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Abstract: Multispectral imagery contains abundant spectral information on terrestrial and oceanic
targets, and retrieval of the geophysical variables of the targets is possible when the radiometric
integrity of the data is secured. Multispectral cameras typically require the registration of individual
band images because their lens locations for individual bands are often displaced from each other,
thereby generating images of different viewing angles. Although this type of displacement can be
corrected through a geometric transformation of the image coordinates, a mismatch or misregistration
between the bands still remains, owing to the image acquisition timing that differs by bands. Even a
short time difference is critical for the image quality of fast-moving targets, such as water surfaces,
and this type of deformation cannot be compensated for with a geometric transformation between
the bands. This study proposes a novel morphological band registration technique, based on the
quantile matching method, for which the correspondence between the pixels of different bands is
not sought by their geometric relationship, but by the radiometric distribution constructed in the
vicinity of the pixel. In this study, a Micasense Rededge-M camera was operated on an unmanned
aerial vehicle and multispectral images of coastal areas were acquired at various altitudes to examine
the performance of the proposed method for different spatial scales. To assess the impact of the
correction on a geophysical variable, the performance of the proposed method was evaluated for the
chlorophyll-a concentration estimation. The results showed that the proposed method successfully
removed the noisy spatial pattern caused by misregistration while maintaining the original spatial
resolution for both homogeneous scenes and an episodic scene with a red tide outbreak.

Keywords: band registration; morphological registration; multispectral camera; water quality;
Micasense Rededge-M

1. Introduction

In multispectral images, precise registration of multispectral bands is critical for subsequent
quantitative data analysis, which relies on the “spectrum” of the signal (e.g., radiance or reflectance)
from the target. If the bands are not perfectly aligned with each other, due to the reasons such as
lens distortion, displacement in lens location, and inaccurate geometry transformation between the
locations, spectral radiometric values in a fixed pixel location may originate from different targets.
Algorithms that depend on the band ratios, or the band difference, are particularly sensitive to the
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quality of the band registration and may produce significant errors for an inhomogeneous target area if
misregistration exists.

There are various sources for misregistration: a difference in the lens locations for each
band, a difference in the image acquisition timing accompanied by fast-moving targets, etc.
Commercial multispectral cameras typically include individual lenses for the multi-bands and have
different exposure times to maximize the effective radiometric range for various targets. The differences
in the lens locations for the multi-bands can be modeled via a projective transformation if the image
is assumed to be free of nonlinear image distortions, such as radial distortion; the differences in the
viewing geometry can be corrected to a reference band using band-to-band projective transformations
that specifies eight parameters for rotation (1), translation (2), isotropic scaling (1), anisotropic scaling (1),
skew (1), and perspective shortening (2) (figures in the parenthesis denotes the number of free variables
for the quantity) [1,2]. The methods based on Fourier transform does not require the time-consuming
process of finding matching points between two images, and effectively register multiple bands solely
based on its spatial frequency pattern [3].

However, such transformation approaches that rely on geometric characteristics of the scene
cannot effectively address the cases having non-rigid body target deformation, where the forms of
targets may vary between the bands. This issue is prominent when analyzing the color of water where
the targets (i.e., water surface) move or deform quickly during a short time interval (<1 s) between the
acquisition of different bands. As shown in Figure 1, multispectral band images for ocean surface in
the normal coastal area in Korea reveal that the differences in water reflectance, and its spatial pattern,
clearly do not correspond to rigid-body transformation; thus, the differences cannot be resolved by
a projective transformation. Note that the band images shown in Figure 1 have already undergone
band-to-band registration through a projective transformation.
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Figure 1. A subset of a multispectral image acquired in a coastal area of Korea targeted on the ocean
surface with normal states (low chlorophyll and suspended particle concentration), showing the
differences in the spatial pattern for the five spectral bands.

This type of image registration, which involves a non-rigid body transformation, has been
investigated for morphological image registration [4–7]. It is applicable when the images of two
different targets, or of one target object that experienced a non-rigid body deformation, are expected to
have a similar internal structure and most of the image contents have common features. The basic
mathematical tools for morphological image transformation include calculus of variations, optimization
with regularization or constraints, and the derivation of invariant features. The methods are typically
used in medical image processing, such as computed tomography and magnetic resonance imaging,
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for diagnostic purposes; however, applications to remote sensing are rare, particularly for the band
registration, because typical observation targets in optical remote sensing are stationary objects, such as
land surfaces and man-made structures. However, because water surfaces move fast, owing to ocean
currents and wave motion, multispectral images from ships and low-altitude platforms, such as
unmanned aerial vehicles (UAVs), clearly exhibit locational errors.

In this study, we develop a novel morphological band registration technique, designed for
high-resolution water quality analysis, which preserves the true spectrum of fast-moving targets.
The proposed method exploits the quantile plots between the bands to accurately determine the
radiometric correspondence of the pixels in different bands. For multispectral images, a Micasense
Rededge-M camera was operated onboard a UAV, DJI Inspire-2, and ocean surface images were
acquired from coastal areas of Korea, of various altitudes and biological conditions. The specification
and radiometric properties of the multispectral camera and the image data are described in Section 2
(Materials). The radiometric/geometric preprocessing, derivation of the “remote sensing reflectance”
for water quality analysis are presented in Section 3 (Methodology and Analysis), along with the
analysis on the adverse impact of the residual misregistration on the water quality variable estimation.
In Section 4 (Algorithm Development and Assessment), the proposed morphological registration
scheme is described in detail and the development of the entire correction procedure is presented.
The algorithm results are demonstrated for multiple test images, taken at various altitudes. In Section 5
(Discussion and Conclusion), the correction results and remaining tasks are discussed.

2. Materials

2.1. Micasense Rededge-M and Data

The Rededge-M camera has five spectral bands, the center wavelengths of which are located
at 475, 550, 668, 717, and 840 nm (Figure 2). The red (668 nm) and near-infrared (NIR) (717 nm)
bands are designed to capture the red edge feature, which is salient in vegetation, and to quantify
the photosynthetic pigments via indices, such as the normalized differenced vegetation index [8]
and soil-adjusted vegetation index [9]. The blue band (475 nm) is useful when quantifying pigment
absorption in water when it is referenced with respect to the green band (550 nm) [10]. In water color
analysis, the last NIR band (840 nm) is particularly useful for quantifying atmospheric scattering
between the target and the sensor because clear water theoretically has zero water-leaving radiance in
the 840 nm band [11]. For turbid waters, the radiance at 840 nm is often large and can thus be used
to detect the existence of suspended sediments in water [12]; however, as a result, the estimation of
atmospheric effects becomes more complicated [13,14]. The radiometric sensitivity of the Rededge-M
was tested for water color analysis in Kim et al. (2019) [15] in a brief experiment in which the radiometric
data from a Rededge-M camera was compared with that from a hyperspectral radiometer, TriOS
RAMSES. The study showed that the Rededge-M was able to retrieve a comparable spectral shape for
a water body (which typically has a low radiance level compared to terrestrial targets) when calculated
using remote sensing reflectance (Rrs).

In this study, four Rededge-M image sets from multiple field campaigns were used for the
development of a morphological registration algorithm. Table 1 shows the dates, locations, and altitudes
of the camera images that were used for the analysis, and the study site is presented in Figure 3a.
All images were captured by a drone, DJI Inspire-2. The camera body and the downwelling irradiance
sensor were installed on the drone using a simple bracket and a damper (Figure 3b). The Rededge-M
camera was installed with a fixed viewing zenith angle of 40◦ and the camera attitude was controlled
to head north to constrain the relative azimuth angle within 90–135◦ with respect to the sun direction,
to minimize the surface reflectance [16,17]. The Zenmuse-X5s camera was installed in front of the
Rededge-M to capture a wider-angle overview of the target scene with higher spatial resolution.
RGB images of water reflectance are presented in Figure 4 for all four scenes.
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Figure 2. (a) Lens configuration of Rededge-M camera and (b) the spectral response function of the
bands overlaid with a typical vegetation spectrum (source: Rededge-M User Manual).
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Figure 3. (a) The map of study site near Yeosu, a southern coast of Korea, and the bounding box
(orange) for the area that the unmanned aerial vehicle (UAV) was operated for, and (b) photographs of
the multispectral-UAV system configured with the downwelling light sensor (DLS), the RGB camera,
and the multispectral camera.

Table 1. Data list used in this study.

Scene ID Time Location Altitude (m) Scene Description

A 26–07–2019
15:23 Sumoon 85.4 Coastal Area

B 31–08–2019
12:54 Yeosu 8.1 From Ship

C 31–08–2019
13:29 Yeosu 196 Coastal Area

D 31–08–2019
13:17 Yeosu 390 Red Tide
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(a) Scene-A (85.4 m), (b) Scene-B (8.1 m), (c) Scene-C (196.2 m), and (d) Scene-D (390.5 m, red tide), with
the UAV altitudes in the parenthesis.

2.2. Acquisition Time Difference in Rededge-M Band Images

The Rededge-M employs a proprietary Auto Gain Control (AGC) algorithm that works to minimize
the number of overexposed pixels, but the number of overexposed pixels will never be zero because
the AGC also wants there to be a maximal number of properly exposed pixels. The AGC optimizes the
gain (ISO) and exposure of each capture for each of the five imagers such that the resulting picture
is properly exposed. The Rededge-M has five imagers that trigger the top of each frame together,
and one “capture” is created during each triggering, which is represented by five different frames,
one for each wavelength band. Each imager has a different filter as to only capture data from the
wavelength band of interest. Because of the AGC, the ISO Speed and exposure time (which can be
inspected in the metadata of each frame) may vary by band on an individual capture, and different
captures taken during the same flight will also vary. The small differences between the exposure times
among frames of a capture usually don’t make a difference. However, motion blur may occur when
there is a large difference (i.e., 1 ms vs. 5 ms) in exposure time between multiple frames in a single
capture. If the camera is mounted on an aircraft and is in motion, the frames with longer exposures will
have motion blur, and will have a slightly different geometric offset compared to the shorter exposure
time. The geometric offset between frames with different exposure times on a single capture will be a
function of the angular rate of the camera and the respective exposure times of the frames. This will
manifest as motion blur, and will result in a difference in average pointing angle of θ2- θ1, where θ2 is
the pointing angle from a frame with a longer exposure time and θ1 is the pointing angle from a frame
with a shorter exposure time. With all this information in mind, while each frame will have had the
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top of the frame triggered at the same instant, the exposure time metadata may be different, resulting
in slightly different exposure times among a single capture. For example, the exposure time of the
5 band images of Scene-A are 1/741, 1/585, 1/780, 1/367, and 1/356 s, respectively, for 475, 550, 668, 717,
and 840 nm, causing the targets to be captured in different status.

3. Methodology and Analysis

3.1. Radiometric and Geometric Calibration

Basic radiometric preprocessing was performed using the processing modules provided on the
Micasense Github page [18]. A Vignette correction was first performed for each band image and
these Vignette-corrected band images were input to the radiometric calibration process to produce the
radiance data. The radial and tangential distortion were corrected according to following formula,

uradial−corrected = u
(
1 + k1r2 + k2r4 + k3r6

)
(1)

vradial−corrected = v
(
1 + k1r2 + k2r4 + k3r6

)
(2)

utangential−corrected = u +
(
2p1uv + p2(r2 + u2

)
(3)

vtangential−corrected = v +
(
2p2uv + p1(r2 + 2u2

)
(4)

where u and v are image coordinates, r =
√

u2 + v2, k1, k2, k3 are coefficients for radial distortion,
and p1, p2 are for tangential distortion. As shown in Figure 1, the Rededge-M acquires radiance at
five wavelengths, through five individual lenses, inevitably leading to misalignment in the band
images. The misalignment can be corrected using a projective transformation, constructed by matching
numerous matching points between two band images. The projective transformation between the
bands is

x′ = Mx, (5)

where x and x′ are 3 × 1 homogeneous vectors of image coordinates in two band images and M is a
3 × 3 non-singular matrix for the projective transformation.

3.2. Water Color Analysis

To conduct water color analysis for the estimation of in-water constituents (e.g., chlorophyll-a
concentration), remote sensing reflectance must first be derived from the radiance measurements.
Remote sensing reflectance (Rrs) can be calculated as

Rrs =
LwT − ρLsky

Ed
, (6)

where LwT is the total radiance from water, Lsky is the downward radiance from the sky, Ed is the
downward irradiance, and ρ is the Fresnel reflectance factor [19,20]. Setting aside ρ, to derive Rrs in
the field, three radiometric measurements are required for each scene: LwT, Lsky, and Ed. The first
two radiance variables—LwT and Lsky—are acquired by capturing the water surface and sky using the
Rededge-M, following the measurement protocol suggested in the ocean color analysis [16]. For both
observations, the recommended azimuth angle is 135◦, with respect to the sun azimuth, and the
recommended zenith angles are 45◦ and −45◦ for the water and sky, respectively.

The measurement protocol is intended to minimize the variation in ρ, which varies from 0.02 to
0.07, depending on wind speed and sun–sensor–target geometry [17], where the factor is confined to
an approximate range of 0.02 to 0.025 when the aforementioned measurement protocol is observed.
However, high-altitude drone images with a wide viewing angle lead to a wide range of viewing zenith
and azimuth angles, in which case, ρ varies significantly outside the 0.02 to 0.025 range, requiring a
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pixel-based adaptive ρ estimation. A simple method to determine ρ adaptively for different locations is
by exploiting the fact that the total water radiance at 840 nm is solely attributed to the surface-reflected
radiance (not to the water-leaving radiance from the water body). This assumption holds when the
water is clear; thus, the water-leaving radiance at 840 nm is nearly zero,

LwT = Lw + Lsrc (7)

Ls f c = ρLsky, (8)

where Lw and Ls f c denote the water-leaving radiance and the surface-reflectance radiance, respectively.
If Lw(840) = 0, then LwT(840) = Ls f c, leading to ρ = LwT(840)/Lsky(840).

There are two options to determine the downwelling irradiance: (1) using the DLS and (2) the
reference panel. The irradiance from the panel reflectance can be calculated as

Ed =
Lre f

π rpanel
, (9)

where Lre f is the radiance from the reference panel and rpanel is the reflectance of the panel. If the two
instruments are located and perfectly calibrated, the results of the two calculations should theoretically
match. In this experiment, the DLS was attached to the UAV and the reference panel measurements
were made on the ship, causing a difference in the altitude. In this experiment, the irradiance
difference caused by the atmospheric conditions (water vapor, aerosol, etc.) was approximately 15–20%.
Because our focus is on the water surface, we opted to use the irradiance measured at the ship level,
via the reference panel.

After Rrs is obtained, it can be used to derive bio-geochemical variables, such as chlorophyll-a(Chla).
To examine the effect of misregistration between the bands and the performance of the proposed
morphological registration method, retrieval results are computed for chlorophyll concentrations,
which is one of the most central biological quantities in the water quality analysis. For Chla
concentrations in a non-turbid ocean condition, the OC2 algorithm, which utilizes one blue and
one green band, was used [10,21].

log10 Chla = a0 +
4∑

i=1

ai

log10
Rrs(λblue)

Rrs
(
λgreen

)  (10)

where Rrs(λ) is the remote sensing reflectance for the wavelengthλ and ai’s are the algorithm coefficients.
The OC2 coefficients for the Landsat-8 operational land imager were used (482 nm for blue and 561

nm for green) for the Rededge-M, whose blue band is centered at 475 nm and the green at 550 nm [21].
For the tested scenes with a red tide outbreak, the red-to-blue ratio (RBR) algorithm [22], developed for
the geostationary ocean color imager (490 nm for blue and 680 nm for green), was used to retrieve the
chlorophyll contents in the bloom. It is important to note that the algorithm coefficients for OC2 and
RBR were not specifically tuned to the Rededge-M in this study because the focus of the study is not on
the precise retrieval of Chla concentrations but the analysis of the impact of misregistration (particularly
spatial pattern). The band centers in the original OC2 and RBR algorithms do not significantly differ
from those of the Rededge-M, from which we can reasonably assume that the spatial anomaly pattern
would be similar, even after the fine calibration of the algorithms to Rededge-M.

3.3. The Impact of Pixel Misregistration on Water Quality Analysis

Figure 5a,b shows the RGB images of Rrs for Scene-A, for the fixed Fresnel factor (ρ =0.025) and
adaptive Fresnel factor cases, respectively. Rrs with a fixed ρ demonstrates that slant viewing angles
cause a high surface reflectance in the upper right corner of the image. It can be observed that wave
facets of different surface normals also led to varying viewing geometry, resulting in a variation of the
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Rrs estimation, which exhibits residual sky reflectance on the surface. On the contrary, the adaptive
approach demonstrates that the variation caused by the viewing geometry is significantly reduced
with less across-image Rrs variation and smaller residual surface reflectances by the wave facets.
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approach was used for panel (b).

Figure 5c,d are the OC2 Chla estimates, derived from the Rrs data, with a fixed ρ and adaptive ρ,
respectively. The large residual surface reflectance caused by the slant viewing angles in the upper right
corner led to significant underestimates of Chla and inflation in the bottom left corner. The anomalies
are less significant in the adaptive ρ case; however, they have not been completely removed, even
with the adaptive scheme. This implies that the surface-reflectance mechanism is more complex than
what is described by the adaptive scheme model (e.g., the existence of a nonlinear band-by-band
behavior). The phenomenon to focus on here is the large and noise-like Chla variation in a small-scale
window. For a more detailed analysis, the subset areas marked by the red rectangles in Figure 5c,d were
displayed in Figure 6. The Chla subset images show that the pixel-to-pixel variation is significantly
large for both the fixed and adaptive approaches and such a high-frequency pattern is not caused
by the real Chla spatial variation in the field. The adaptive approach exhibited a similar degree of
variation to the fixed approach, which reveals that the noise-like pattern is not from the variation of
wave facets. The images of Band 4 and Band 5 support this interpretation because the spatial pattern of
the reflectance in the two bands are consistent with each other and it reflects the wave facet distribution
(note that the two NIR bands have Rrs values of almost zero; therefore, the residual surface reflectance
mostly contributes to the reflectance of the bands). The spatial variation of Chla and NIR Rrs appears
to have no clear spatial correlation, implying that the high Chla variation in the images is not caused
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by the residual surface reflectance (equivalently, the viewing geometry) but from a factor related to the
image quality or pixel registration.Remote Sens. 2020, x, x FOR PEER REVIEW  9 of 20 
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Figure 6. Chla images for the subset area marked in Figure 5, with (a) the fixed ρ and (b) the adaptive
ρ, and water reflectance images for Band 4 (c) and Band 5 (d).

A regression analysis was performed on a further subset area (40 × 40 pixels) of the scene. Figure 7
shows the scatter plots of the pixel-to-pixel water reflectance of four bands (Bands 1 and 3–5), with
respect to the reference band, Band 2. In all bands, a general linear relationship was identified;
however, it showed a low correlation (R2 < 0.75). To assess the spatial pattern of the misregistration,
the Band 2 image was regressed to Band 1, using the slope and offset estimated in the regression
analysis. The difference between the original Band 1 reflectance and the regressed Band 1 image
(Figure 7b) clearly shows a pixel-wise mismatch and the spatial patterns differ from that of the wave
facets. It can be observed that the Chla estimation from the mismatch data (Figure 7b) shows a similar
spatial variation to that of the difference image.
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Figure 7. (a) Regression results between the water reflectance for multispectral bands, with respect to
Band 2, and (b) water reflectance for a 40 × 40 pixel subset area of Band 1, Band 1 estimates regressed
from Band 2, the difference, and Chla estimates from the two bands.

3.4. Proposed Approach for the Morphological Registration

Because the surface of the water is not a rigid body, no geometric transformation can find its
appropriate pixel-to-pixel correspondence. For a solution, the overall reflectance distribution must be
conserved in a sufficiently small area (referred to as “window” hereafter), even if we do not know
which pixel in a window corresponds to a pixel in the other band. The images of all five bands contain
five instances of the scene at slightly different timings. Consequently, it can be assumed that the
distribution of physical quantity, such as the radiance, does not significantly vary in the short period.
By setting the image acquisition time of one band as a reference time frame, the radiometric values of
the other bands can be matched to the reference band, according to the radiometric distribution, not the
pixel location. Figure 8 shows the quantile-to-quantile plot (QQ plot) of the four bands, with respect to
Band 2, exhibiting that the radiometric relationship can be established with a nearly perfect correlation
when the reflectance of the two bands are compared based on the quantile in reflectance, not on the
pixel location. A comparison of the QQ plot with the previous pixel-to-pixel scattered plots (Figure 7)
reveals how the pixel-to-pixel misregistration, based on the location, degraded the correlation between
the bands. In all four cases of the QQ plots, R2 is nearly one, producing band-dependent slopes and
offsets for the linear relationship. Using this new linear model, the Band 2 image was regressed to
Band 1 and compared with the previous results from the regression analysis. Figure 9 shows that
Band 1, regressed from the QQ plot, exhibits reflectance levels that are more similar to the original
Band 1 image than the location-based regression case. The application of the linear models, derived
by the QQ plots, to all four bands, serves as the morphological registration between bands and the
subsequent Chla estimation produces a significant improvement in the image quality (Figure 10).
Figure 10 shows that the noise pattern for Chla in the original data was significantly reduced and the
corrected Chla image contains only the spatial variation caused by wave facets, without being affected
by the pixel-to-pixel misregistration. The mean and median values are comparable between the two
results; however, the standard deviation and the coefficient of variation reduce from 1.03 to 0.28 and
from 29% to 8%, respectively.
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Figure 8. The QQ plots of water reflectance for the four spectral bands, with respect to Band 2 and the
corresponding regression results.
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Figure 10. Chla estimation from Rrs for the subset area in Scene-A: (a) original Rrs and (b) Rrs composited
through the QQ-based regression.

Because the determination of the window size can be critical for this approach, the sensitivity of the
window size has been investigated. Six different window sizes—15, 25, 51, 101, 251, and 501 pixels—were
tested for the QQ plots between Bands 1 and 2 (Figure 11). The window areas for the various sizes were
displayed in the corrected Band 1 reflectance image. The plots showed that a high correlation between
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Bands 1 and 2 was maintained throughout all window sizes; however, the derived linear relationships
were different for different window sizes. As the window size increased, the slopes increased and the
y-intercepts decreased. This reveals that the reflectance distribution may change depending on the
areas used for the QQ calculation and the local characteristics (in a small window) may be lost when
the QQ is derived for a large area. To achieve the goal of the proposed morphological registration,
the window size must be kept as small as the local distribution because fetching the reflectance value
from a distant location may not guarantee that the two values are from the continuum of targets.
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Figure 11. Regression results for varying sizes of the QQ plot calculation window. The extent of each
window is marked in the corrected Band 1 image.

4. Algorithm Application and Results

4.1. Algorithm Development for the Entire Image

The QQ plot approach is iterated over the image dimension to process the entire image. However,
the calculation of quantiles, which is essentially an order statistics, for all pixels requires exhaustive
computation with the complexity of O(n·log n). A Rededge-M image consists of 1280 × 960 pixels,
which totals to ~1.2 × 106 pixels. Thus, we employ an alternate fast approach, where the QQ calculation
is performed for subsampled pixels (e.g. every n-th pixel), and the resultant linear model coefficients
(i.e., slope and y-intercept) are propagated to the vicinity of the subsampled pixels with distanced
weights assigned by a 2-dimensional Gaussian filter. Figure 12a,b displays the slope and the y-intercept
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images that were calculated at every pixel, which were then compared with the images obtained with
the subsampling scheme, involving the Gaussian filers (Figure 12c,d) (the window size of the Gaussian
filter (wgauss) was 25, and the step size (dstep) was 12). While the spatial patterns do not significantly
deviate from each other, the computation time scales down from 12 min to 1 min per band, saving more
than 90% of the computation time (computation done with Intel®CoreTM i-5-8265U CPU@1.60GHz,
and 8GB RAM). The overall flow chart of the algorithm is presented in Figure 13.
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4.2. Results

The proposed algorithm was applied to the four data sets listed in Table 1. Figure 14 shows
the comparison between the Chla estimates, before and after the application of the algorithm for
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Scene-A, taken at an altitude of 85.4 m. The high-frequency Chla variation before the correction was
significantly and consistently reduced after the correction, over all areas of the image, enhancing the
sharpness of the wave features on the surface. Note that the extremely high Chla values under the ship
is caused by the ship shadows that made the blue-to-green ratio significantly altered compared to the
sun shed areas, thus the anomalously high Chla values are not artifacts of the proposed morphological
registration method.
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magnified for improved visual evaluation.

The evaluation of images captured at various altitudes is important because the effect of
misregistration may vary with the spatial frequency of surface reflectance features. Data sets from
8.1 m (Scene-B) and 196 m (Scene-C) were tested and the results are displayed in Figures 15 and 16,
respectively. The figures display four types of Chla estimates, each of which is derived from (1) Rrs

data before the correction, (2) Rrs data after low pass filtering with a 2 × 2 average window, (3) Rrs

data after low pass filtering with a 32 × 32 average window, and (4) Rrs data after correction using
the proposed morphological registration. Figure 15a shows the results for Scene-B (altitude 8.1 m),
where the Chla estimates before the correction exhibits a very noisy spatial pattern, which remains
even after the 2 × 2 mean filter. The noisy pattern was not minimized until the size of the mean filter
increased to 32 × 32, as shown in the figure. The Chla estimates, with the morphological registration,
exhibited a noise-free retrieval while maintaining the sharpness of the image. Note that the 32 × 32
mean filter removed the noise at the expense of losing spatial details, or sharpness. For a more detailed
evaluation, a boxed area, marked in the figure, is displayed in Figure 15b. The figure demonstrates
that the misregistered pixels caused many spikes with Chla estimates exceeding 3.0 mg/m3 in the
original resolution. In the 2 × 2 mean filter case, the Chla values of the corrected estimates are in the
level of approximately 2.0 mg/m3, with the lowest value at approximately 1.0 mg/m3. It is neither
realistic that Chla varies with a factor of three in such a small area (< 1 m2) nor true that the viewing or
reflecting geometry changes with such a high frequency. The scatter statics such as standard deviation
and coefficient of variation decreased significantly after the morphological registration compared to
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the 2 × 2 mean filter (s.d.: 601 to 0.2, c.v.: 14224% to 15%), while the median value stays similar (1.745
to 1.768), implying that the outliers caused by misregistration significantly deteriorated the image
quality. It is shown that the mean values were also significantly affected by the noise (4.228 to 1.745).Remote Sens. 2020, x, x FOR PEER REVIEW  16 of 20 
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Figure 15. Scene-B, acquired on 2019.08.31 at an altitude of 8.1 m. (a) Chla estimates from four 
different processings of ܴ௥௦ data; (upper left) before morphological registration, (upper right) after 
2 × 2 mean filter on water reflectance, (bottom left) after 32 × 32 mean filter on water reflectance, 
and (bottom right) after morphological registration. (b) Magnified figures for the subset area 
marked in a red box in panel (a). 

Figure 15. Scene-B, acquired on 2019.08.31 at an altitude of 8.1 m. (a) Chla estimates from four different
processings of Rrs data; (upper left) before morphological registration, (upper right) after 2 × 2 mean
filter on water reflectance, (bottom left) after 32× 32 mean filter on water reflectance, and (bottom right)
after morphological registration. (b) Magnified figures for the subset area marked in a red box in
panel (a).
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Figure 16. Scene-C acquired on 2019.08.31 at an altitude of 196 m. (a) Chla estimates from four different
processings of Rrs data; (upper left) before morphological registration, (upper right) after 2 × 2 mean
filter on water reflectance, (bottom left) after 32× 32 mean filter on water reflectance, and (bottom right)
after morphological registration. (b) Magnified figures for the subset area marked in a red box in
panel (a).

The results for the scene of much higher altitude (Scene-C (196 m)) are presented in Figure 16.
It shows that the scene is in general more homogeneous than the previous low-altitude image (Scene-B
(8.1 m)), and it exhibits a gradual radiance change across the scene with the boxed area occupied with
fairly homogeneous radiance values. However, even if the surface features have a significantly smaller
scale than the low-altitude images, the noisy pattern is still strong in all areas of the image as well as in
the boxed area, which was effectively removed by the morphological band registration. In the boxed
area, while the mean and the median values stay similar (mean: 2.248 to 2.229, media: 2.225 to 2.224),
the scatter statics greatly improved (s.d.: 0.243 to 0.0066, c.v.: 11% to 3%) (Figure 16b). The proposed
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algorithm was also tested on a scene with an event in a part of the image (Figure 17). Scene-D was
acquired for a strong red tide outbreak of Cochlodinium polykrikoides (the species was confirmed from
microscopic analysis during the field campaign) and the Chla contents were estimated with the RBR
algorithm. The morphological registration reduced the number of pixels that had extremely high Chla
estimates (> 50 mg/m3), which are considered to be generated misregistration pixels. While the overall
extent and concentration level in the morphological registration is comparable to that of the 32 × 32
filter results, a spatial pattern of a higher frequency is still observable in the improved result.
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different processings of ܴ௥௦ data; (upper left) before morphological registration, (upper right) after 
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multispectral camera, which is particularly problematic for fast-moving targets such as the water 
surface. The analysis suggested that the residual misregistration is difficult to correct using 
geometric coordinate transformation (e.g., projective transformation). It produces abnormal band 

Figure 17. Scene-D acquired on 2019.08.31 at an altitude of 390 m. (a) Chla estimates from four
different processings of Rrs data; (upper left) before morphological registration, (upper right) after
2 × 2 mean filter on water reflectance, (bottom left) after 32 × 32 mean filter on water reflectance,
and (bottom right) after morphological registration. (b) Close-up figures for the subset area marked in
a red box in panel (a).
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5. Discussion and Conclusions

This study analyzed the impact of residual misregistration between the bands of a multispectral
camera, which is particularly problematic for fast-moving targets such as the water surface.
The analysis suggested that the residual misregistration is difficult to correct using geometric coordinate
transformation (e.g., projective transformation). It produces abnormal band ratios and band differences,
resulting in significant anomalies in the water quality variables, such as the Chla concentration.
The proposed registration algorithm succeeded in effectively removing noisy spatial patterns caused by
the misregistration while maintaining the original spatial resolution of the image, unlike the smoothing
approach which significantly degrades the sharpness of the images. Contrary to the intuition that
high-altitude images will be less affected by pixel-level misregistration (because a scene appears more
homogeneous when observed from far), the test results for various altitudes showed that the residual
misregistration exist at all tested altitudes (8–390 m). This suggests that there exist various frequencies
of the surface reflectance feature on the water surface. The proposed algorithm was robust to local
events that occurred in a partial section of the image, which may have distinct spectral characteristics
of the remaining image area (usually normal water surface), as shown in the red tide image.

The proposed method is expected to improve estimation of other water quality variables such as
colored dissolved organic matter (CDOM) and total suspended sediments (TSM) as many of the CDOM
and TSM retrieval algorithms rely on the band ratio of reflectance.

Future work includes analysis on the effects on other water quality variables, and also the further
correction of residual sky reflectance that is often caused by the spatially varying normals of the
wave facets. The residual sky reflectance still existed even after the morphological band registration.
The research requires a comprehensive understanding of the reflecting mechanism and more detailed
modeling of the surface reflectance, associated with the analysis on the downward sky radiance
incident on the water surface.
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