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Abstract: Moving object detection and tracking from image sequences has been extensively studied
in a variety of fields. Nevertheless, observing geometric attributes and identifying the detected
objects for further investigation of moving behavior has drawn less attention. The focus of this
study is to determine moving trajectories, object heights, and object recognition using a monocular
camera configuration. This paper presents a scheme to conduct moving object recognition with
three-dimensional (3D) observation using faster region-based convolutional neural network (Faster
R-CNN) with a stationary and rotating Pan Tilt Zoom (PTZ) camera and close-range photogrammetry.
The camera motion effects are first eliminated to detect objects that contain actual movement, and
a moving object recognition process is employed to recognize the object classes and to facilitate
the estimation of their geometric attributes. Thus, this information can further contribute to the
investigation of object moving behavior. To evaluate the effectiveness of the proposed scheme
quantitatively, first, an experiment with indoor synthetic configuration is conducted, then, outdoor
real-life data are used to verify the feasibility based on recall, precision, and F1 index. The experiments
have shown promising results and have verified the effectiveness of the proposed method in both
laboratory and real environments. The proposed approach calculates the height and speed estimates
of the recognized moving objects, including pedestrians and vehicles, and shows promising results
with acceptable errors and application potential through existing PTZ camera images at a very
low cost.

Keywords: video surveillance; Faster R-CNN; object recognition; deep learning

1. Introduction

In the field of computer vision, detecting and tracking moving objects has been widely studied
for decades. A survey of the challenges and the latest methods of moving object detection in video
sequences captured by a moving camera is presented in [1]. Closed-Circuit Televisions (CCTVs)
provide a large number of images for video surveillance that involves various machine learning
technologies [2]. Emerging applications in artificial intelligence, for example, [3–9], attract research
attention for three-dimensional (3D) information acquisition from imagery to recognize objects and also
to perceive their behaviors. Nevertheless, to robustly detect, track, and identify moving objects is still
a challenge since a large number of variables and the possible geometric and dynamic ambiguities are
involved in the computation [10–13]. To precisely separate moving objects from image backgrounds,
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existing methods, such as optical flow, as well as segmenting-based and supervised classifier methods,
usually assume that a camera has been nearly stationary or the background was priori known and
modeled [14–20]. The segmenting-based methods, such as mean shift clustering, graph-cuts, and active
contours, divide the images into perceptually similar regions. Supervised classification methods,
such as support vector machine, neural networks, and adaptive boosting techniques, are trained
to detect the features of the objects [21]. Recently, a detector-agnostic procedure was developed by
integrating both unsupervised (background subtraction) and supervised (deep learning convolutional
neural networks (CNN)) techniques to extract the detected and verified targets through the fusion
and data association steps [2]. In addition, optical flow approaches calculate the image optical flow
field and conduct clustering according to the flow distribution of images. However, the computational
complexity and sensitiveness to noise make it less reliable for real-time demanding applications [22,23].
By contrast, a more intuitive method is the background subtraction method in which algorithms can
be categorized into recursive and non-recursive methods [24]. These algorithms can provide more
comprehensive object information by finding the variations in the image background model provided
that the precise background has been known [25–27]. However, these methods have less robustness to
external interference such as illumination change and shadow effects. In addition, 3D scene flow has
been introduced to form a dense 3D motion field for object detection, but stereo or multiple camera
configurations are typically required to obtain depth information of the scene [28,29].

Pan-tilt-zoom (PTZ) camera networks have an important role in surveillance systems, especially
traffic security for detecting moving objects, such as pedestrians and vehicles on roads. Stationary and
rotating PTZ cameras are able to construct the coverage of wide and geometrically complex scenes
with a relatively small number of sensors. Most of the above-mentioned moving object detection
techniques can be applied to PTZ cameras. To detect satisfactory foreground objects, most methods
assume that the camera and image background are static [30]. In cases where a camera bears arbitrary
motion variation or the background is quite complex (e.g., illumination change and large objects
moving in the background), the accuracy and reliability degenerate dramatically [31,32]. Numerous
studies have demanded that a camera certainly contained translational and rotational or merely
translational variation to recover the camera motion using structure from motion (SfM) technique
and determined the 3D positions of detected objects using stereo or multiple views [11]. However,
the motion prerequisite for SfM conflicts with a stationary and rotating camera configuration that is
inadequate for the focus of this study.

Object recognition has been well explored for years, for example, [33–36], and can search the
object position in the image and identify its category to assist in the calculation of the subsequent
geometric information. Nevertheless, these methods are being potentially replaced by learning-based
techniques, which are a revival of the classic artificial intelligence technique of neural networks, for
example, [37–42], and thus are leveraged in this study. Neural network-based solutions to moving
object detection PTZ camera images have received considerable attention due to their effectiveness and
efficiency [43]. The comparison between various network structures have been studied in the literature.
Faster region-based convolutional neural network (Faster R-CNN), one of the deep-learning-based
approaches, has been reported to significantly reduce the running time of object detection with an
acceptable accuracy [2,44]. In this paper, Faster R-CNN is used to identify multiple classes from
the detected moving objects due to its ability to lower computation costs and its high accuracy.
In addition, in contrast to dashboard cameras equipped on cars, surveillance cameras mostly shoot
from a commanding height down to the ground, and therefore have a great opportunity to observe the
depth of detected objects. The previous researches have often ignored the deviation of the actual height
estimation of the objects when the object possessed a depth difference. Contrary to previous literature
that has considered detected objects to be two-dimensional (2D) objects, this study adds an aspect from
close-range photogrammetry to computer vision technology in order to reveal 3D attributes of detected
objects. This study focuses on the spatial information processing of object geometry estimation in PTZ
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camera images under non-ideal imaging geometry for calculating the depth of the detected object
resulting in a better estimation of object height for object identification.

This paper contributes a scheme to execute moving object recognition and further derives the
geometric attributes from a single stationary and rotating PTZ camera configuration. Considering that
both the foreground and background change while the camera is rotating, the scheme begins with
the rectification of camera motion and proceeds with the moving object detection and identification
by leveraging background subtraction and recognition techniques. Finally, the foreground pixels
of the moving objects are refined and used to observe geometric attributes of each object using a
combination of single- and multi-view solutions. With an assumption that all moving objects should
locate on a known plane, the geometric attributes of the objects are determined from a monocular
camera configuration, providing important clues for further intelligent applications. In addition, the
proposed method is implemented on street-view images acquired using a SAMPO PTZ camera (Sampo
Corporation, Taoyuan, Taiwan) in a stationary and rotating configuration, context (COCO) dataset,
and KITTI dataset [45] for performance evaluation.

2. Methodology

The proposed scheme was comprised of the following four modules to identify, track, and perceive
moving objects: (1) camera motion rectification, (2) motion segmentation, (3) moving object recognition,
and (4) geometric observing. The block diagram of the proposed scheme is shown in Figure 1.
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2.1. Camera Motion Rectification

Since the movements of a rotating camera critically degenerate the accuracy and reliability of the
motion segmentation, the proposed scheme begins with rectification to eliminate the camera motion
by estimating the camera poses at each epoch, which is the critical process to find actual moving
objects. Referring to the evaluation of state-of-the-art image features, speeded up robust features
(SURF) method [46] has shown good accuracy regarding generic invariance properties. Although no
best feature descriptor can tackle all kinds of deformation at present, SURF has shown its effectiveness
and efficiency. Thus, SURF correspondences refined by random sample consensus (RANSAC) [47]
were employed to construct the essential matrix for the relative camera pose estimation. The object
function describing epipolar geometry for estimating camera poses can be read as:

xLCTECxR
T = 0 (1)

where xL =
[

xLi yLi 1
]

and xR =
[

xRi yRi 1
]

indicate the image coordinates in left and right
images, respectively and C is the matrix conveying interior parameters of the camera. E, an essential
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matrix, which can be expressed as Equation (2), can be solved linearly and used as approximations for
nonlinear least squares adjustment [48].

E = Ei j =


E11 E12 E13

E21 E22 E23

E31 E32 E33

 =

λ1 0 y
0 λ2 −x
−y x λ1 + λ2

 (2)

where λ1, λ2, and λ3 are the eigenvalues derived from sym(E).

Aξ+ B(y + e) = d, e ∼
(
0, Σ = σ2

0P−1
)

(3)

where y, e, d, ξ, and P denote an observation vector, a residual vector, a constant vector, unknowns,
and a weight matrix, respectively. Rearranging Equation (2) leads to the following form:

Aξ+ Be = w (4)

where w = d− By are discrepancy vectors. Thus, the unknowns can be derived by Equation (5), and a
posteriori standard deviation of unit weight can be computed via Equation (6), in which r is the number
of degrees of freedom (redundancy) as follows:

ξ =
(
AT

(
BP−1BT

)−1
A
)−1

AT
(
BP−1BT

)−1
w (5)

σ̂0 = ±
√

eTPe/r (6)

Consequently, the photo coordinate system of the current image frame can be transformed into the
coordinate system of a previous one via the relative camera poses. On the basis of the same coordinate
system, the average movements between feature correspondences are estimated by: ∆xmean = avg

(
xQi − xRi

)
∆ymean = avg

(
yQi − yRi

) , i ∈ 1 ∼ n (7)

where (∆xmean, ∆ymean) indicates the average translation between corresponding feature points. (xQi , yQi )
and (xRi , yRi) are the photo coordinates of corresponding features in the query and reference frames,
respectively. Thus, the rectified photo coordinates of the current frame with respects to reference one
can be derived: {

xrecti f iedi = xQi − ∆xmean

yrecti f iedi = yQi − ∆ymean
, i ∈ 1 ∼ n (8)

where (xrecti f iedi , yrecti f iedi) indicates the rectified photo coordinates which are then transformed to the
image coordinates for transmitting their color attributes as follows: rowrecti f iedi =

(
yrecti f iedi + y0

)
×

ny
ly

colrecti f iedi =
(
xrecti f iedi + x0

)
×

nx
lx

, i ∈ 1 ∼ n (9)

where (rowrecti f iedi , colrecti f iedi ) indicates the rectified image coordinates; (x0, y0) is the principle point of
the reference frame, and the (nx, ny) and (lx, ly) represent the number of pixels in x and y directions and
the size of image frames, respectively. Finally, the original spectrum information can be conveyed to
the rectified images.
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2.2. Motion Segmentation

Since this study applied a stationary and rotating camera configuration, the background and
foreground changed simultaneously. If the foreground object and the camera moved in the same
direction, the camera motion would counteract the movement of the object. On the contrary, the object
movement would be magnified if the object and the camera moved in opposite directions. Therefore,
as shown in Figure 2, without eliminating the interference of camera motion, it could lead to false
positives of motion segmentation and a misinterpretation of the moving behavior.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 18 
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Figure 2. The camera motion rectification between t and t + 1 frames.

The segmentation process is to retrieve the actual moving objects from consecutive image frames,
which was realized by a recursive background subtraction technique in this study. The red, green,
and blue (RGB) color space can be converted to hue, saturation, and intensity (HSI) space to ease the
lighting influence and to enhance segmentation quality.

H = W i f B ≤ G
H = 2π−W i f B > G

S = 1− 3×min(R,G,B)
R+G+B

I = R+B+G
3

(10)

where H, S, and I indicate hue, saturation, and intensity, whereas R, G, and B indicate the values of the
three-color channels. In addition, an exponent subtraction factor based on saturation to distinguish
moving objects from the background can be read as:

ImgiΘImgi−1 = sign(Imgi − Imgi−1)
255(e

|Imgi−Imgi−1 |
255 − 1)

e− 1
(11)

where Imgi indicates the i-th image input, Imgi−1 is treated as the reference frame. Θ is the subtraction
factor, and e is the exponent. A pixel is deemed as the foreground if the subtracting result is larger than
a threshold that can be set adaptively according to the 3σ of the average difference.

FG =
∣∣∣ImgiΘImgi−1

∣∣∣ ≥ µ+ 3σ (12)

where FG indicates the foreground; µ and σ are the mean and the standard deviation, respectively.
Furthermore, to eliminate salt-and-pepper noise, a median filter was used to polish the foreground [49].
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2.3. Moving Object Recognition

To identify multiple classes from the detected moving objects, the model combining Faster
R-CNN [41] with neural architecture search (NAS) [50] was leveraged in this study. In Figure 3, Faster
R-CNN integrates feature extraction, region proposal, classification, and bounding box regression into
a unified network, and reveals the best recognition accuracy but the lowest efficiency. The details of
the recognition model can be referred to in [41].
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Figure 3. The illustration of the faster region-based convolutional neural network (Faster R-CNN)
unified network.

It is worthwhile noting that the process of bounding box regression in this model can give precise
estimates of the object regions since the region proposals are regressed based on the convolutional
neural network. Therefore, the initial foreground pixels determined by the motion segmentation
can be refined based on the regressive bounding boxes. The foreground pixels that fall outside the
bounding should be excluded from the subsequent geometric computation process. As shown in
Figure 4, the initial foreground pixels are determined by the yellow bounding boxes and can be further
rectified by the regressive green boxes. The lighting or shadow interference was eased, and thus more
reliable geometric estimation could be achieved.
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2.4. Geometric Observing

This step collects the 3D geometric attributes of the recognized moving objects with respect to
moving trajectories, object heights, and moving velocity. The locations of the moving objects in 3D
space need to be first determined. Most existing methods, such as visual simultaneous localization and
mapping (SLAM) and visual odometry, for example, [51,52], usually deal with stereo- or multi-view
images for the better intersecting geometry of 3D positioning. However, considering a single stationary
and rotating camera configuration, these methods are not suitable even though slight motion and shift
exist among the camera poses due to the deviation between the perspective center and the rotating axis.
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In addition, considering that only slight translational discrepancy exists between two perspectives
centers at different timestamps, multiple view solutions would raise problems in dealing with weak
intersecting geometry. In view of this, in this study, we determined the 3D locations of objects by
combining single and multiple view solutions. The initial position was estimated in a single view
manner, and then the estimate was treated as approximations to stabilize the computation of multiple
view estimation. For this purpose, the first image frame was selected to define the reference coordinate
system, and a ground plane where all objects should move on this plane was given. As shown in
Figure 5, the image ray constructed by the camera center and the image point of B was used to intersect
with the ground plane for determining the location B of the object.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 18 
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Figure 5. The illustration of the configuration between a camera and an object, where H is a prior
known camera height in object coordinate system; N is the normal vector of the ground plane; T and B
are the unknowns that indicate the top and bottom points used for calculating the object height h.

The image ray of a point can be described by the well-known collinearity equation as: X = Xc + (Z−Zc)
m11(x−x0)+m21(y−y0)+m31(− f )
m13(x−x0)+m23(y−y0)+m33(− f )

Y = Yc + (Z−Zc)
m12(x−x0)+m22(y−y0)+m32(− f )
m13(x−x0)+m23(y−y0)+m33(− f )

(13)

where (Xc, Yc, Zc) and (X, Y, Z) indicate the 3D coordinates of the camera and objects, respectively;
(x, y) is the image coordinates; and (x0, y0, f ) is the interior orientation parameters. In cases that
the ground plane is expressed as Z = 0, the bottom point B of the object can be solved based on
the simultaneous equations of the collinearity and plane formulae. In fact, the height of a moving
object should be perpendicular to the ground, and the top point T of the object can be determined
by solving the intersection of the image ray and the 3D line derived from the normal vector and the
bottom point. Furthermore, to refine the positioning quality of the B and T, the estimates derived
from the single view computation were treated as approximations for the multiple view estimation.
The approximations stabilized the nonlinear calculation, even though the baselines between perspective
centers of consecutive frames were relatively short. Finally, the refined T and B points were used
to compute the object height, h. The bottom points of the object among frames describe its moving
trajectory, and the velocity over time can be derived as well. It should be noted that the lowest and
highest pixels crossing the object centroid and perpendicular to the ground plane are deemed to be the
bottom and top points in this study.

Apart from determining the coordinate estimates, in this study, we further assessed the accuracy
of the estimation from the related observations based on the theory of error propagation. Let σx and
σy indicate the accuracy of the image coordinates of a point, σXc , σYc , and σZc report the accuracy
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of camera position; and σω, σϕ, and σκ denote the accuracy of image orientation parameters. The
accuracy of the unknown X and Y of a point can be acquired as follows:

ΣXY = DΣPDT (14)

where ΣXY indicates the variance-covariance matrix of the point coordinates, D is the coefficient matrix
with respect to the observations, and ΣP is the variance-covariance matrix of the observation. These
matrixes can be read as:

D =


∂FX
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∂FX
∂y

∂FX
∂Xc

∂FX
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∂FX
∂Zc

∂FX
∂ω

∂FX
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∂FX
∂κ

∂FY
∂x

∂FY
∂y

∂FY
∂Xc

∂FY
∂Yc

∂FY
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∂FY
∂ω

∂FY
∂ϕ

∂FY
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 (15)

ΣP =
{
diag

(
σx

2, σy
2, σXc

2, σYc
2, σZc

2, σω2, σϕ2, σκ2
)}

(16)

In case that the accuracy of B and T points are computed, then, the quality of h can be
estimated in a similar way. Let h = ‖T − B‖2, the accuracy of B and T is ΣB =

{
diag

(
σxi

2, σyi
2
)}

and ΣT =
{
diag

(
σx j

2, σy j
2
)}

, respectively. Thus, the variance of h can be:

Σh =
[

∂h
∂xi

∂h
∂yi

∂h
∂xj

∂h
∂yj

][ ΣB 0
0 ΣT

][
∂h
∂xi

∂h
∂yi

∂h
∂xj

∂h
∂yj

]T
(17)

3. Results and Discussion

As mentioned above, in contrast to the existing methods designed for stationary or with motion
prerequisites camera systems, this study concentrates on acquiring the geometric observations of
moving objects detected from a stationary and rotating monocular camera. To evaluate the effectiveness
of the proposed scheme quantitatively, an experiment with synthetic configuration is first conducted,
and then a real-life data is used to verify the feasibility. In this study, the following three indices,
namely recall, precision, and F1, are employed to assess the quality of foreground pixel detection:

recall = num. of correct foreground pixels
num. of exact foreground pixels

precision =
num. of correct foreground pixels

num. of detected foreground pixels

F1 = 2 recall×precision
recall+precision

(18)

3.1. Quantitative Evaluation with Synthetic Configuration

In this case, a calibrated Canon EOS 650D (Canon Inc., Tokyo, Japan) is used to acquire sequential
images with a size of 5183 × 3456 pixels. To verify the effectiveness of the camera motion rectification,
the background subtraction is implemented for images acquired by rotating and static camera
configuration, respectively. To assess the robustness to illumination change, the simulation is realized
in an indoor environment for the convenience of lighting control. A rigid chair is used to play the role
of a moving object. The rotating angle of the camera is four degrees per step. The depth of this test
field is 6.5 m. Figure 6 shows a fraction of the captured images under different lighting conditions,
in which the image data captured by a static camera configuration are treated as the reference for
the following assessment. Figure 7 shows the motion segments of the object obtained before and
after camera motion rectification. Noticeably, without rectification, the camera motion counteracts the
movement of the object when the foreground object and the camera move in the same direction. On the
contrary, the object movement would be magnified if the object and the camera move in opposite
directions. This would lead to false positives of motion segmentation and a misinterpretation of the
moving behavior.
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Figure 8 provides a visual inspection of the detected foreground object. Notably, with respect to
the detected results, in all configurations of images a and b, there exist a gap in the middle of the chair.
It is because parts of the moving object contain similar texture and are overlapped in the consecutive
frames; the overlapped areas are regarded as background, and thus result in the gap.
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Furthermore, a quantitative evaluation is given in Table 1 which provides insight into the
effectiveness of the proposed method. The detection results obtained from the static and rotating
camera configurations exhibit comparable quality regardless of the camera motion and the illumination
change, proving the validity of the rectification. Although the recall rates of the rotating camera
configuration are slightly lower than the stable one, the precision rates reveal that the rotating
configuration yields more accurate detection on the contrary, which is also shown in the resulting
aggregative indices. Moreover, the illumination change certainly affects the foreground determination,
and therefore the recall rate of the rotating camera configuration with lighting change drops to 60% in
images c and d. The proposed method yields satisfactory performance, achieving a level up to 0.90 in
the aggregative index.

Table 1. The quantitative indices of the foreground detection.

Static Camera Configuration

Quality Indexes Stable Lighting Lighting Change

a–b b–c c–d Avg. a–b b–c c–d Avg.

Recall 0.78 0.96 0.75 0.83 0.65 0.88 0.79 0.77
Precision 0.90 0.95 0.99 0.94 0.95 0.92 0.93 0.94

F1 0.83 0.95 0.85 0.88 0.77 0.77 0.85 0.80

Rotating Camera Configuration

Stable lighting Lighting change

a–b b–c c–d Avg. a–b b–c c–d Avg.

Recall 0.69 0.86 0.82 0.79 0.70 0.92 0.59 0.74
Precision 0.97 0.99 0.99 0.98 0.98 0.99 0.99 0.98

F1 0.81 0.92 0.89 0.87 0.82 0.83 0.74 0.80

3.2. Street View Surveillance of a Rotating PTZ Camera

The proposed method is implemented on street-view images acquired using a SAMPO PTZ
camera in a stationary and rotating configuration. The focal length of the SAMPO PTZ camera is 2.8
mm and it has an image size of 1080 × 1920 pixels. The field of view is approximately 140 degrees by
the capability of rotating 355 and 90 degrees in horizontal and vertical directions, respectively. The first
image of the camera is set as the reference coordinate system. The equation of the ground plane is
given as Z = 0, accordingly. The recognition model has been trained on the common objects in context
(COCO) dataset [53], which contains over 2.5 million labeled instances in 330,000 images. Figure 9
shows a fraction of the street-view image sequence and their timestamps, in which the PTZ camera is
set on a footbridge with a 5.1 m height from the given ground plane. The minimum blob area in motion
segmentation is set as 1000 pixels to banish trivial patches. A1 to A3 shows the acquired images when
the camera is static, whereas B1 to B3 depicts the acquired images when the camera is rotating.
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Figure 10 demonstrates the motion segmentation and the recognition results of the sequences.
In the light of the red bounding boxes, the resulting foreground pixels of motion segmentation is not
reliable and sensitive to the shadow and reflection influence. However, the regressive bounding boxes
derived from the recognition process can be used to improve the description of the moving object
boundaries. Only the foreground pixels of an object surrounded by the regressive bounding boxes are
used to estimate the geometric attributes of the object. In this study, the lowest foreground pixel in
the middle of the regressive bounding box is defined as the foot point, and the height of the object is
computed accordingly.
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Table 2 shows the statistic geometric attributes in terms of the recognized object classes, object
heights, and moving velocity. In this case, the keyframes are selected every 10 frames for the computation
of the object heights and velocity. This information can further contribute to the identification and
prediction of object behavior.

Table 2. The observed geometric attributes.

Class
Height (cm) Velocity (km/hr)

Mean Std. dev. Mean Std. dev.

Object 1 White vehicle 170.8 6.4 21.3 7.3
Object 2 Pedestrian 168 3.3 4.7 1.5
Object 3 Blue vehicle 180.2 4.3 27.6 9.9

Referring to the general specification of the objects, the geometric estimates of the recognized
objects in Table 2 seem promising. The camera motion rectification adjusts the relative motion between
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the rotating camera and objects. By combining the motion segmentation and the recognition process,
the regions of the moving objects in images can be assigned properly, and therefore facilitates the
determination of the moving object locations over time. The statistics of velocity also reveal the statuses
of Objects 1 and 3 correctly, showing that they were accelerating rapidly when starting the movement
at the intersection. The accuracy of the geometric attributes, however, is highly correlated to the quality
of the foreground object detection. If the foreground pixels of an object cannot describe the object
completely, obvious errors would be induced in estimating the object’s location and height. Currently,
the object height is measured based on the height displacement of the object in the image. In cases that a
moving object comprises a depth, the height estimate would convey a conspicuous error, which can be
seen in the standard deviation of Objects 1 and 3 in Table 2, since vehicles are the main class of moving
objects with a depth effect. By contrast, the height estimate of the pedestrian is promising due to the
nature of the body shape. As demonstrated in Figure 11, a super-pixel segmentation [54] is performed
on the recognized result of a vehicle to derive its subregions. These regions are superimposed onto their
foreground pixels to eliminate the depth interference in estimating the object height. Nevertheless, the
segmenting process assumes the top of the vehicle should locate at the center segment of the regressive
bounding box, and the object height is determined from the foot point to the highest foreground pixel
in the center segment along the direction of the ground normal vector.
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In light of Table 3, the modified height estimates of the recognized Objects 1 and 3 show promising
results and approach the official specification of these two vehicles. In addition, the standard deviation
of the estimates is improved up to around 50% as compared with those in Table 2. However, the integrity
of the foreground pixels, the heading poses, and image appearances of vehicles still frustrate the
effectiveness of the modified height estimation for vehicle classes.

Table 3. Modified object height estimates.

Class
Height (cm) Height (cm)

Mean Std. dev. Specification

Object 1 White vehicle 161.4 3.1 148
Object 3 Blue vehicle 174.4 2.6 171

3.3. Performance Evaluation of Various Networks

To gain insight into the effectiveness of different model networks, including Faster R-CNN, mask
region-based convolutional neural network (Mask R-CNN) [55], and the improvement of you only
look once (YOLOv3) [56], this study carried out the comparison of the object detection by adopting
PTZ camera images in an indoor environment, a corridor, and a construction site, and further assess
the accuracy of the estimated geometric measurement using the KITTI benchmark. Figure 12 shows
the image sequences along with the camera height setup used for estimation. For each dataset,
the proposed method is integrated with these three model networks to reveal the estimation of detected
objects, respectively. These images contain various illumination conditions, different types of objects,
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and view angles. In this case, the keyframes were selected every three frames from 30 sequential
images. It should be noted that the evaluation lies in the accuracy of the geometric measurement
instead of focusing on the completeness or correctness of object recognition. Therefore, the labels of
person, bicycle, car, and truck are selected in this case, and only if the similarity of a specific label is
higher than 70%, then the detected object is introduced for the geometric analysis. The quantitative
results reflect the adaptability of these models for the surveillance and geometric measurement tasks.
Figure 13 shows the object detection and recognition results of each models, while Table 4 reports the
height estimates of the selected objects. On the one hand, in Figure 13, the detection results show
the similarity among these three models in most scenes. However, when illumination conditions
deteriorate or obstruction occurs, all the similarity scores and completeness of each label decrease,
mainly Mask R-CNN, in which the deterioration of object recognition can be found in the image
sequences of a construction site. The completeness and correctness of each model also degenerate at
nightfall. On the other hand, the estimates in Table 4 agree with the visual results, showing similar
heights among these three models, where “object ID” refers to the legends in the first column in
Figure 13. The mean and standard deviation are calculated from the estimates of all keyframes. In view
of Equations (14)–(17), the height estimate of the person on an indoor image set achieves an error of
3.5 cm by using a keyframe pair based on Faster R-CNN, where the true value of 177 cm lies in the
reasonable range of 176.8 ± 3.5 cm.
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Table 4. Results of geometric measurement using various models in different scenarios.

Object ID
Faster R-CNN Mask R-CNN YOLOv3

Height (cm)

Mean Std. dev. Mean Std. dev. Mean Std. dev.

Indoor Person 1 176.8 2.3 177.3 1.9 175.6 2.1

Corridor
Person 2 177.5 3.1 176.1 2.3 1.77.9 3.2
Person 3 176.5 2.6 174.6 3.2 176.6 2.9
Person 4 173.2 2.5 169.8 4.8 174.2 2.3

Construction site

Person 5 179.7 1.8 177.2 4.4 179.2 2.2
Car 169.7 2.5 172.6 2.4 171.6 2.5

Truck 1 193.6 2.7 194.7 3.2 203.5 3.3
Truck 2 324.7 2.7 304.3 3.5 3.28 2.9

Moreover, this study leverages the image sequences of the KITTI benchmark (last row in Figure 12)
to compare the estimated object heights with those provided by KITTI’s specifications. In this case,
the labels of person and bicycle were selected for evaluation, where the chosen objects are noted in the
first row in Figure 14. It should be noted that YOLOv3 reveals slightly poor instance segmentation
and detection results in image Sequence 1 due to its weighting strategy. Table 5 shows the evaluation
results. Among Faster R-CNN, Mask-RCNN, and YOLOv3, Faster R-CNN results in relatively low
errors and low standard deviations.
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Table 5. Evaluation of geometric measurement applying various models to KITTI dataset.

Object ID
Faster R-CNN Mask R-CNN YOLOv3 KITTI

Height (cm)

Mean Std. dev. Mean Std. dev. Mean Std. dev. True Value

Sequence 1 Person 1 185.6 1.7 184.3 1.4 186.2 1.6 182

Sequence 2

Person 2 174.1 2.5 174.6 3.4 179.5 2.8 173
Person 3 181.5 2.1 182.2 3.1 186.7 2.5 179

Car 206.6 1.7 204.4 2.2 n/a 211
Bicycle 2 107.6 3.5 114.3 2.3 116.2 3.8 110

Regarding the evaluation of the object height, it is apparent that most of the estimates are higher
than the values provided by KITTI. This could have resulted from the inaccurate setting of camera
height, mismatching assumption, or the discrepancy in measurement aspects. Nevertheless, all the
differences are less than 10 cm, which is acceptable in some practical applications. Additionally,
this evaluation shows that YOLOv3 demonstrated low performance in object detection in terms of
completeness and correctness, whereas Faster R-CNN demonstrated the best performance in object
detection in accuracy and precision. This evaluation also reflects the limitation of the proposed method.
The precise height of camera is indispensable for an accurate height estimate. Nevertheless, in most of
the cases, a surveillance camera can be set up with a priori known condition, and the reliability of the
estimates can be further reviewed by their theoretical accuracy computed by using Equations (14)–(17).

4. Conclusions

This paper contributes a scheme to acquire 3D geometric attributes of moving objects by using
Faster R-CNN with a stationary and rotating PTZ camera configuration, which is rarely discussed in the
literature. The effectiveness of the proposed method in yielding the moving distances, moving velocity,
object heights, and object recognition from a monocular camera has been validated through synthetic
and real datasets. Regarding the specific camera configuration in this study, the 3D positions are
determined by combining single and multiple view solutions to render accurate estimates. Inevitably,
interference such as shadow effects and occlusions would deteriorate the reliability and completeness
of the motion segmentation. However, by leveraging the deep learning recognition technique,
the regressive bounding boxes resulted from Faster R-CNN facilitate the refinement of the object
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boundaries, which can directly improve the quality of the geometric estimation. Moreover, a super-pixel
segmentation process is specifically applied to the vehicle class to further improve its object height
estimation by reducing the depth effect. The proposed approach calculates the height and speed
estimates of the recognized moving objects, including pedestrians and vehicles, and shows promising
results and application potential through existing CCTVs at a very low cost. A continued investigation
on enhancing the computational efficiency and the exploration of object moving behavior should be
addressed in future work.
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