integrated computed
datasets of soil moisture based on Earth observation data, such as the Global Land Data Assimilation
System (GLDAS) model or the National Oceanic and Atmospheric Administration (NOAA) Climate
Prediction Center (CPC) soil moisture model. GLDAS incorporates observations such as vegetation,
land cover, soil, elevation, precipitation, and temperature information derived from or measured by
various satellites (AVHRR aboard NOAA-15 satellite, MODIS aboard NASA’s Terra satellite, EOS aboard
NASA’s Aqua satellite) and computes soil moisture on a global scale [31]. The CPC model estimates soil
moisture using a one-layer hydrological model, which uses precipitation and temperature data from
Earth observations as inputs [29]. Monthly precipitation and temperature data are available from the
CPC PRECipitation REConstruction over Land [23] and the CPC Global Land Surface Air Temperature
Analysis [26], respectively.

These remote sensing data can provide information on regional and longer-term trends in an aquifer, if
aquifer processes such as recharge or extraction are correlated with trends in weather or climate. They can
also be used to estimate local trends in an aquifer as groundwater extraction rates may be correlated to
rainfall frequency and drought conditions. Earth observations can be used to determine local land use
by inferring land use categories such as urban, agricultural, pastoral, forest, or other types, which can be
correlated with how a well is managed [32]. Soil moisture models, such as GLDAS and the CPC model,
have been used to estimate groundwater levels and recharge [33], though not for data imputation.

In this work, we exploit remote sensing-derived products to improve the accuracy of groundwater
level imputation at a single well. We use soil moisture data from both the GLDAS and CPC soil moisture
models, combined with in-situ well data, to develop a model of the time series of groundwater level
measurements at a given well. While these remote sensing data can only infer changes over larger regions,
these data provide a useful, direct measure of how regional climate, weather, and land use affect water
demand at a given well. Correlations with historic data can show how water levels at a given well respond
to weather or climate forcings, such as drought or wet seasons. Remotely-sensed data can be used to
separate basin-level processes, such as water storage changes due to weather, population, or climatic
change, from local changes such as those from well pumping. By using both historic data and Earth
observation data to build a model of a well, this model can include all these processes. Our approach uses
both of these data sources to build a model of groundwater elevation changes at a given well, exploiting
the correlations between water demands with local uses, such as agricultural demands, which can be
inferred from soil moisture measured by Earth observation methods. In our model, this correlation is not
explicit as we do not use land cover as an input. However, the land cover influences the soil moisture data
from the GLDAS and CPC data sets. Soil moisture estimates from GLDAS and CPC are also indications of
groundwater demand, as lower levels of soil moisture indicate the need for more irrigation, while higher
levels indicate less demand. At some wells, this change in demand may be correlated with pumping
rates and thus groundwater levels; for other wells, (e.g., potable water use), this correlation might be less.
Our model creates a model for each individual well to exploit these correlations. For this study, we will
use Earth observation, or remote sensing, data to provide information on regional forcings and combine
this with historic information from wells that characterize local aquifer and well processes to impute
missing data.

1.5. Extreme Learning Machine

Data imputation for groundwater is a problem that is not well suited to machine learning approaches
such as artificial neural networks or other popular methods, as the available data are limited, and most
machine learning methods perform better with large amounts of data. For example, 10 years of data taken
quarterly at a well is only 40 data points, a very small sample for most machine learning methods. Since we
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need to train a model for each individual well with missing data, the amount of data available and the
training time for a model are relevant decision parameters when selecting a machine learning approach.

Challenges related to limited data and the need for fast training are traditionally approached
using feed-forward methods such as least square support vector machines or proximal support vector
machines [34]. However, these methods are designed for classification problems and cannot be applied
to regression problems, such as data imputation. Huang, et al. [34–36] present an algorithm called an
ELM that simplifies these support vector approaches into a method that can be used for regression with
minimal training data. ELM does not need to train iteratively as it is a single hidden layer feed-forward
network without backpropagation. Since it does not use gradient descent optimization methods associated
with many neural network methods, it has faster learning speeds, up to 1000 ×, over traditional machine
learning approaches and can be trained on significantly less data [34]. ELM has better scalability than
support vector machine methods and similar or better performance [34,36,37]. We selected an ELM model
to use in this research, as ELM performs well on small datasets and is very efficient in terms of training
time. For our problem, we may only have 10 to 20 years’ worth of monthly data, or on the order of a
100–200 data points for a given well or model, a very small dataset for most machine learning applications.

An ELM has the form of Equations (1) and (2), where W1 is the matrix of input-to-hidden-layer

weights, X represents the input data, σ is an activation function,
⇀
b is a bias vector, and W2 is the matrix

of hidden-to-output layer weights. The rectifier activation function, Equation (2), is used to compute σ.
This process is summarized in Figure 1, where a1 . . . aN represent the rows of the matrix W1.

⇀
Y = W2 ∗ σ

(
W1X +

⇀
b
)

(1)

σ(x) = max(0, x) (2)
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Figure 1. Schematic of Extreme Learning Machine showing the relationship between the input data (x) and
the output data (y). This is a feed-forward network, without backpropagation, giving very fast training
times and requiring less data for accurate computations.

The ELM maps non-linear relationships between the input data and the training data by means of the
random weight matrix W1 and the rectifier activation function, σ. For our applications, we use ELM to
map the non-linear relationship between Earth observation-based input and groundwater levels.
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Once we compute this mapping using a feed-forward pass with a least-squares fit, we use the model
to infer missing data using only Earth observation data as inputs. Since the ELM uses a least squares fit
with only one computational step, and does not require the iterative steps of a back-propagation network
using gradient descent algorithms, it is efficient and works well with small datasets.

The algorithm to create an ELM for a given well has three general steps:

1. Fill W1 and
⇀
b with random values

2. Compute σ, using the rectifier activation function, Equation (2)
3. Calculate the output weights, W2, by performing a least-squares fit to a vector of the response

variables,
⇀
Y .

For data imputation, the
⇀
b vector and both the W1 and W2 matrixes are saved and used to impute the

missing values using Equation (3).
⇀
Y test = W2σ

(
W1X +

⇀
b
)

(3)

where X represents the Earth observation data over the imputation period.
Our use of an ELM method for data imputation assumes that groundwater levels are correlated with

climatic factors such as drought and soil moisture, both of which can be estimated using satellite Earth
observations combined with hydrological models and have trends that can be characterized using the data
measured at a well. Figure 2 shows an example of this correlation, with depth to water table data shown
in the upper panel, while the GLDAS soil moisture estimates at the pixel nearest the well shown in the
bottom panel. In Figure 2, the water table decreases and increases in lagged correlation with periods of
decreased or increased soil moisture estimated by the GLDAS model. The figure shows that groundwater
levels generally decrease during periods of drought (i.e., negative soil moisture anomalies shown as red
areas below the line), and increase during wet periods (i.e., positive soil moisture anomalies shown as blue
areas above the line). Figure 2 shows an apparent correlation between soil moisture and groundwater
levels, but this correlation is highly non-linear and appears to be lagged in time. The ELM estimates these
non-linear correlations and exploits them to impute missing data at a well.
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Figure 2. Correlation between soil moisture and groundwater levels near Beryl, Utah: (a) Depth to
Groundwater at Well 37349113434201 near Beryl, Utah; (b) Soil Moisture Liquid Water Equivalent Thickness
Simulated by GLDAS near Beryl, Utah showing the lag between high soil moister in late 2004–2005 and a
corresponding increase in the groundwater level in early 2005.
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1.6. Research Overview

The purpose of this research was to develop a method of imputing missing groundwater level
observations at a monitoring well by merging existing well data and global Earth observations. This method
incorporates easily available global gridded datasets and in-situ well observations, allowing its potential
use throughout the world. The missing groundwater level observations are imputed using an ELM with
PDSI and the GLDAS and CPC soil moisture models as inputs. We use ELM because it is a single hidden
layer feedforward network that can be rapidly trained with minimal data while providing very good
accuracy. We present case studies where we test the method in the Cedar Valley and Beryl Enterprise
areas of southern Utah, USA. In our case study areas, groundwater level estimates obtained using ELM
were more accurate than estimates obtained from Kriging spatial interpolation which only used in-situ
well data.

2. Methods

2.1. Overview and Data Sources

The imputation approach we present requires three broad steps: (1) interpolate available historic data
at a well to a regular time step, typically quarterly; (2) combine these measured water surface elevation
data with Earth observation data to train a machine learning algorithm to identify patterns and correlations
in these data; and (3) use the trained model to impute the missing surface elevation data at that well.
This process is then repeated for each well, with each well having its own model. The size of the data
gap or length of the prediction that can be accurately addressed depends on the behavior of a given well.
If trends and patterns are well defined and repeat, then this approach is relatively accurate over relatively
long periods and can be used for data extrapolation or out-of-sample estimation for any period in which
the Earth observation data are available. For well data with less well-defined patterns, the periods where
the data imputation results are accurate are shorter.

We obtained well data from the United State Geologic Survey National Water Information System
(NWIS) web service [38]. Individual groundwater level measurements were reported as depth to
groundwater for each well, while each well record includes information including well head elevation and
the aquifer in which the well is completed. Using this well information, we converted depth-to-groundwater
data into groundwater surface elevation data.

We obtained the PDSI and CPC datasets from a THREDDS server hosted by NOAA [29]. The PDSI
global dataset is available at 0.5-degree resolution from 1850–2015 at monthly frequency [39]. CPC soil
moisture data are available globally at 0.5-degree resolution from 1948 onwards at monthly frequency.
We obtained the GLDAS soil moisture data from the National Aeronautics and Space Administration
(NASA) web server operated by the California Institute of Technology Jet Propulsion Laboratory [31].
GLDAS data are available monthly from 2001 onward at a resolution of 0.25◦. While initially we
downloaded and used the GLDAS data, the results reported in the case studies do not use these data
because as they are only available from 2001 on.

We implemented all the methods reported here in an open-source, web-based application called the
Groundwater Level Mapping Tool (GLMT) [40–42]. The interface for the GLMT is shown in Figure 3.
GLMT is a visual tool and can be used to display data for any number of regions with a number of aquifers
in each region. GLMT is generalized to allow its use world-wide. GLMT helps decision makers: view time
series and other data for each well within an aquifer, view maps of aquifer-wide groundwater levels at
different time periods, and calculate and view estimates of changes in total aquifer storage.
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Figure 3. The user interface for the Groundwater Level Mapping Tool which was used to package the
algorithms and methods described in this manuscript. This figure shows an aquifer in Texas along with the
time history of water levels for a selected well.

GLMT ingests well data and retrieves the required remote sensing information. Then, using the
algorithms and approaches presented here, generates a time series of groundwater level maps and uses
these maps to compute the change in aquifer storage over time. For this work, we extended GLMT by
providing an algorithm to retrieve and ingest the Earth observation data from web services; resample
the well data and remote sensing data to a common, regular time step; identify wells with missing data;
generate the input data for the ML model; train a ML model for each well; and impute the missing data at
a well. GLMT performs this data imputation algorithm for each well in the aquifer, then uses the time
series generated at each well location to compute water level maps through time. We implemented the
computational routines using the Python programing language with extensive use of the NumPy, SciPy,
Hydrostats, and HydroErr python libraries [43–46], while the web interface was developed using Tethys
Platform, a library for developing environmental web applications [40,47].

2.2. Data Preparation and Interpolation

As input to the ELM, we used groundwater level measurements for a given well, and two soil moisture
datasets based on Earth observations, PDSI, and CPC. We used values taken from the grid cell closest to
the location of the target well for the gridded monthly Earth observation data. We extracted these data
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directly from the NOAA THREDDS server where the data from these datasets are hosted. We resampled or
interpolated these data to a three-month interval using a cubic hermite interpolating polynomial (PCHIP)
method [48].

Well data are often irregularly sampled, with nominal sampling times being monthly, quarterly,
semi-annually, or annually. For our algorithm, we re-sampled these measurements to a common time step.
During the course of this work we used data from various aquifers in Utah, Texas, Colombia, South Africa,
and the Dominican Republic. In all cases, the well records were quite irregular and inconsistent, even for
the same aquifer. While we reviewed and analyzed data from numerous aquifers, in this paper we only
present case studies for two Utah aquifers. We resampled these data using PCHIP algorithms, and only
resampled data where the time interval between data points was short—less than 90 days.

PCHIP is often selected to resample environmental data over other methods, such as cubic splines or
linear interpolation, as it provides a continuous first derivative and does not exceed the local physical data
bounds—in other words, no overshoot or undershoot occurs, which is common with splines [9,11]. We used
the PCHIP implementation from the Python Pandas library [45,49]. The PCHIP method interpolates data
using a piecewise cubic polynomial with continuous first derivatives. PCHIP interpolation preserves
the shape of the data and respects monotonicity. At intervals where the data are monotonic (i.e., neither
increasing nor decreasing), so is the interpolating function, and at points where the data have local
minima or maxima, so does the interpolating function, thus eliminating over- or under-shoot. The second
derivative is typically not continuous, though the interpolating function is smooth with a continuous first
derivative [48].

We used a total of eleven time series datasets for input to the ELM model, the two monthly Earth
observation sets, eight moving average datasets of the monthly data (4 averages for each observation set),
and one linear dummy dataset.

We computed the eight rolling average datasets using the interpolated monthly data from the Earth
observation datasets, PDSI and CPC. For each of these datasets, we computed 1-, 3-, 5-, and 10-year moving
averages, resulting in four additional time series for each dataset. For the rolling average computations,
we used the “rolling” method from the Python Pandas Python library [49]. This computes the rolling
average at the right side of the window, meaning all the data used to compute the average at a given time
step were from the past.

These rolling averages improve the accuracy of our imputation method as the varying window lengths
allow the model to capture the effects of both long- and short-term climatic events, which contribute to
changes in groundwater levels. Often, groundwater levels increase fairly quickly following an extremely
wet month or year. These changes are captured in the model by incorporating the 1-year average and
the original monthly data. When moisture levels are slightly below normal for extended periods of time,
this generally causes a period of slow decline in groundwater levels. This phenomenon is captured well by
the 5 and 10-year rolling averages.

For model input, we included a dummy linear dataset in the model to capture any constant underlying
linear trends in groundwater levels not present in the Earth observation data [34]. This pseudo-linear
dataset is especially important in cases where the groundwater is being constantly over pumped because it
allows the model to capture this near linear decrease in the water table cause by continuous over pumping.
We generated the pseudo-linear data set using the decimal year value of the measurement and normalized
these values from 0–1 over the time span of the model.

ELM requires data normalized to a range between 0 and 1. We normalized all input data streams
and the training data (i.e., measured data) stream using Equation (4), which generates normalized
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data Rnorm from the raw data, R. For ELM development, the model is trained on the available data,
Rtrain. Rtrain represents the available well data used to train the model.

Rnorm =
R−min(Rtrain)

max(Rtrain) −min(Rtrain)
(4)

The minimum and maximum values for each dataset are saved and used to normalize the values used
in the imputation step so the model will use the same range as used in the training dataset. This means that
the model input and output values may exceed the 0–1 limits. After imputation, the imputed water level
estimates, Rnorm, are transformed back for analysis and presentation using Equation (5) and the maximum
and minimum water level values saved from the training dataset, max(Rtrain)andmin(Rtrain), respectively.

R = Rnorm(max(Rtrain) −min(Rtrain) + min(Rtrain) (5)

2.3. Data Imputation Using Extreme Learning Machines

For development and demonstration, we selected groundwater wells with long, complete time
histories and separated these data into training and testing datasets. The testing datasets are periods for
which we have data, but we did not use these data to train the model. We used the testing data to represent
missing data that require imputation and allow us to evaluate the accuracy of the imputation. We trained
an ELM model for a given well using historical well data and Earth observation data over the same period.
We then used the resulting model to impute data over the testing period using only Earth observation
data over this testing period. We then compared these imputed data to testing data measured during this
period to evaluate accuracy.

For illustration purposes, the training and use of an ELM model can be presented as a series of steps
as follows:

Let:

• M be the number of samples in the training dataset (i.e., measured time steps),
• N be the number of input data time series (for our case, N = 11),

•

⇀
Y be a vector of length M, the number of the groundwater level measurements over the training period,

• X be an MxN matrix of the input data over the training period,
• h be the number of nodes in the hidden layer (for our case, h = 500),

•

⇀
b be vector of length h,

• W1 be an Nxh matrix,
• W2 be a matrix of hidden-to-output weights, and
• σ is the rectifier function (Equation (2)).

First, we populate the matrix W1 and the vector
⇀
b with random values. The W1 matrix and the

⇀
b

vector are saved for use later in the imputation step. Next, we solve for W2, beginning by computing A
using Equation (6).

A = σ
(
W1X +

⇀
b
)

(6)

Then we use the measured values
⇀
Y and the computed matrix A to estimate the matrix W2,

which minimizes the error, e, shown in Equation (7).

⇀
Y = W2A + e (7)
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We estimate the matrix W2 using a regularized least squares method shown in Equation (8), where λ
is a regularization parameter and I is an identity matrix.

AT
⇀
Y =

[
ATA + λI

]
W2 (8)

Now that W1 has been computed, we have a fitted ELM model that can be used solve for
⇀
Y as shown

in Equation (9). This step uses only Earth observation data to impute missing measured well data at a
given well. This process is repeated and an ELM model is generated for each well.

We compute W2 by solving Equation (8) using the least squares function in the Numpy Python
library [46]. For our work, we use the Python library, Statsmodels, and the OLS.fit routine [50], which uses
the underlying Numpy library. The OLS.fit routine uses the Moore–Penrose pseudoinverse to invert the
matrix [51]. The Moore–Penrose pseudoinverse can act as a replacement matrix inverse and is often used to
solve a system of linear equations when the system does not have a unique solution or has many solutions.
It is commonly used in machine learning methods where the matrix to be inverted is often ill-conditioned.
Figure 4 provides pseudo code that demonstrates computation of the model and data imputation for a
single well.

To impute missing data, the W1 and W2 matrices and
⇀
b vector saved from the previous computations

are used. Imputation is computed as follows:

•

⇀
Y is a vector of length M, that will contain estimated groundwater levels for a well

# M is the number of time steps to impute,
• X is a MxN matrix of data used to infer groundwater depth
# N is the number of input data series (17 for this paper) for imputation,

⇀
Y = W2σ

(
W1X +

⇀
b
)

(9)

After the ELM imputation step (Equation (9)), then
⇀
Y must be rescaled, yielding the depth to

groundwater estimates
⇀
Yestimate in correct units using Equation (10). The minimum and maximum values

of
⇀
Y were saved from the training data and used to re-scale the imputed data. In Equation (10),

⇀
Yestimate

represents the rescaled imputed data,
⇀
Y represents the output of the ELM model or the normalized imputed

data, and
⇀
Y train represents the data used for training the ELM model used to determine the minimum and

maximum used to rescale the imputed data.

⇀
Yestimate =

⇀
Y ∗

[
max

(⇀
Y train

)
−min

(⇀
Y train

)]
+ min

(⇀
Y train

)
(10)

2.4. Accuracy

To assess the accuracy of the imputed data, we report four different error metrics, These are: the mean
error (ME), the mean absolute percentage error (MAPE), the root mean squared error (RMSE), and the
coefficient of variation (R2) [44]. To compute these error metrics, we used the python package HydroErr [43].
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Figure 4. Pseudo code for Extreme Learning Machine (ELM) imputation following python syntax, where X
is a matrix of Earth observation data, Y is a vector of training data, W1, theta, and W2 are variables, X1 is
a matrix of each observation data over the imputation target period, and Y_imputed are the unscaled
imputed data. X, X1, and Y are scaled to the limits of the training data, Y_imputed needs to be re-scaled to
obtain actual values.
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We use the ME to evaluate if the imputed data are biased. If the ME is positive, then the imputation is
systematically over predicting the values, and conversely under predicting values if it is negative. The ME
is defined as:

ME =
1
n

n∑
i=1

(yi − xi) (11)

where yi is the imputed data value at time step i, and xi is the measured value at the time step.
We use MAPE and RMSE to evaluate the accuracy of the imputed data. MAPE ranges from 0 to

infinity, 0 ≤ RMSE < ∞, is unit-less and presents the mean absolute error as a percentage of the observed
values. MAPE allows data sets with different magnitudes to be compared; smaller is better. The MAPE is
defined as:

MAPE =
100%

n

n∑
i=1

∣∣∣∣∣ yi − xi

xi

∣∣∣∣∣ (12)

The RMSE ranges from 0 to infinity, 0 ≤ RMSE < ∞, in the same units as the data set. For RMSI,
smaller is better and this metric highlights larger errors. The RMSE is defined as:

RMSE =

1
n

n∑
i=1

∣∣∣yi − xi
∣∣∣21/2

(13)

R2, the coefficient of variation ranges from 0 to infinity, 0 ≤ RMSE < ∞, and is unit-less. It does not
indicate bias, a number closer to 1 indicates a better match. The RMSE is defined as:

SSxx =
n∑

i=1
(xi − x)2

SSyy =
n∑

i=1
(yi − y)2

SSxy =
n∑

i=1
(xi − x)(yi − y)

R2 =
SS2

xy
SSxxSSyy

(14)

Each of these error metrics help characterize the accuracy of the imputed data and allow us to better
understand how well the method works.

3. Application and Case Studies

3.1. Application

Figure 5 shows an example of the results of our data imputation method. The imputed data are
generated using only the trained model with Earth observation data as input. In Figure 5, the orange dots
represent measured water level data at the well, the light blue crosses represent data generated by the
PCHIP interpolation algorithm, and the solid blue line represents the data values estimated using the ELM
model. We used the PCHIP algorithm to interpolate values at the start of each month, so all data are on
the same time step. We used PCHIP to interpolate over gaps of up to 365 days, any larger gaps are filled
using the ELM model. At the scale of the plot, these small gaps interpolated using PCHIP cannot be seen.
In the original data, many months had two or more measured points, many had none, and few of the
measurements occurred on the first day of the month. We used the PCHIP interpolation to generate a
data set with one measurement per month, with all the measurements on the first of the month—these are
the blue crosses in Figure 5. The Earth observation data were generated with values at the beginning of
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each month. The ELM model also imputes data on the first of each month. In Figure 5, the imputed data,
over both the training data and the gaps, demonstrates how the penalty function that the ELM model uses
approximates, but does not exactly match, the measured data used for training. The next step, which is not
shown, would be to replace the data gaps in the measured data with the imputed data, resulting in a time
series with no missing values. The process shown in Figure 5 is repeated for each well.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 24 
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Figure 5. Example data showing measured data (orange dots), training data (blue crosses), and imputed
data (blue lines) over the entire period. All measured data were used to train the model used to impute
data for the gaps. This figure includes imputed data over the entire period to show how the ELM optimal
fit minimizes the error but does not exactly match the measured data.

When gap filling in practice, we will always use all the available measured data to train the model,
as was done in Figure 5. In the case studies in the next section, we only used data from the period from
1958–1999 to train the model; we imputed data not only over gaps in the training data set, but over the
entire 15 year period from 2000–2015, a very long period. This was done so that measured data could be
used to compute the accuracy of the imputed data. This is a conservative estimate of the accuracy of the
method for data gap imputation for two reasons: the gap is very large and it is an extrapolation. Most gaps
have data on either side of the gap, which, if used, result in a more accurate model.

In the two case studies that follow, we present a “worst case” scenario for data imputation and a more
typical case. For the worst case, we create missing data over a 15-year time period from 2000–2015. This is
worst case in two respects: it is a very large gap, and it is at the end of the measured data—that is it requires
extrapolation. For most gaps, you use data on either side of the gap to anchor the imputation; this is not
available for these gaps. For the more typical case, we create missing data over a 7-year time period from
1995–2002; this period was randomly selected. This period, while more typical, still represents a very large
gap, much larger that gaps that commonly exist. Even with these large gaps, our case studies show that
our ELM method provides an accurate imputation, with MAPE values, for the 7-year gap scenario, of less
than 0.1 and most significantly smaller.

The worst case scenario shows that the ELM method can be used for extrapolation, though with lower
accuracy. However, in cases where no other data are available, this extrapolation can result in reasonable
estimates. The case studies show that interpolation is more accurate than extrapolation, and interpolating
over small gaps is more accurate than over larger gaps.
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3.2. Cedar Valley, Utah Case Study

We present a case study using the ELM method in the Cedar Valley Aquifer in Utah, USA which
is located just west of Kanarraville, Utah in the Cedar Valley. We used five wells to perform this test,
the results from three of these wells are shown in Figures 6 and 7, while the accuracy results are shown in
Table 1. We selected these wells because they had data available over the entire test period of 1958–2015,
which allowed us to evaluate the accuracy of the method by comparing imputed data values to actual
measured values, while retaining data for model training. We imputed or predicted data over the entire
data record, which includes both the training and testing periods. We show the imputed data over the
training period to demonstrate the fit between the model and the available data. We show the imputed
data over the testing period to characterize the model fit using only Earth observation data for imputation.
ELM is a least-squares method that minimizes the error of the imputed data in the training period. It does
not match these data exactly, as can be seen in the figures.
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Figure 6. ELM results over a 15 year testing period from 2000–2015 for Wells 37236113111401,
374423113053301, and 374132113063601 as subfigures (a–c), respectively. Imputed data are solid blue lines,
measured data used for training are blue crosses, and measured data used for testing are orange dots.
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Figure 7. ELM results over a 7 year testing period from 1997–2002 for Wells 37236113111401, 374423113053301,
and 374132113063601 as subfigures (a–c), respectively. Imputed data are solid blue lines, measured data
used for training are blue crosses, and measured data used for testing are orange dots.

In Figure 6, we used data from 1958–1999 as training data for the model, and data from 2000–2015 to
test the algorithm. In Figure 7, we used data from 1995–2002 to test the model and the remainder of the
data to train the model. Figure 6 shows data extrapolation beyond the training period; a more common use
is shown in Figure 7, where data are imputed across gaps that have measured data on each side of the gap.
We do not expect this to be used for gaps as large as those used in these examples—15 years and 7 years
for Figures 6 and 7, respectively. Imputation methods, including our ELM model, are more accurate over
smaller gaps with supporting data on both sides of the gap. However, the large gaps provide a rigorous
test of the algorithm.

Figures 6 and 7 shows the imputed data (solid blue line), the measured data used for training
(blue crosses), and measured data used for testing (orange dots) for Wells 37236113111401, 374423113053301,
and 374132113063601, for Figure 6a–c, respectively. In Figure 7, the subfigures are labeled Figure 7a–c.
We selected these three wells from the five used in the case study as each demonstrates a specific issue.

For the well in subfigures a and aa, the depth to groundwater varies between 25 and 60 ft and the
imputed depth to groundwater values match the measured data well for both testing periods. This is true
even though the testing period shows fluctuations and is not a linear trend. The imputed data in both
figures shows a structure with a rising and falling patterns repeated during the testing period.
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Table 1. ME, MAPE, RMSE and R2 values for data imputed using the ELM model for Five Wells in Cedar
Valley for both the 2000–2015 and 1995–2002 testing periods. Imputed data were compared to measured
data in each period.

Well ID ME MAPE RMSE R2

Error metrics for the 2000–2015 Testing Period
Well

373236113111401 0.392 0.073 4.754 0.313

Well
374132113063601 −12.253 0.276 20.657 0.045

Well
374304113052901 9.701 0.199 17.75 0.181

Well
374423113053301 4.458 0.13 8.555 0.255

Well
374927113033401 6.187 0.129 8.221 0.37

Error metrics for the 1995–2002 Testing Period
Well

373236113111401 −0.101 0.047 3.615 0.701

Well
374132113063601 −0.116 0.125 8.724 0.584

Well
374304113052901 1.363 0.097 9.451 0.672

Well
374423113053301 0.002 0.068 4.981 0.746

Well
374927113033401 0.224 0.06 4.332 0.763

Figures 6b and 7b demonstrate a good fit, but the imputed data in Figure 6b overestimates the
groundwater levels, a trend present in Figure 6a, but to a smaller extent. In Figure 7b, this overestimate
is not present as there are training data on both sides of the gap. This consistent overestimation in all
the wells for the 2000–2015 testing period possibly occurs because of increased human pumping activity,
which may have changed in the last 15 years. This change would not be explicitly represented in the
training data used to create the model for this well. In a more common approach, such as the data from the
1995–2002 testing period where we fill smaller data gaps, we have training data in the later periods on
either side of a gap being filled, better capturing this trend. The correlation between soil moisture variables
and pumping rates assumes that the relationship present in the training data is continued in the testing
period. However, if, as in the case of the 2000–2015 testing period, we attempt to impute data over a long
time period where pumping behaviors may have changed, perhaps because of land-use or population
changes, these correlations will not be reflected in the model and result in less accurate imputation.

Figures 6c and 7c capture the general trends of the groundwater fluctuations. However, the model for
this well fails to properly capture the magnitude of the seasonal variation of the water table throughout
the year. This most likely occurred because of the inconsistent sampling rate of the well and perhaps
issues with measurement as demonstrated by the variability of the measured data (orange dots). This well
was sampled at a monthly frequency during part of the training period, but not for the entire duration.
This mixture of higher and lower sampling rates in the training data seemed to negatively impact the model
as the seasonal correlations for this well model were not fully characterized in the training data. In addition,
the large seasonal variations present in the testing period are not represented in the training data.

Table 1 presents the computed accuracy of the imputed data over both testing periods, 2000–2015
and 1997–2002. We present the four different metrics described above: ME, MAPE, RMSE and R2 [43,44].
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The ME values for the two different time periods show that the bias in the imputed data is significantly
less for the shorter time period with training data on both sides of the gap. The MAPE is approximately
half the value for the shorter time period, with significant improvements in the RMSE as well. R2 values
for the longer period are not good, but are acceptable for the shorter period.

As we discussed in the background section, our major use for data imputation of well measurements
is to develop a series of groundwater elevation maps to characterize the change in storage for an aquifer.
Traditionally, if a well has no data for a given water level map time step, that well is left out of the data
used by the spatial interpolation code; in our case, we use Kriging. This means that the water surface
elevation for that time step, at the location of the well with missing data, is estimated (or imputed) by the
spatial interpolation scheme. We compared the ELM imputation results to results computed using Kriging
spatial interpolation, using a jackknife approach [52]. For jackknifing, we remove one well from the set
of wells and use the remaining wells to perform the Kriging interpolation at the missing well location.
Then we put this well back into the dataset and remove the next well for prediction. We compared the
Kriged results at the well location with the value ELM imputed value. We computed this test for the
same five wells in the Cedar Valley Aquifer. We only performed this comparison for a single time step,
December 1, 2014, nearly at the end of the imputed period. Table 2 presents these results along with the
percent error of each method.

Table 2. Comparison of data imputed with the ELM model and data estimated using Kriging on 1
December 2014.

Well ID Measured Value ELM Estimate Kriging Estimate

Depth to GW (ft) Depth to GW (ft) (% error) Depth to GW (ft) (% error)

Well 373236113111401 −47 −41 (12.9%) −65 − (39.0%)
Well 374132113063601 −99 −96 (2.8%) −109 − (10.1%)
Well 374304113052901 −110 −106 (3.1%) −98 (10.9%)
Well 374423113053301 −76 −65 (14.6%) −86 − (14.0%)
Well 374927113033401 −26 −30 − (14.1%) −33 − (28.1%)

Average Error 9.5% 20.4%

3.3. Beryl-Enterprise Area, Case Study

We also tested our method on the Beryl Enterprise area aquifer in southern Utah. This region has
experienced significant drawdown over the last century, especially in the southern portion of the aquifer.
This area has undergone significant recent population growth and land use changes. We do not expect
the current groundwater use patterns to be similar to those in the past. We selected ten wells in the
aquifer for testing with accuracy results presented in Tables 3 and 4. Figure 8 presented plots of three
wells we selected to highlight various issues. Figure 8 presents Wells 373338113431502, 373419113434201,
and 373527113415101, as Figure 8a–c, respectively. While Figure 9 presents the same wells as Figure 9a–c,
respectively. The data are presented in the same manner as previous figures, measured data in the testing
and training periods as blue and orange dots, respectively, with the blue solid line representing the
imputed data.
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Table 3. ME, MAPE, RMSE and R2 values for ELM Time Series Prediction for Ten Wells in Beryl Enterprise
Aquifer for both the 2000 – 2015 and 1995 – 2002 testing periods.

Well ID. ME MAPE RMSE R2

Error metrics for the 2000–2015 Testing Period
373338113431502 1.57 0.06 4.00 0.71
373419113434201 −0.23 0.05 3.02 0.74
373527113415101 18.53 0.36 20.29 0.62
373644113411501 18.24 0.36 19.28 0.70
373735113393801 16.25 0.33 17.96 0.69
373854113411501 14.81 0.30 16.29 0.79
374020113343101 14.25 0.28 14.86 0.80
374041113373501 11.30 0.23 12.66 0.75
374053113415101 19.95 0.40 21.39 0.65
374319113415201 3.02 0.07 3.70 0.89

Error metrics for the 1995–2002 Testing Period
373338113431502 0.23 0.04 2.38 0.81
373419113434201 0.57 0.04 2.74 0.77
373527113415101 −2.44 0.11 7.07 0.80
373644113411501 −1.19 0.06 3.93 0.97
373735113393801 −0.71 0.08 4.56 0.94
373854113411501 −0.98 0.05 3.12 0.99
374020113343101 0.07 0.03 1.92 0.98
374041113373501 −0.08 0.02 1.40 0.99
374053113415101 −1.02 0.05 3.30 0.98
374319113415201 0.28 0.03 1.68 0.97

Table 4. Comparison of ELM Error to Kriging Error for Wells in the Beryl-Enterprise Area. The comparison
is made using data from 1 December 2014.

Well ID Measured Value ELM Estimate Kriging Estimate

Depth to GW (ft) Depth to GW (ft) (% error) Depth to GW (ft) (% error)

Well 373338113431502 −39 −47 (21.8%) −58 (48.9%)

Well 373419113434201 −35 −40 (13.6%) −64 (82.6%)

Well 373644113411501 −246 −211 (14.2%) −172 (30.1%)

Well 373735113393801 −230 −199 (13.7%) −222 (3.6%)

Well 373854113411501 −216 −182 (15.7%) −217 − (0.6%)

Well 374020113343101 −192 −172 (10.8%) −187 (2.6%)

Well 374041113373501 −166 −148 (10.7%) −176 − (6.4%)

Well 374053113415101 −198 −173 (12.5%) −192 (2.9%)

Average Error (14.1%) (22.2%)
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Figure 8. ELM results over a 15 year testing period from 2000–2015 for Wells 373338113431502,
373419113434201, and 373527113415101, as subfigures (a–c), respectively. Imputed data are solid blue lines,
measured data used for training are blue crosses, and measured data used for testing are orange dots.

Results for the seven wells that are not shown were not as good as those for the wells shown in the
plot. Most of the wells not shown had patterns that were similar to those shown in subfigure f for the
longer testing period, 2000–2015. For this testing period, the measured data show a significant downward
trend not captured in the model training on the earlier period. For this time period in all ten wells, the ELM
model correctly identified periods of increase and decrease in water levels, but generally failed to properly
estimate the magnitude of these changes, resulting in an underestimation of drawdown for each of the
tested wells.

Figure 9 shows these same wells for the testing period 1995–2002; in this case, there are data on each
side of the gap and the model clearly captures this increasing downward trend in the latter part of the
data set. Table 3 shows the ME, MAPE, RMSE, and R2 values for all ten wells in each testing period.
For the longer period (2000–2015), the ME shows a clear over prediction bias with all but 3 values near
20 feet, these same wells for the shorter period show almost no bias with the largest ME value being only
−2.44 feet. The MAPE, RMSE, and R2 values also all show significant improvement. These data show that
if aquifer processes are significantly different during the imputation period—in this case, significantly
increased pumping—imputation will not be accurate. However, for gap filling—even for gaps as long as
7 years—if the training data capture the aquifer behavior, imputation is quite accurate. Figures 8c and
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9c show this behavior the most clearly. As noted above, most of the wells not plotted showed a similar
pattern, with drawdown rates increasing towards the end of the period.
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Figure 9. ELM results over a 7-year testing period from 1997–2002 for Wells 373338113431502,
373419113434201, and 373527113415101, as subfigures (a–c), respectively. Imputed data are solid blue lines,
measured data used for training are blue crosses, and measured data used for testing are orange dots.

As above, we computed a value at each well location using Kriging interpolation for a single date,
December 1, 2014, and compared these results to those of the ELM model. Results are shown in Table 4.
In the first three wells, the ELM method significantly outperformed Kriging, while Kriging outperformed
the ELM in each of the remaining wells.

The area around the last seven wells has seen significant increased pumping over this 15 year testing
period for irrigation; this increased pumping is not captured by the ELM model. However, since Kriging
used measured data in the other wells for this same time step, it did capture this change in behavior. For all
these wells, the ELM model underestimated the drawdown, overestimating the groundwater levels and
Kriging outperformed ELM significantly. Again, if the ELM model were trained on data that captured
these trends, for example a gap that had data on either side, we expect it would perform better.
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4. Discussion

Based on the results from the Cedar Valley and the Beryl Enterprise Aquifer, we demonstrate that
global soil moisture models and PDSI computed from Earth observation data may be used to impute
groundwater levels at a well with relative accuracy when aquifer processes in the training period are similar
to or an extension of uses in the imputation period. The accuracy of this method decreases if well pumping
or land use changes from the training time period. This decrease in accuracy occurs because the inputs do
not explicitly account for this change in human activity as it relates to weather and climate conditions.
Imputation is more accurate if the training period is similar to the imputation period, for example, if there
are training data before and after the missing data, we expect the imputed data to be more accurate.

This method could be improved by feature engineering. Feature engineering is when specific time
series data that may be correlated to aquifer behavior are incorporated into the model. This could include
data such as land use changes over time, population change, electric or other power use for the wells,
or any other data that might be correlated. The only requirement is that these time series data are available
over both the training period, and the imputation periods (i.e., data gaps). This could include incorporating
additional Earth observation data such as those from the GRACE mission, which measures water storage
volumes directly, but at a very coarse spatial resolution and only over a limited recent time period.

5. Conclusions

We developed a method for imputing groundwater level data using ELM with PDSI and soil moisture
models, derived from satellite Earth observations as inputs. We show that over long periods, groundwater
levels and soil moisture are sufficiently correlated. We demonstrated that because of this correlation,
groundwater levels can be inferred from Earth observations. This method was most accurate in areas
where current groundwater uses are similar to those of the training period—there has not been significant
population or land use changes. This method outperformed Kriging spatial interpolation in areas where the
land use during the training period was similar, but underperformed if there had been significant changes.
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