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Abstract: Lakes have been identified as an important indicator of climate change and a finer lake
area can better reflect the changes. In this paper, we propose an effective unsupervised deep
gradient network (UDGN) to generate a higher resolution lake area from remote sensing images.
By exploiting the power of deep learning, UDGN models the internal recurrence of information
inside the single image and its corresponding gradient map to generate images with higher spatial
resolution. The gradient map is derived from the input image to provide important geographical
information. Since the training samples are only extracted from the input image, UDGN can adapt to
different settings per image. Based on the superior adaptability of the UDGN model, two strategies
are proposed for super-resolution (SR) mapping of lakes from multispectral remote sensing images.
Finally, Landsat 8 and MODIS (moderate-resolution imaging spectroradiometer) images from two
study areas on the Tibetan Plateau in China were used to evaluate the performance of UDGN.
Compared with four unsupervised SR methods, UDGN obtained the best SR results as well as lake
extraction results in terms of both quantitative and visual aspects. The experiments prove that our
approach provides a promising way to break through the limitations of median-low resolution remote
sensing images in lake change monitoring, and ultimately support finer lake applications.

Keywords: unsupervised super-resolution; lake; remote sensing; residual network; gradient map

1. Introduction

Lakes are dynamic systems that support enormous biodiversity and provide key provisioning
and cultural ecosystem services to people around the world [1]. Since the changes in lakes, such as
expansion and shrinkage are closely related to the effect of climate and human activities [2], lakes can
act as a salient indicator of environmental change. In recent decades, accelerated climate warming and
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rapid economic development have brought about great influence on global lakes. The remote sensing
(RS) technique makes long-term and wide-coverage lake monitoring possible. It has been applied to
long-term lake evolution [3], lake water storage changes [4], lake level changes [5], etc. However, most
studies focused on lakes larger than 10 km? [6-8] due to the limitation of the spatial resolution of RS
images. Zhang et al. (2015) indicated that small lakes are more sensitive to climate change because
the area changes of small lakes caused by climate change are more significant. As such, generating
finer lakes with higher spatial resolution from remote sensing images is of great significance for climate
change research.

The super-resolution (SR) technique aims to reconstruct a higher resolution image from its original,
low-resolution version, and it has been successfully used in various fields, such as wetland inundation
mapping [9], high-resolution digital elevation model (DEM) generation [10,11], remote sensing [12-15]
and computer vision [16-19]. Utilizing the SR technique to improve the spatial resolution of the lake
area is a promising method, which has advantages of low cost, easy implementation, and high efficiency
compared to updating image acquisition devices [13].

The existing SR methods can be roughly divided into two categories: supervised SR and
unsupervised SR. The former requires large amounts of low-resolution (LR) images and corresponding
high-resolution (HR) images for training [20]. While collecting images of the same scene in high
resolutions is very difficult and the image pre-processing and fusion are time-consuming. In addition,
the performance of supervised SR methods largely depends on the training samples. Once the test
data has different distribution with the training samples, the performance of these models deteriorates
significantly [21]. In the contrast, unsupervised SR methods require no matched LR-HR image pairs,
which are more flexible to handle different image settings and more likely to cope with the SR problems
in real-world scenarios such as generating a higher resolution lake area.

Traditional unsupervised SR methods including bicubic interpolation (BCI), gradient profile
prior (GPP) [22], iterative back projection (IBP) [23], and transformed self-exemplars (TSR) [24]. With
the development of deep learning, many advanced models, such as deep generative networks [25,26],
cycle-in-cycle SR network [27], and “zero-shot” super-resolution (ZSSR) model [21], have been proposed
and greatly improved the unsupervised SR performance. ZSSR exploits the internal statistical law
within each input image. It trained a small image-specific convolutional neural networks (CNN) at test
time, on examples extracted solely from the input image itself. Therefore, ZSSR can adapt to different
image settings such as different image channels and image sizes, which can well support the extraction
of high-resolution lakes from different multispectral RS images.

However, there are some problems to apply ZSSR in our task directly: (a) the geographic
information in RS images such as terrain, structure, edge, has a great impact on lake mapping.
Including these information details in the super-resolved HR images are significant; (b) the original RS
data may be difficult to collect, sometimes we need to generate higher resolution lakes from products
such as the normalized difference water index (NDWI) map provided in public.

Considering all the above, the unsupervised deep gradient network (UDGN) is proposed to
generate a higher resolution lake area. The UDGN model exploits the power of deep learning
and consists of feature fusion, deep feature extraction, upsampling and reconstruction modules.
The gradient map of the input image is obtained and fused with the input image to provide more
geographic details for SR. UDGN inherits the advantages of ZSSR, i.e., it can handle images with
different channels, different sizes. Based on UDGN, two strategies are designed to flexibly generate
lakes with higher resolution from original RS images or intermediate products. Fine lakes mapping
with higher resolution can better reflect the effect of climate and human activities. To summarize,
the main contributions of this paper are as follows.

(1) The deep learning-based SR technique is first introduced to the lake area extraction process to
improve the spatial resolution and generate a finer lake area.
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(2) A new unsupervised SR model UDGN is proposed based on a deep residual network in this
paper. It does not require pretraining and can be adapted to different settings of images, such as
different image sizes and channels.

(3) The features of the gradient map are extracted and fused in the network to provide more
geographic details in HR images.

(4) Weverify the effectiveness of our method with two data sets, the results demonstrate the superiority
of our method in improving the spatial resolution of lake area extraction.

2. Materials and Methods

2.1. Study Area and Data

Two study areas are selected from the Tibetan Plateau (TP), as shown in Figure 1. The TP is
the largest and highest plateau in the world, and there are numerous lakes distributed throughout
the TP [4]. Along with the Arctic region and Antarctica, the Tibetan Plateau (TP) and the Mongolian
Plateau (MP) are among the world’s most sensitive regions to climate change [28]. Hence, monitoring
accurately the changes of lakes in the TP is of great importance for climate change research. In this work,
two typical areas located in the TP, China are chosen to evaluate the effectiveness and practicability of
our method. Study area 1 has a large tectonic lake (Yamzho Yumco) with irregular edges, which is used
to verify the superiority of our proposed SR method when dealing with lakes with complex terrain
and intricate structures. In terms of study area 2, there are many small lakes such as Sangzhen and
other no-name lakes (<10 km?) which are difficult to be recognized in low-resolution RS images. Study
area 2 is used to test the SR performance of our method for very small lakes on real low-resolution
RS images.
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Figure 1. Study area map. (a) Tibetan Plateau (TP) area (the shapefiles of lakes are obtained from [29]),
(b) Location of study area 2 shown in a color composite (R5G4B3) Landsat 8 OLI image, (c) Location of
study area 1 shown in a color composite (R5G4B3) Landsat 8 OLI image, (d) Lake image derived from
Landsat image of study area 2, (e) Lake image derived from Landsat image study area 1.

The Landsat-8 OLI, MODIS, and Sentinel 2 images are acquired from google earth engine
(https://earthengine.google.com). Detailed information of the two areas is summarized in Table 1.
Locations of the study areas are shown in color (R5G4B3) Landsat images in Figure 1b,c respectively.
The lake images shown in Figure 1d,e are derived from the corresponding Landsat images at 30 m
resolution using the NDWI method.


https://earthengine.google.com
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Table 1. Main characteristics of the two study areas and the data information.

Properties Study areal

Study area2

28.727°-29.203N°,
90.365°-91.085°E

Location

32.672°-33.278°N,
87.572°-88.480°E

32.675°-33.274°N,
87.574°-88.478°E

32.849°-33.277°N,

88.047°-88.497°E
Image Data Lanqsat 8 OLI Lan@sat 8 OLL MODIS image Sentinel 2 image
image image
October 13, 2014 October 13, 2014
Date October 15, 2014 August 18, 2017 August 18, 2017 August 11, 2017
Image size 2688 x 1760 3354 x 2220 202 x 135 5015 x 4767
Image resolution 30m 30m 500m 10m

2.2. Owverview of the Proposed Method

Figure 2 shows the flowchart of the proposed method for generating finer-scale lakes from
RS images, the core idea is to break the spatial resolution limitations of the original RS images by
introducing a super-resolution method. There are two main components of the whole workflow: lake

area extraction (LAE) and image SR.

Strategy 1

—b[ NDWI H(}radient of NDWI}
LR Image

UDGN Super Resolution

Threshold

[Feature Fusion

Deep Feature . .
Extration ]—{ Upsampling HReconstmcnonJ

h

Input

LR Image \\

Strategy 2

Gradient of Image

Figure 2. Flowchart of higher resolution lake area extraction (LAE) from remote sensing (RS) images.
Two strategies using the unsupervised deep gradient network (UDGN) model are proposed to improve

the spatial resolution of the lake area.

In LAE, the normalized difference water index (NDWI) is adopted to automatically separate water
and non-water features. The NDWI has been widely used for water and lake body classification from
RS images [30-32]. It is calculated according to the following equation:

NDWI = (Green — NIR) / (Green + NIR)

M
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where Green denotes the green band and NIR is the near-infrared band, and the range of the color slice
with 0-1 is chosen to extract the water body boundary according to [4].

The SR method aims to improve the spatial resolutions of each input LR image. The UDGN model
mainly consists of four parts: feature fusion, deep feature extraction, upsampling, and reconstruction.
The first part fuses the features of image gradient information and original LR images; the second part
aims to extract more complex and deep features from the fused features; the third part devotes to
improve the spatial resolution, and the last part finally generates the HR image.

Two strategies are proposed in this paper to improve the spatial resolution of the lake area
(Figure 2). Strategy 1 is to generate the NDWI map first, then the SR model is applied to get the NDWI
map with higher spatial resolution. Finally, the lake area is extracted through the threshold. Strategy
2 is to super-resolve the original multispectral RS images via the SR model, and the NDWI map is
subsequently calculated from the reconstructed HR image to identify the lake areas. The biggest
difference between the two strategies is the input content of the SR model. Strategy 1 takes the NDWI
product as input while strategy 2 takes the original RS image. Both two strategies construct an
end-to-end high spatial resolution LAE procedure to provide better support for finer lake monitoring.

In reality, we usually encounter many challenges such as lack of sufficient RS images, and
it is difficult to use existing products to obtain better spatial resolution accurately. UDGN is an
unsupervised learning method, which can adapt to different image sizes, channel numbers, and types.
With the properties of the UDGN method, we do not require amounts of paired images for training,
thus we can directly improve the spatial resolution of products such as the NDWI maps.

2.3. Unsupervised Super-Resolution Mechanism

Compared to supervised learning, unsupervised learning does not require paired LR-HR images
for training. In this paper, inspired by [21], a new unsupervised deep learning-based SR method
UDGN is proposed.

In the proposed method, unsupervised learning is based on the hypothesis that the repeated
occurrence of small image patches across scales of a single image is a very strong property of natural
images [33,34]. It is the same for the RS images. As shown in Figure 3, the mountain and lake patches
are shown to repeat many times inside the whole image. Therefore, our method relies only on the input
LR image and exploits image-specific information to generate a super-resolved image.

(a) Mountain (b) Lake

Figure 3. Examples of self-similar patterns inside a RS image.

Specifically, the unsupervised learning mechanism is shown in Figure 4. Each test image I is
down-sampled first to obtain the lower-resolution image I;g. Then, corresponding image patches
derived from I; g and Iy are collected as samples to train the UDGN model. Last, the trained model is
applied to the test image to produce the HR image Iyr.
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Figure 4. Unsupervised learning mechanism. An image-specific UDGN model is trained on examples
extracted internally, from the test image itself. The test image is firstly down-sampled to lower
resolutions, and then the UDGN is trained to recover the test image from its low-resolution (LR)
versions. Finally, the resulting self-supervised network is applied to the test image to produce
high-resolution (HR) images.

Because the learning of the model focused on a single image, it can avoid interference from other
image features, image quality, noise, etc. In addition, the model can learn features more precisely and
specifically. Furthermore, since our model does not require pre-training, it can adapt itself to different
settings per image, such as different image sizes and different numbers of input channels. This allows
us to perform SR of RS images and intermediate products (e.g., the NDWI image in this paper).

2.4. The Structure of the UDGN Model

The UDGN model aims to learn the cross-scale internal recurrence of image-specific information
and use this information to improve the spatial resolution of each test image. Finally, extracting HR
lakes from the super-resolved images. The architecture of the UDGN model is shown in Figure 5.
The network consists of convolution (Conv) layers, rectified linear unit (ReLU) layers, fusion layer
(Fusion), element-wise-sum layers, pixel-shuffle layers, and several residual blocks (ResBlock). Conv
layers are to extract low-level features and the ReLU layer is taken as an activation function for nonlinear
mapping. The fusion layer is to concatenate the feature maps for feature fusion. The pixel-shuffle layer
is to transform the feature maps into the size as desired for HR output.

In the feature fusion part, the gradient map of the LR image is obtained with Sobel Operator [35]
first. The gradient map is important in boundary detection because images often change most quickly
at the boundary between objects (Jacobs, 2005), and this information is important for lakes extraction.
Then, two simple CNNSs are built to preliminarily extract shallow features of both the LR image
and its gradient map. The LR image can provide much low-frequency information. By fusing with
high-frequency information contained in the gradient map, the integrated feature maps can retain
more comprehensive details in a super-resolved HR image.
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Figure 5. The architecture of the proposed UDGN.

In the deep feature extraction part, several ResBlocks are devoted to extract high-level features
and learn the complex mapping between LR and HR images. Each ResBlock consists of two Conv
layers and a ReLU layer.

In the upsampling part, several pixel-shuffle layers are used to improve image size gradually.
The detailed description of this kind of layer can be found in [36]. Each pixel-shuffle layer upscales
two times.

In the reconstruction part, the original input LR image is interpolated to the HR size to provide
global low-frequency information. By integrating the interpolated image and the HR residual, the HR
image is finally obtained.

In summary, the proposed network has three main characteristics:

I.  Deep: it can efficiently extract deep features and complete multi-spectral RS-SR tasks.

II.  Geographic information preservation: By the fusion of the gradient information to enhance
the original image, more geoinformation such as terrain and texture can be preserved, which
provides a good foundation for subsequent LAE.

III. Adaptive: it can super-resolve RS images/products of different image sizes and channels.

2.5. Evaluation Criteria

To evaluate the performance of the proposed method quantitatively, we adopt two groups of
criteria, one group for SR performance evaluation and the other group for LAE accuracy evaluation.

Peak signal-to-noise ratio (PSNR) [37], structural similarity index (SSIM) [38], the normalized
root mean square error (NRMSE) [25], and the spectral angle mapper (SAM) [39] are used to evaluate
the SR performance. PSNR is measured in decibels (dB). The larger the PSNR and SSIM, the better
the SR performance. The smaller the values of NRMSE and SAM, the better the SR effect.

In terms of LAE accuracy assessment, overall accuracy (OA), Kappa coefficient (KC), average
producer’s accuracy (APA), and average user’s accuracy (AUA) are utilized. These criteria have been
used in many types of research, such as water body extraction [40], urban flooding mapping [41],
and wetland inundation mapping [9]. A higher value of these criteria indicates the method is of
higher quality.
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3. Results
3.1. Implementation Details

3.1.1. Architecture Details of UDGN

When the upscale factor is 4, the specific settings of the components of UDGN are listed in Table 2.
The kernel size of each Conv layer is 3 X 3. During the training phase, the loss function is an L1 loss,
and the optimization algorithm is Adam. The learning rate is set to 0.001, and multiplied by 0.1 after
60 epochs.

Table 2. The specific architecture of UDGN when the upscale factor is 4.

Layer Kernel Size Number of Output Size Stride
Kernels
CNN1 33 Conv 32 nxm 1
. 3 x3 Conv
Feature Fusion - s
3x 3 Conv
CNN2 - 3%3 Cony _ 32 nxm 1
3 x3 Conv 64 nxm 1
[ 3x3 Conv |
ResBlock1 » 3% 3 Cony _ 64 nxm 1
[ 3x3 Conv |
Deep feature ResBlock2 - 3% 3 Conv _ 64 nxm 1
extraction r ;
ResBlock3 3x3 Conv 64 nxm 1
| 3x 3 Conv |
[ 3x3 Conv |
ResBlock4 » 3% 3 Conv _ 64 nxm 1
[ 3%3Conv |
ResBlock5 » 3% 3 Conv _ 64 nxm 1
3 x 3 Conv 64 nxm 1
3 x3 Conv 64x4 x 4 nxm 1
Upsampling pixel-shuffle 2n X 2m
pixel-shuffle 4n X 4m
. Interpolation 4n X 4m
Reconstruction
Element-wise sum 4n X 4m

3.1.2. Training Data Extraction

As illustrated in Section 2.3, for each test image, we train a specific network with training samples
derived from the test image refereed to [21]. Specifically, at each iteration, we take a random crop
of fixed size from a randomly-selected example pair. The crop size should be smaller than the size
of the input image. In this paper, the crop size is typically set to 256x256. In addition, we use
augmentation methods to generate more training examples to fully train the model. The augmentation
methods include flipping, rotating, and panning the image randomly.

3.2. Results of Two Strategies

To compare the performance of the two strategies for producing a higher resolution lake area,
we test our method on Landsat 8 dataset of study area 1. For strategy 1, the NDWI map is used as
the input of the SR model, while for strategy 2, the original RGB RS image is used as the input. Band 5
and Band 3 are the NIR band and Green band, respectively, which are used to calculate the NDWI map
as formulated in Equation (1).
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The LAE results are shown in Table 3, and the visual results when the upscale factor is 4 is shown
in Figure 6. In addition, Figure 7 further demonstrates the difference between the SR image and
the ground-truth image. From the global aspect, Table 3 indicates that the performance of a 3 channel
input is better than 1 channel. For instance, when the upscale factor is 8, the Kappa of strategy 2 is
0.9718, while that of strategy 1 is 0.9372. In addition, except for the AUA values, the OA, APA, and
Kappa results of strategy 2 are all larger than strategy 1. In terms of the visual results, it is apparent
that strategy 1 tends to obtain lake areas with more noises around the edges. As we can see from
Figure 7b, there are many green pixels around the lakes, indicating that many land pixels are wrongly
classified as lakes. In addition, using strategy 1, some small rivers (in purple circles) are super-resolved
to be much bigger than the actual. In contrast, strategy 2 is able to achieve HR images with sharper
and clearer lake structures and the noises are much less than strategy 1.

’: ().

Figure 6. HR lake mapping obtained from two strategies with an upscale factor of 4. (a) ground-truth

lake area, (b) lake area extracted by strategy 1, (c) lake area extracted by strategy 2.
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Table 3. Detailed results of two strategies on different upscale factors.

Evaluation Criteria Upscale Factor Strategy 1 Strategy 2
OA 2 0.9930 0.9986
AUA 2 0.9993 0.9942
APA 2 0.9627 0.9978
kappa 2 0.9764 0.9951
OA 4 0.9902 0.9972
AUA 4 0.9987 0.9869
APA 4 0.9487 0.9972
kappa 4 0.9670 0.9904
OA 8 0.9809 0.9918
AUA 8 0.9977 0.9722
APA 8 0.9046 0.9813
kappa 8 0.9372 0.9718

(b)

B Classified as lake in both SR image and ground-truth image

Classified as lake in SR image, while in actual is not lake

B Classified as non-lake in SR image, while in actual is lake

Figure 7. Difference between SR images and ground-truth image. (a) Difference between strategy 1
and the ground-truth image, (b) Difference between strategy 2 and the ground-truth image.

The reasons for the different effects of the two strategies are as follows: first, in the NDWI
calculating process, much important information is lost such as other land cover feature types, different
spectral information, and topographic information around the lake. In strategy 1, the NDWI image
is generated firstly and then the super-resolution is conducted directly on the NDWI image. Edge
noise is easy to occur during the super-resolution since there is no more neighboring topographic and
spectral information to provide as constraints. On the contrary, the calculating of NDWI is the last
step of strategy 2, which can avoid the problems faced with strategy 1. In addition, using the original
multi-band image as the input of the SR method, the obtained gradient map can better reflect the real
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terrain condition and the relative values of the Green band and the NIR band can be well preserved in
the HR image. In this way, strategy 2 is able to further improve the LAE accuracy.

In the real world, it depends on the specific demand to choose the proper strategy. For example,
when the acquisition, splicing, and fusion process of original RS images is difficult. Researches can
use strategy 1 to directly improve the spatial resolution of the previously generated product (e.g,
lake/NDWI map). When the original image is readily available, it is recommended to use strategy 2 to
obtain the lake more accurately. In addition, the fewer image channels that are input to the SR model,
the less computing resources and memory they consume.

3.3. Comparison with Different SR Methods

In this section, our method is tested on the Landsat 8 dataset of study area 1. The process of
all the methods is consistent with strategy 1. Firstly, the NDWI map is obtained using band 5 (NIR
band) and band3 (Green band) of the Landsat 8 image. The experiments are carried out with three
different upscale factors, i.e., 2, 4, and 8. Since there is no real LR-HR paired data, the original NDWI
image is down-sampled using the BCI algorithm with corresponding factors to obtain LR images of
different scales.

In addition, to verify the effectiveness and superiority of our method, different types of
unsupervised SR methods including traditional method (i.e., BCI), machine learning methods (i.e.,
IBP [23] and TSR [24]) and deep learning method (i.e., ZSSR [24]) and a supervised SR method
super-resolution convolutional neural network (SRCNN) [42] are used to compare the SR performance
as well as the accuracy of LAE. All the methods are used considering the default settings suggested
by the authors. IBP and TSR are implemented in MATLAB while others are implemented in Python.
The detailed results of different upscale factors and different methods are shown in Table 4. From
a global perspective, SR with larger upscale factors has worse results. Furthermore, as we can see from
Table 4, our proposed method achieves the best results on all the evaluation criteria.

Table 4. Comparison results of different methods.

Upscale Evaluation

. BCI IBP TSR SRCNN ZSSR UDGN
Factors Criteria

OA 0.9901 0.9803 0.9871 0.9871 0.9866 0.9930

AUA 0.9998 0.9997 0.9995 0.9983 0.9991 0.9993

APA 0.9472 0.9005 0.9327 0.9337 0.9306 0.9627

” kappa 0.9667 0.9355 0.9570 0.9571 0.9554 0.9764
PSNR 33.4038 34.4224 37.2856 34.9307 39.0759 39.3095

SSIM 0.9745 0.9750 0.9819 0.9741 0.9839 0.9858

NRMSE 0.0214 0.0190 0.0137 0.0179 0.0111 0.0108

SAM 0.0662 0.0588 0.0423 0.0551 0.0344 0.0335

OA 0.9783 0.9631 0.9694 0.9801 0.9715 0.9902

AUA 0.9996 0.9996 0.9996 0.9983 0.9988 0.9987

APA 0.8914 0.8280 0.8534 0.9006 0.8626 0.9487

4 kappa 0.9291 0.8830 0.9019 0.9348 0.9082 0.9670
PSNR 29.4002 30.1131 33.3130 29.8395 34.5430 35.1123

SSIM 0.9481 0.9387 0.9600 0.9481 0.9628 0.9726

NRMSE 0.0339 0.0312 0.0216 0.0322 0.0187 0.0176

SAM 0.1050 0.0967 0.0669 0.0986 0.0556 0.0543

OA 0.9562 0.9284 0.9390 0.9594 0.9386 0.9809

AUA 0.9996 0.9995 0.9994 0.9980 0.9992 0.9977

APA 0.8022 0.7126 0.7444 0.8150 0.7434 0.9046

8 kappa 0.8631 0.7881 0.8158 0.8723 0.8148 0.9372
PSNR 25.9517 26.5812 29.1790 23.8941 29.5749 30.0654

SSIM 0.9081 0.8873 0.9232 0.9146 0.9234 0.9459

NRMSE 0.0504 0.0469 0.0348 0.0639 0.0332 0.0314

SAM 0.1565 0.1456 0.1078 0.1698 0.1029 0.0973
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In terms of the SR performance, the calculated PSNR, SSIM, NRMSE, and SAM results illustrate
that our method can reconstruct information from LR images better than other methods. For example,
when the upscale factor is 4, the PSNR and SSIM of our method are 35.1123 dB and 0.9726, respectively,
while the values of other methods are smaller than 34.6dB and 0.965, especially the BCI results, which
are the worst (BCI: 29.4002dB, 0.9481).

Compared with the supervised method SRCNN, unsupervised methods are superior in image
super-resolution. As we can see that when the upscale factor is 2, the PSNR and SSIM results of
SRCNN are smaller than TSR. When the upscale factor is 8, the PSNR, NRMSE, and SAM results of
SRCNN are even worse than BCL This may be related to the lack of sufficient training samples. In
addition, since the image size of the training samples used for supervised learning must be the same, it
is necessary to cut the test image of a larger size into several small patches for super-resolution. This
will affect the SR and LAE results due to a lack of global information.

Comparing different types of unsupervised methods, deep learning methods (i.e., ZSSR and
UDGN) are superior to BCI and machine learning methods. For example, when the upscale factor is
2, the PSNR values of deep learning methods are larger than 39dB, while PSNR values of BCI and
the best machine learning method (TSR) is 33.4083dB and 37.2856dB, respectively. This is because
interpolation methods do not consider the prior information of the LR images and handcrafted prior
features used in machine learning methods are not sufficiently competent for the SR task.

Furthermore, the highest OA, AUA, APA, and Kappa values verify that our method has a strong
ability in preserving the lake structure and edges accurately in the HR images, and further improve
the spatial resolution of lakes. For example, when the upscale factor is 8, the OA values of BCI, IBP,
TSR, ZSSR, and UDGN are 0.9562, 0.9284, 0.9390, 0.9386, and 0.9809, respectively.

In addition to the quantitative assessments, the visual results (Figure 8) when the upscale factor is
8 are provided for a qualitative and intuitive evaluation of SR performance. Focusing on Figure 8c,
the images obtained from BCI are the most blurred. This is because BCI relies heavily on the values of
neighboring pixels, while other important prior information such as textures are ignored. In addition,
the images super-resolved through IBP and ZSSR have obvious shadows around the edges, especially
the IBP results. The existence of these edge shadows will lead to misclassification of lake margins
(i.e., more land areas are classified as lake area). As for TSR results, there are regular pyramid shapes
in some areas. This is related to the fact that TSR builds the internal LR-HR patch database using
the scale-space pyramid of the image. These pyramid shapes, which may cross land and lakes and add
more noises, will largely affect the LAE accuracy. Hence, although ZSSR and TSR can generate much
sharper NDWI images than BCI, the OA values are smaller than BCI (Table 4).
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(@) (b)

© (d)

Figure 8. Normalized difference water index (NDWI) image SR results obtained by different methods

with an upscale factor of 8. (a) LR NDWI image, (b)ground-truth NDWI image, (c) bicubic interpolation
(BCI), (d) iterative back projection (IBP), (e) transformed self-exemplars (TSR), (f) SRCNN, (g) “zero-shot”
super-resolution (ZSSR), (h) unsupervised deep gradient network (UDGN).
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The proposed UDGN is able to get high-resolution images without adding more noise. Using
the deep CNN architecture with global and local residual blocks, more deep features and high-frequency
information can be captured to improve the SR performance. Furthermore, by fusion of the features
extracted from both the gradient map and the original test image, more geographic information details
such as terrain and lake edges can remain in HR images, thus obtaining the lake area more precisely. As
we can see from Figure 8h, the lake edges are sharper than other methods, and the details on the small
corners are closer to reality.

As a whole, by fusing the important gradient information and learning the deep internal features
of the given NDWI image, our method can significantly improve the spatial resolution of lakes, which
is very important for further analysis and practical applications.

3.4. Results of Lake Extraction from MODIS Data

In this section, we verify the effectiveness of our UDGN model in real-world scenarios. The MODIS
data at study area 2 is used as the experimental dataset. Since strategy 2 outperforms strategy 1 when
there are original RS images, we use the multispectral MODIS image (band 2, band 1, band 4) as
the input of the UDGN model to obtain the desired high-resolution lake area. Specifically, the MODIS
image with a spatial resolution of 500m is improved to 30m using the UDGN model. Then, the NDWI
is calculated and marks the area where NDWI values are larger than 0, as the lake area.

Figure 9 shows the color images, LAE results, and provides the close-ups of some typical lakes
including Pongyin Co, Timachaka, and Noname Lake. The first column presents the MODIS data, and
the second column shows the predicted HR data. Landsat 8 data is displayed in the third column to
reflect the actual conditions. Moreover, for the quantitative assessment of the SR performance, we
roughly estimate the area of the selected three lakes by calculating the number of pixels. The results
are shown in Table 5, and the estimated results are compared to the data of 2014 provided in [29].

(a) MODIS Data (b) Predicted HR Data (c) Landsat8 Data

o,

[=]. o~ 11 (=] &~ - = e~

Pongyin Co Pongyin Co Pongyin Co

Figure 9. Cont.
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Timachaka Timachaka Timachaka

Noname Lake Noname Lake Noname Lake

Missing

$

Figure 9. SR Results of real-world situations. MODIS image with an original spatial resolution of 500
m is improved to 30 m resolution. (a) MODIS data, (b) Predicted HR data, (c) Landsat 8 data.

Table 5. Area estimation results of selected lakes.

Lake Name Pongyin Co Timachaka Noname Lake
MODIS image (km?) 88.25 6.75 0
Predicted HR image (km?) 85.3515 7.5051 0.2664
Reference data (km?) 75.594858 7.439273 1.104846

As shown in Figure 9, the lakes derived from 500m resolution MODIS data have obvious serrated
boundaries because each pixel covers a large area. It is hard to depict the actual shape of small lakes
through limited pixels. By using our proposed UDGN model, more detailed structure and edge
information are reconstructed, thereby, the shape of the lake is more realistic and the boundaries
are smoother. In addition, the estimated area of predicted HR image is much closer to the reference
data, regardless of large lakes (>10 km?) or small lakes (<10 km?, <5 km?). For instance, the area of
Timachaka calculated from MODIS and predicted HR data are 6.75 km? and 7.5051 km?, respectively,
and the reference is 7.439273 km?. The results derived from the super-resolved image are much
more accurate.

In addition, it is worth noting that our proposed method is able to discover small lakes from
MODIS data. As illustrated in Figure 9, Noname Lake (Area: 1.104846 km?) is missing in the lake map
derived from MODIS data, while the lake can be successfully extracted by improving the resolution of
the image based on the UDGN model. It is of great significance in small lakes monitoring and further
climate change analysis. Although there may exist differences between the predicted HR image and
Landsat 8 image, it makes a big step forward to discover small lakes that cannot be figured out from
the original low-resolution RS images.

4. Discussion

SR techniques can help generate a finer lake area from RS images. In this part, the practicality of
the proposed method is further analyzed.

In our method, the self-learning process is done at test time. To better show the training process,
the experiment is conducted taking the NDWI image of study area 1 as an example, the settings of
this experiment are the same as Section 3.3. Figure 10 shows the PSNR values versus iterations when
the upscale factor is 4. It can be seen that the PSNR values basically converge after about 2000 iterations.
In addition, the runtime of UDGN is important in practice, and it is related to image size, upscale
factors, etc. The runtime to upscale a single image of 128 x 128, 256 X 256, and 512 x 512 by 2 times is
about 47, 58, and 67 seconds, respectively (on a GeForce GTX 1080 GPU).
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Figure 10. The Peak signal-to-noise ratio (PSNR) values versus iterations when the upscale factor is 4.

In the real world, researchers prefer to use the best available datasets such as 10 m Sentinel 2
data and mainly apply SR to the lower resolution images in order to produce a more coherent time
series. Therefore, we use the UDGN model to super-resolve MODIS data (spatial resolution: 500m)
and Landsat 8 data (spatial resolution: 30m) to 10m, respectively. Then, the lakes extracted from
the SR images are compared with lakes extracted from a 10 m Sentinel 2 image from the same period.
The results are shown in Figure 11. We can see that the lakes extracted from predicted HR data have
sharper edges and details. The area of the Kongkong Caka in the original MODIS, Landsat 8, and
Sentinel 2 data are 57.00 km?, 60.7230 km?, and 60.4132 km?, respectively. Taking the Sentinel 2 data
as ground-truth, the area of the Kongkong Caka extracted from the predicted HR data is closer to
the ground-truth. This illustrates that the proposed method has strong practicability and can help to
improve the spatial resolution of RS images and generate finer lakes.

(a) MODIS Data (b) Predicted HR data (¢) Landsat8 data (d) Predicted HR data (e) Sentinel 2 data

2017-8-18 2017-8-18 2017-8-11

gl=he =N

a r o % AR M v AR

Kongkong Caka: 60.4132 km?

Kongkong Caka: 57.00 km? Kongkong Caka: 57.02 km? Kongkong Caka: 60.7230 km? Kongkong Caka: 60.6339 km?

Figure 11. SR Results of MODIS image and Landsat 8 image. (a) MODIS data, (b) Predicted HR data
from MODIS, (c) Landsat 8 data, (d) Predicted HR data from Landsat 8 data, (e) Sentinel 2 data.
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5. Conclusions

Lake monitoring is very important for environmental and climate change studies. RS is widely
used in this task, however, due to the constraints of the spatial resolution, most studies focused on large
lakes, while considering small lakes is much more challenging. Therefore, in this study, we propose
a new deep learning-based method UDGN for super-resolution mapping of lakes from multispectral
RS images. Unsupervised learning mechanism is exploited, which does not require a large amount
of LR-HR paired samples for training. For each test image, the gradient map is obtained to retain
more detailed geographical information such as edges and structures. Then, an image-specific residual
network is trained at test time to improve the spatial resolution of each test image. As such, the UDGN
model can deal with different image sizes, different image channels, and different upscale factors.
Based on all the above, the Landsat 8 OLI and MODIS images from two study areas from the Tibetan
Plateau in China are used as experimental data. Our method is applied to improve the images with
different upscale factors. The results show that our method outperforms four approaches (i.e., BCI, IBP,
TSR, and ZSSR) from both visual and quantitative perspectives. It is worth noting that our method
is able to discover invisible small lakes from MODIS data, which provides a way to break through
the spatial resolution of RS images and better support lake studies.
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