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Abstract: Water clarity, commonly measured as the Secchi disk depth (Zsd), is an important parameter
that depicts water quality in aquatic ecosystems. China’s new generation Advanced HyperSpectral
Imager (AHSI) on board the GF-5 satellite has significant potential for applications of more accurate
water clarity estimation compared with existing multispectral satellite imagery, considering its high
spectral resolution with a 30-m spatial resolution. In this study, we validate the semi-analytical
model with various Quasi-Analytical Algorithms (QAA), including QAAV5, QAAV6, QAAL09 and
QAAM14, for the AHSI images with concurrent in situ measurements in four inland water bodies with
a Zsd range of 0.3–4.5 m. The semi-analytical method with QAAV5 can yield the most accurate Zsd
predictions with approximated atmospheric-corrected remote sensing reflectance. For 84 concurrent
sampling sites, the estimated Zsd had a mean absolute error (MAE) of 0.35 m, while the mean relative
error (MRE) was 25.3%. Specifically, the MAEs of estimated Zsd were 0.22, 0.46, and 0.24 m for
Zsd of 0.3–1, 1–3, and 3–4.5 m, respectively. The corresponding MREs were 33.1%, 29.1% and 6.3%,
respectively. Although further validation is still required, especially in terms of highly turbid waters,
this study indicates that AHSI is effective for water clarity monitoring.

Keywords: Secchi-disk depth; hyperspectral imagery; GF-5 satellite; semi-analytical model;
Quasi-Analytical Algorithm

1. Introduction

Inland water, including lakes, rivers and reservoirs, is an important component water resources
for humankind and natural ecosystems. During previous decades, the water quality of many
inland water bodies across China is becoming deteriorated due to intense human activity and
environmental change [1,2]. Therefore, we must conduct accurate and consistent monitoring of
water quality, to provide valuable information for water resources management and aquatic ecosystem
restoration [3,4].

Water clarity (or water transparency) is a widely-used water quality parameter in limnology
and oceanography studies, which is closely related to underwater light availability. Therefore,
this parameter has important implications for the diversity and productivity of algae and aquatic
vegetation [5]. The Secchi disk, a 30-cm diameter all-white or alternating black and white quadrants
disk, has been used to measure water clarity for more than 100 years [6,7]. Water clarity is generally
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determined as the Secchi disk depth (Zsd, in meters), that is, the depth at which the disk can no
longer be seen from above the water. Although increasingly sophisticated optical-electro sensors are
available for water clarity measurements, the Secchi disk is still extensively used due to its low cost
and convenience [8–10].

However, implementing large-scale continuous monitoring of water clarity from ground stations
or ship surveys is difficult. Remote sensing observations from satellites are likely the only feasible
technique for the acquisition of large-scale and long-term water transparency data. Numerous
empirical models have been developed to retrieve Zsd, and are mostly established on linear regressions
of a single band or band ratios [11–15]. Although empirical models are advantageous in terms of
simple model-building and rapid data processing, they tend to fail if applied to other water bodies that
have different concentrations or types of optically active components (OACs). Semi-analytical methods
(SAM) can be applied to various water types with improved accuracy. Lee et al. [16] developed a new
theoretical model that interprets Zsd as inversely proportional to the diffuse attenuation coefficient
at the wavelength of maximum light penetration. They further established a semi-analytical Zsd
estimation method based on the Quasi-Analytical Algorithms (QAA) [17]. This method can be applied
to a wide range of water clarity retrieval from multiple sensors, such as MODIS and the Landsat-8 OLI,
as it has been validated based on more than 300 in situ measurements from inland, coastal and oceanic
waters, with a Zsd range of 0–30 m [16,18,19].

For inland water quality parameter retrieval, hyperspectral imagery is capable of providing
numerous narrow bands for optimal spectral combinations, which is an important advantage over
multi-spectral sensors that have a limited number of broadbands. However, the application of SAM is
seldom validated on the satellite hyperspectral imagery due to a lack of data.

On 9 May 2018, China successfully launched the GF-5 satellite, which carries six payloads,
including a new generation Advanced Hyperspectral Imager (AHSI) [20]. AHSI contains 330 bands
covering a spectral range from 400–2500 nm. AHSI’s spectral resolution is 5 nm for the 150 visible
to near-infrared (VNIR) bands and 10 nm for the 180 short-wave infrared (SWIR) bands. The AHSI
is capable of collecting data at a 30-m resolution with a 60 km swath. AHSI’s radiometric quality
was evaluated based on its on-orbit absolute radiometric calibration performance from two aspects:
(1) the uncertainty of the on-orbit absolute radiometric calibration, and (2) the error of the absolute
radiometric calibration [21]. The former is within 2.59% (VNIR) and 2.68% (SWIR), which is assessed
from comparison between the in situ measured and simulated data. The latter is smaller than 5% for
the VNIR bands (i.e., 390–1029 nm). Specifically, to determine the error in the absolute radiometric
calibration, the radiometric calibration parameters acquired from the Baotou calibration field were
applied on another image collected for the Dunhuang calibration field, and the calculated image
radiance was then compared to the MODTRAN simulated values based on in situ measured spectra.
Compared with the specifications of other instruments (e.g., MODIS, MERIS, and Landsat), AHSI
also has the potential for applications of inland water quality monitoring, especially for small- or
medium-sized waterbodies. In addition, AHSI’s numerous bands may allow its data to retrieve Zsd
with a higher accuracy compared to that of multi-spectral sensors (e.g., Landsat). But corresponding
studies have not yet discussed, in detail, on the AHSI data.

In this study, we aim to test the space-borne hyperspectral instrument AHSI’s ability in terms of
Zsd retrieval and validate the semi-analytical method applied to AHSI imagery. Section 2 provides
an introduction to the study area and datasets used here, as well as the necessary preprocessings
associated with the AHSI images. We introduce the semi-analytical model with various QAAs in
Section 3. Section 4 presents the experiments, including the testing of various Zsd methods using in
situ and image AHSI band Rrs, as well as an accuracy analysis of the retrieved Zsd using the AHSI
imagery. We discuss the experiments Section 5 and present our conclusions in Section 6.
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2. Study Areas and Datasets

2.1. Study Areas and In Situ Measurements

Four inland lakes and reservoirs, including the Guanting Reservoir, Baiyangdian Lake, Panjiakou
Reservoir and Daheiting Reservoir in the Hebei Province of China are selected as the study areas. In situ
experiments were implemented to acquire match-up measurements of the GF-5 satellite (Figure 1).
Guanting Reservoir is located in Huailai county with an area of 130 km2, which serves as one of
the standby drinking water sources for Beijing. Baiyangdian Lake, the largest lake in North China,
is situated in the Xiong’an New Area. Panjiakou Reservoir is located at the junction of Tangshan city
and Chengde district, while Daheiting Reservoir is 30 km downstream of Panjiakou Reservoir. Table 1
lists the basic information for the collected in situ measurements of the study regions.

Figure 1. Distributions of the sampling sites in all study regions: (a) Guanting Reservoir, (b) Daheiting
Reservoir, (c) Lake Baiyangdian, and (d) Panjiakou Reservoir in North China.
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Table 1. Waterbody names, the central longitude and latitude of the study areas, in situ data acquisition
date, number of samplings (N), and Zsd values for the field measurements.

No. Study Region Longitude Latitude
In Situ Data

N
Zsd (m)

Acquisition Date Mean Min Max

1 Guanting Reservoir 115.73 E 40.35 N 5/22/2019 18 1.16 0.30 2.15

2 Lake Baiyangdian 116.01 E 38.82 N
5/21/2019 16 1.13 0.70 1.60

5/22/2019 13 1.13 0.55 1.70

3 Panjiakou Reservoir 118.29 E 40.43 N 9/24/2019 25 3.41 1.20 4.50

4 Daheiting Reservoir 118.31 E 40.28 N 9/25/2019 12 1.38 0.85 2.10

The Zsd values at the sampling sites were measured using a standard 30-cm diameter Secchi disk.
Water surface spectra were collected with a FieldSpec HandHeld ASD spectroradiometer according
to the above-water method [22–24], simultaneously with the Zsd measurement. The water surface
radiance (Lu(λ)), as well as the downwelling radiance (Ld(λ)) and skylight radiance (Lsky(λ)) were
measured using the ASD spectroradiometer in the range from 400–900 nm at 1-nm intervals. For
the Lu(λ) measurement, the viewing zenith angle was 40◦ downward, and the azimuth angle was
135◦ away from the sun’s azimuth; for the Lsky(λ) measurement, the viewing zenith angle was 40◦

upward, and the azimuth angle was the same as the Lu(λ) measurement. To acquire the Lu(λ), the
ASD spectroradiometer was targeted vertically over a reference panel center to measure its reflected
radiance Lp(λ) at a zenith angle of 0◦, and the Lu(λ) were then calculated as Lp(λ)/ρp.

For each sampling site, we conducted spectra measurement in the following order: (1) five
measures of Ld(λ), (2) ten measures of Lu(λ), (3) five measures of Lsky(λ), and (4) five measures
of Ld(λ). As the single-channel-based above-water method requires stable sunlight, the difference
among the five Lu(λ) measurements cannot exceed 10% in both steps 1 and 4, and so does for the
difference between averaged-Ld(λ) in step 1 and 4. Measurements not meeting these criteria were
discarded. In addition, for Lu(λ), we check if unusually large spectra existed in the ten measurements.
Unusually large spectra occur possibly due to random solar flares, and were discarded. The average of
the remaining spectrum was then taken.

The above-water remote sensing reflectance (Rrs) was then calculated as follows:

Rrs(λ) =
Lu(λ)− ρsky(λ)Lsky(λ)

πLp/ρp
, (1)

where ρp is the reflectance of the reference panel calibrated in the laboratory; and ρsky is the skylight
reflectance determined from the look-up table in Reference [25]. ρsky is affected by the wind speed,
solar zenith angle, and the viewing geometry, and is thought to be independent of the wavelength.
Though some studies [26,27] propose sophisticated approaches to compute ρsky considering the spectral
variations of skylight distribution, we choose the method in Reference [25], as it is widely used and
easy to implement. Moreover, the error in Rrs caused by small residual errors in ρsky mainly exists in
the dark blue wavelengths, and is smaller for turbid waters. Figure 2 shows the in situ collected Rrs in
the study areas.
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Figure 2. Field measured remote sensing reflectance at the sampling sites in the study regions:
(a) Guanting Reservoir, (b) Daheiting Reservoir, (c) Lake Baiyangdian and (d) Panjiakou Reservoir.

2.2. Satellite Data Acquisition and Preprocessing

We included four AHSI images that have match-up in situ measurements with these study regions.
Images of Guanting Reservoir and Baiyang Lake were collected on 22 May 2019, while images for the
Panjiakou and Daheiting Reservoirs were acquired on 24 September 2019. All images were acquired at
approximately 1 p.m. local time. For the in situ experiment, all field data at Guanting and Panjiakou
Reservoirs were acquired within 3 h of the overpass time; but 16 of the 29 samples collected from Lake
Baiyangdian and all 12 samples from Daheiting Reservoir were measured one day before and after
GF-5 overpass, respectively.

Before Zsd estimation, the DN values from the original AHSI data should be corrected to Rrs, and
water areas must be extracted. All scenes were corrected using the FLAASH module in the ENVI5.3
software. Specifically, the VNIR and SWIR images were first merged into one file due to separate
storage. Second, DN values were rescaled to top-of-atmosphere radiance using the radiometric
calibration coefficients in the metadata file. Third, surface reflectance (ρ) images were retrieved from
the FLAASH module. We used the rural aerosol model in FLAASH for all AHSI images, since aerosols
in the study areas were not strongly affected by urban or industrial sources. In addition, we chose
the 2-band Kaufman-Tanre aerosol retrieval method (called 2-band (K-T) in the FLAASH interface).
The 2-band (K-T) method is based on detecting forested or dense vegetation pixels as the darkest
pixels over the land [28]. Since dense vegetation has relatively high reflectance that can be accurately
calibrated in AHSI images, it is reasonable to apply the 2-band (K-T) method in AHSI atmospheric
correction. A final remaining problem is the retrieval of Rrs from ρ. According to Equation (1), ρ is
related to Rrs as follows:

Rrs(λ) =
Lu(λ)

πLd(λ)
−

ρsky(λ)Lsky(λ)

πLd(λ)

=
ρ(λ)

π
−

ρsky(λ)Lsky(λ)

πLd(λ)
,

(2)
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where Ld is the downwelling radiance on the water surface. Here, the skylight effects involved in the
surface reflectance should be removed for accurate Rrs retrieval. However, as the AHSI radiometric
calibration parameters were acquired based on bright land targets [21], the SWIR band data contain
a relatively high level of noise and thus cannot be applied for skylight removal of water bodies.
Therefore, Rrs is approximately represented as ρ/π in the AHSI images (hereafter referred to as R0

rs),
neglecting skylight effects.

For the water area delineation, the Normalized Difference Water Index (NDWI) was calculated
using surface reflectance ρ followed by the application of the modified histogram bimodal method
(MHBM) [29] to NDWI images to automatically segment water areas from other land cover types.

3. Secchi Disk Depth Estimation Method

This study aims to validate the application of AHSI data for inland water clarity monitoring,
as well as the validation of the accuracy of SAM for use in the routine Zsd image production of AHSI
imagery. Considering the complex optical properties of inland water in China, the semi-analytical
model developed by Lee et al. [16] was selected and tested for the Zsd of the AHSI imagery. This
algorithm can be applied to hyperspectral or MODIS and SeaWiFS sensors, and has been modified to
be successfully applied to Landsat-8 imagery [30]. There are three major steps required to retrieve Zsd
with the semi-analytical model: (1) estimate the inherent optical properties (IOPs), that is, the total
absorption coefficient, a, and backscattering coefficient, bb; (2) retrieve the diffuse attenuation coefficient
(Kd, m−1) based on a and bb; and (3) determine Zsd with Kd and Rrs. These three steps are explained in
the following sections.

3.1. IOPs Estimation Using the QAA Method

Lee et al. [17] developed a multi-band QAA algorithm to retrieve the absorption and
backscattering coefficients from Rrs. QAA has six steps, including analytical and empirical approaches.
Originally proposed and applied in optically deep waters, this method has received certain
modifications to achieve better performance in turbid inland waters [31–33]. These modifications
mainly include shifting the reference band to longer wavelengths and the alteration of the empirical
equation in the algorithm. Table 2 lists the steps of the fifth version of the QAA (QAAV5), with
modified QAA algorithm steps for turbid waters, referred to as QAAL09 [31] and QAAM14 [32],
respectively. QAAL09 uses 710 nm as its reference wavelength, at which point neglects the absorption of
suspended solids and phytoplankton, where a(710) is approximately equal to aw(710). The pure-water
backscattering coefficient bbw(710) was also neglected in the bbp(710) calculation. In addition, the rrs

wavelengths were assessed, with a selection of 560 and 750 nm. QAAM14 used 708 nm as the reference
wavelength, obtaining a new empirical relationship between a(710) and χ, which is an intermediate
parameter for the derivation of a(710) and calculated using a new equation based on the rrs at 443 and
620 nm.
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Table 2. Steps to derive the absorption and backscattering coefficients from QAAV5, QAAL09 and QAAM14.

Step Property QAAV5 QAAL09 QAAM14

0 rrs = Rrs/(0.52 + 1.7Rrs) 1 same as QAAV5 same as QAAV5

1 u(λ) =
− g0 +

√
g2

0 + 4g1rrs(λ)

2g1
same as QAAV5 same as QAAV5

g0 = 0.089 g1 = 0.125

2 a(λ0) = aw(λ0) + 10−1.146−1.366χ−0.469χ2
= aw(λ0) = aw(λ0) + 10−0.7153−2.054χ−1.047χ2

χ = log

(
rrs(443)+rrs(490)

rrs(λ0)+5
rrs(667)
rrs(490)

rrs(667)

)
χ = log

(
0.01rrs(443)+rrs(620)

rrs(λ0)+0.005
rrs(620)
rrs(443)

rrs(620)

)

λ0 = 555 λ0 = 710 λ0 = 708

3 bbp(λ0) =
u(λ0)a(λ0)

1− u(λ0)
− bbw(λ0) =

u(λ0)a(λ0)

1− u(λ0)
same as QAAV5

4 η = 2.0
{

1− 1.2exp
[
− 0.9 rrs(443)

rrs(555)

]}
= 2.2

{
1− 1.2exp

[
− 0.9 rrs(560)

rrs(750)

]}
same as QAAV5

5 bbp(λ) = bbp(λ0)(
λ0

λ
)η same as QAAV5 same as QAAV5

6 a(λ) =
[1− u(λ)][bbp(λ) + bbw(λ)]

u(λ)
same as QAAV5 same as QAAV5

1 Rrs: above-surface remote-sensing reflectance, rrs: below-surface remote-sensing reflectance, u(λ): ratio of the backscattering coefficient to the sum of the absorption
and backscattering coefficients (bb/(a + bb), λ0: reference wavelength, η: spectral power of the particle scattering coefficient.



Remote Sens. 2020, 12, 1849 8 of 17

In addition, QAA was updated to its sixth version (QAAV6). In the QAAV6 algorithm, the same
steps in QAAV5 [34] were used for both a and bbp estimation when Rrs was less than 0.0015 sr−1.
Otherwise, the reference wavelength (λ0) is shifted to 670 nm, where a(λ0) can be calculated using a
different equation:

a(λ0) = a(670) = aw(670) + 0.39(
Rrs(670)

Rrs(443) + Rrs(490)
)1.14, (3)

where aw is the absorption coefficient of pure water. In Section 4, we tested QAAV5, QAAV6, QAAL09

and QAAM14 on the AHSI band-equivalent in situ Rrs for Zsd determination.

3.2. Kd Retrieval Using IOPs

According to the radiative transfer theory, the diffuse attenuation coefficient, Kd, can be expressed
as an analytical function of a and bb. Lee et al. [35] updated the semi-analytical model of Kd as follows:

Kd(λ) = (1 + m0 × θs)a(λ) + (1− γ
bbw(λ)

bb(λ)
)×m1 × (1−m2 × e−m3×a(λ))bb(λ), (4)

where λ is the wavelength; θs is the solar zenith angle in degrees; bbw(λ) is the backscattering coefficient
of pure water; m0−3 and γ are parameters with fixed values of 0.005, 4.26, 0.52, 10.8, and 0.265,
respectively. Both a(λ) and bb(λ) are retrieved from the QAA.

3.3. Zsd Estimation Based on Kd and Rrs

The classic underwater visibility theory interprets that the Zsd is inversely proportional to the
sum of the diffuse attenuation and beam attenuation coefficients (c, m−1) [36]. As c is generally
2–5-fold greater than Kd, this theory contradicts the fact that no universal connections exist between
Zsd and c, which is corroborated by human experience with respect to the Secchi disk depth. To solve
these problems, Lee et al. [16] developed a new underwater visibility theory, arguing that Zsd is only
inversely proportional to Kd and can be expressed as follows:

Zsd =
1

2.5min(Ktr
d )

ln(
|0.14− Rtr

rs|
0.013

), (5)

where Ktr
d denotes the diffuse attenuation coefficient of the water body over the visible spectral range

(410–665 nm), and Rtr
rs represents the corresponding remote-sensing reflectance at this wavelength.

Specifically, we must retrieve the Kd at 443, 488, 532, 555, and 665 nm.

3.4. Accuracy Assessment Method

The performance of the semi-analytical models based on QAAV5, QAAV6, QAAL09 and QAAM14

was first evaluated using the AHSI band-equivalent in situ Rrs datasets. The Zsd values derived from
these models were compared with the in situ measured Zsd. The mean absolute error (MAE), mean
relative error (MRE), and coefficient of determination (R2) values were calculated to assess the accuracy
of these semi-analytical models applied to the AHSI Rrs. Furthermore, semi-analytical models that
have achieved good performance using in situ spectra were then selected for implementation with the
AHSI image Rrs. As with the in situ datasets, the MAE, MRE and R2 of the image-retrieved Zsd values
were used to assess these semi-analytical models applied to the AHSI data, as well as for an evaluation
of the AHSI’s ability for inland water clarity monitoring.
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4. Results

4.1. Zsd Estimation from In Situ Measurements

We first calculated the band-equivalent AHSI reflectance using field-measured Rrs. Following the
steps in Section 3.3, the AHSI bands that have the most similar center wavelengths to the bands listed
in Table 2 and Equation (3) were selected to calculate the Zsd. Then, the MAEs of the derived Zsd were
calculated, as well as the linear correlation analysis conducted between the estimated and measured
Zsd values for all sampling points. The estimated Zsd values yielded MAE values of 0.35, 0.48, 0.69, and
0.42 m from SAMs based on QAAV5, QAAV6, QAAL09, and QAAM14, respectively. Figure 3 shows the
estimation results with the in situ measured Zsd values. Table 3 lists the MAEs and MREs for different
Zsd ranges.

Figure 3. Estimated Zsd from the AHSI band-equivalent in situ Rrs of 84 samples, based on
semi-analytical methods using various QAA algorithms: (a)QAAV5, (b)QAAV6, (c) QAAL09, and
(d) QAAM14.
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Table 3. The MAEs and MREs of the estimated Zsd from the AHSI in situ Rrs based on the
semi-analytical methods using various QAA algorithms. Optimal results listed in bold.

Zsd Range (m) N QAAV5 QAAV6 QAAL09 QAAM14

MAE (m)

0.3-1.0 23 0.34 0.49 0.13 0.18
1.0–3.0 43 0.25 0.44 0.46 0.21

>3.0 18 0.57 0.56 1.96 1.26
0.3–4.5 84 0.35 0.48 0.69 0.42

MRE

0.3-1.0 23 48.4% 72.1% 15.5% 22.8%
1.0–3.0 43 18.2% 28.7% 28.7% 12.8%

>3.0 18 14.7% 14.2% 50.3% 32.3%
0.3–4.5 84 25.7% 37.5% 29.7% 19.7%

As shown in Figure 3, the Zsd values retrieved with QAAV5 (Figure 3a) and QAAV6 (Figure 3b)
show better consistency with the in situ measurements, as their paired data in the study regions
predominantly fall along a 1:1 line, also yielding a higher R2 value (i.e., 0.9142 and 0.8057, respectively).
The estimated Zsd using the modified QAAL09 and QAAM14 are characterized by weaker correlations
with the field-measured Zsd (R2 of 0.7716 and 0.7497, respectively). In addition, as shown by Figure 3c,d,
the semi-analytical methods with QAAL09 and QAAM14 tend to underestimate the Zsd for relatively
clear waters.

Based on Table 3, we can observe the performance of the Zsd estimations using the different QAA
methods in various clarity ranges:

(1) Overall, the QAAV5 and QAAM14 yield desirable estimations with both small MAEs and
MREs for the Zsd at all sampling sites. Specifically, QAAV5 yields better predictions in clearer waters
(i.e., Zsd > 3 m), whereas QAAM14 performs better for more turbid waters (Zsd between 0.3 and 3 m).
In addition, for a Zsd range from 1–3 m, both the MAEs and MREs of the Zsd estimated using the
QAAV5 are slightly bigger than those of the Zsd estimated from the QAAM14.

(2) On the other hand, QAAV6 and QAAL09 have limitations for Zsd retrieval using AHSI data.
Their overall MAEs and MREs are higher than the Zsd determined from two other algorithms. QAAV6

tends to better estimate the Zsd for clearer waters (>3 m) and can induce larger errors in turbid areas
(0.3–1 m). The opposite is true for Zsd values derived using the QAAL09 method.

Taking into account the MAE, MRE, and correlation from the estimated Zsd values using the in situ
dataset, we selected the QAAV5- and QAAM14-based semi-analytical methods for AHSI image testing.

4.2. Zsd Estimation Scheme for AHSI Imagery

Semi-analytical methods with QAAV5 and QAAM14 were both tested with the match-up pixels of
the in situ sampling points using the image R0

rs described in Section 2.2. Figure 4 shows scatterplots
of estimated and in situ measured Zsd with their corresponding R2 values. As shown in Figure 4,
the Zsd values generated from the QAAV5-based method have a significantly higher correlation and
better consistency with the in situ measurements than the SAM incorporating the QAAM14 algorithm.
An accuracy analysis (the same as in Section 4.1) was conducted for the imaged Zsd estimations.
Table 4 lists the MAEs and MREs of 84 match-up pixels at different clarity ranges based on different
methods using the AHSI image-estimated remote sensing reflectance. Only the Zsd determined from
the QAAV5-based semi-analytical method is acceptable for the AHSI data. For the 84 match-up
measurements, the Zsd calculated with the QAAV5 using R0

rs yields higher accuracy in terms of both
the MAE and MRE. The QAAV5-derived image Zsd is also more accurate than the QAAM14 for Zsd at
all ranges.
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Figure 4. Estimated AHSI image Zsd for 84 match-up in situ measurements using the semi-analytical
method: (a) QAAV5, and (b) QAAM14.

Table 4. Mean absolute errors (MAEs) and mean relative errors (MREs) of the estimated
Advanced HyperSpectral Imager (AHSI) image Zsd based on semi-analytical methods using various
Quasi-Analytical Algorithm (QAA) algorithms. Optimal results listed in bold.

Zsd Range (m) N
MAE (m) MRE

QAAV5 QAAM14 QAAV5 QAAM14

0.3–1.0 23 0.22 0.39 33.1% 47.4%

1.0–3.0 43 0.46 0.98 29.1% 60.9%

>3.0 18 0.24 2.94 6.3% 75.6%

Total 84 0.35 1.24 25.3% 60.4%

Furthermore, we compared the accuracies of image-derived Zsd based on MAE, MRE and R2 (see
Table 5) of in situ samples collected within 3 h and before/after 1 day of the AHSI image acquisition
(see Table 1). From Table 5, it can be observed that:

(1) Samples collected within 3 h and before/after 1 day both yielded Zsd with high accuracies
on the AHSI images, which is likely owing to the stable weather conditions (i.e., no strong wind or
rainfall) during the image acquisition and in situ measurement.

(2) The R2 from the samples collected within 3 h is higher than that the other group, indicating
that the image-retrieved Zsd has better consistency with the in situ Zsd measured on the same day.

(3) Samples collected before/after 1 day have smaller MAE and MRE than those collected on the
same day. This is because highly turbid sampling sites (i.e., Zsd < 0.7 m) included in the latter have
worse Zsd predictions, leading to greater MAE and MRE in this group of samples.

Table 5. AHSI image-derived Zsd accuracies for the 56 samples collected on the same day as the image
acquisition, and 28 collected before/after one day.

Time Difference between
Zsd Range (m) N MAE (m) MRE R2

In Situ Data and AHSI Image

Within 3 h 0.3–4.5 56 0.38 26.1% 0.871

Before/after 1 day 0.7–2.1 28 0.28 23.7% 0.502
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All of the above analyses indicate that only the SAM with the QAAV5 can predict desirable Zsd
values with an approximate remote sensing reflectance from the AHSI imagery. Therefore, based
on the semi-analytical method with the QAAV5, Zsd images were produced for the AHSI images of
four study areas (see Figure 5). Retrieved Zsd from the study regions have consistent distributions
with ground surveys: (1) in Guanting Reservoir, southwestern areas have higher water clarity than
northeastern areas; (2) Lake Baiyangdian contains numerous small fish ponds, which have relative
turbid waters in its most areas; and (3) Panjiakou Reservoir has better water quality than Daheiting
Reservoir, such that it has higher water clarities.

Figure 5. Zsd images of AHSI sensor based on semi-analytical method with QAAV5 algorithm:
(a) Guanting Reservoir, (b) Daheiting Reservoir, (c) Lake Baiyangdian and (d) Panjiakou Reservoir.

5. Discussion

5.1. AHSI Atmospheric Correction Performance Evaluation

As the image Zsd is retrieved based on the R0
rs, we made a comparison between the image R0

rs
and the in situ Rrs for the evaluation of the AHSI atmospheric correction results. R0

rs and in situ Rrs of
typical samples are shown in the Figure 6, and the average R2 of all the 84 samples is 0.860 between
R0

rs and Rrs in the bands utilized in the QAA algorithms. Figure 6 shows that the R0
rs retrieved from

AHSI images are generally slightly higher than the in-situ measured Rrs, but their spectral shapes are
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very similar. Since the R0
rs does not have skylight removal and is atmospherically corrected without

accurate aerosol retrieval, the value of R0
rs on the AHSI image are considered as reasonable.

Figure 6. In situ measured Rrs and image R0
rs in the bands utilized in QAAV5 and QAAM14 (443 nm,

490 nm, 532 nm, 555 nm, 620 nm, 665 nm, 667 nm, 708 nm) of typical samples P1 and P2 in the
study areas.

5.2. Zsd Estimation Methods Evaluation

Based on the Zsd values estimated from the AHSI band in situ Rrs, we can observe that the SAMs
based on the QAAV6 and QAAL09 are unable to provide satisfactory predictions. In contrast, the SAMs
with QAAV5 and QAAM14 gives good estimations for Zsd from the in situ measured spectra. Therefore,
we applied the QAAV5- and QAAM14-based SAMs to the AHSI Rrs images. Only QAAV5 can generate
Zsd with high accuracy from the AHSI data. The application of these SAMs to AHSI imagery were
evaluated as follows.

(1) QAAV6-based SAM evaluation

Based on the in situ acquired AHSI Rrs, QAAV6 yielded good predictions only for Zsd values
higher than 3.0 m due to its limitations in turbid water. In addition, the semi-analytical method
with QAAV6 was evaluated as being capable of retrieving the Zsd for an oligo- to mesotrophic inland
reservoir [37], but acquired an average relative error of 75.05%.

(2) QAAL09-based SAM evaluation

QAAL09 was developed with limited samples collected from Lake Taihu, with sensitivity to water
contents and optical properties as mentioned in Reference [31]. Specifically, the Zsd range of Lake
Taihu is 0–0.9 m, which is distinct from the water clarity range of our study regions. This is likely the
reason for poor performance in terms of the Zsd retrieval in our study regions.

(3) QAAV5-based SAM evaluation

The estimated Zsd values based on the QAAV5 using image R0
rs and AHSI in situ Rrs have similar

MAEs and MREs. In other words, the image Zsd with R0
rs is generally consistent with the AHSI in-situ

Rrs generated results when using the QAAV5-based semi-analytical method, despite an approximated
R0

rs for the image that is generally higher than the in situ measured reflectance due to insufficient
atmospheric correction. Since a(λ) and bb(λ) are mainly affected by the shape and magnitude of
the Rrs, respectively [38], a(λ) retrieved from the image is consistent with the in situ-derived values.
In addition, a(λ) affects Kd and Zsd to a more extent than does bb(λ), and therefore, the image-retrieved
Zsd values are comparable to the in situ-derived results. However, the estimation accuracies were
different at various Zsd ranges between the image and in situ derived Zsd. For the clarity range of
1–3 m, the estimated image Zsd has poorer accuracies (MRE of 29.1%) than the in situ determined Zsd
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(MRE of 18.2%). In contrast, the image-generated Zsd was better than that of the in situ values for <1 m
and >3 m clarity conditions.

(4) QAAM14-based SAM evaluation

For the QAAM14-based method, the image R0
rs, however, acquired distinct Zsd results compared

with those estimated from the AHSI band-equivalent in situ Rrs. Unlike the AHSI in situ Rrs that
generated desirable Zsd predictions using the QAAM14, the Zsd values calculated from the image
R0

rs have significantly poorer accuracies. Specifically, the MRE is 47.4% for a Zsd of less than 1 m,
while the MRE increases to 60.9 and 75.6% for Zsd values ranging from 1–3 m and >3 m, respectively.
Moreover, the absolute error also increases from 0.42 to 1.24 m. Such large errors are unacceptable
when estimating the water clarity in ranges from 0.3 to 4.5 m. Figure 6 shows that image R0

rs is higher
than in situ Rrs but with similar spectral shapes. However, the ratio of image R0

rs and in-situ Rrs at
708 nm is greater than that at 555 nm, since Rrs is much lower in the 708 nm band. Therefore, the use
of 708 nm in QAAM14 algorithm leads to an overestimation of bb and Kd, which finally results in an
underestimation for Zsd on AHSI images.

In addition to the above discussion, we discuss samples used in the development of
semi-analytical methods applied in Section 4 from the available literature [16,31,32,34]. the QAAV5

has been validated with the NOMAD dataset (>600 samples) [34], which has a wide range of Zsd
values [16]. QAAL09 was developed with 13 in situ measurements, and it exhibits good accuracy with
a validation dataset of 33 samples [31]; The calibration and validation datasets for QAAM14 contained
20 and 21 in situ measurement samples, respectively [32]. Therefore, QAAV5 is likely to be more robust
than other modified QAA algorithms.

5.3. Validation Limitations

The Zsd estimations were validated for the in situ dataset ranging from 0.3 to 4.5 m, with a lack of
validations for highly turbid or clear waters. Considering that the semi-analytical method has been
tested with Zsd values of 0.1–30 m in coastal and oceanic waters [16], we must further validate its
applicability to AHSI data with more turbid waters (i.e., Zsd < 0.3 m) in the future.

5.4. GF-5 Applicability to Zsd Retrieval

The above experiments show the possibility of retrieving water clarity using GF-5 AHSI imagery.
Compared with multispectral instruments (e.g., MODIS and MERIS), AHSI data has the following
advantages for water clarity monitoring: (1) its high spectral resolution and continuous spectral
range provides a selection of numerous bands; and (2) its spatial resolution is higher than most other
instruments used for water monitoring, such that it can be used in small or medium-sized water bodies.
In addition, as AHSI has the same spatial resolution as the Landsat series, its high spectral resolution
may yield Zsd with higher accuracies. For example, the estimated Zsd using the QAAV5-based SAM on
the Landsat-8 imagery had MREs of 12.86%, 28.83%, and 31.17% for the Nav Reservoir in the in situ Zsd
ranges of 2.29–4.80, 2.45–4.65, and 1.91–3.80 m, respectively [37]; the Ibitinga Reservoir received a MRE
of 34.6% using the same method on the Landsat-8 image for a water clarity between 1.8–2.6 m [39];
and the MRE of derived Zsd from the Landsat-8 data was 64% for the Boston Harbor, which had a
water clarity between 0.5 and 4 m [40]. For the comparable Zsd range (i.e., 0.3–4.5 m), AHSI achieved
generally higher accuracy with a MRE of 25.3% despite its approximate Rrs values.

However, the GF-5 satellite has a long revisit period due to its relatively narrow swath, which
limits its implementation for dynamic monitoring. With planned launches of other hyperspectral
satellites, a hyperspectral satellite constellation can be established to shorten the revisit time, thereby
promoting the advantages of water clarity estimations using the GF-5 satellite, as well as monitoring
for other water quality parameters.
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6. Conclusions

The new generation Chinese hyperspectral imager AHSI on board the GF-5 satellite has the
potential to retrieve accurate water clarity values, as it has continuous narrow spectral bands from
400–2500 µm. Also, AHSI imagery is suitable for monitoring the lakes and reservoirs that are not very
large, due to its relatively high spatial resolution. In this study, we tested the AHSI data for its ability
to monitor inland water clarity, as well as a validation of the accuracy in terms of the semi-analytical
methods used for the routine Zsd image production of AHSI imagery. Four inland lakes and reservoirs
in China were selected as the study regions. Concurrent in situ measurements were conducted when
AHSI had acquired images. An accuracy analysis of the retrieved Zsd from the AHSI images shows
that only the semi-analytical method incorporating the QAAV5 algorithm can yield relatively high
accuracies. For 84 concurrent sampling sites in a Zsd range of 0.3–4.5 m, the MAE and MRE were
0.35 m and 25.3%, respectively. Experimental results also indicate that the AHSI has sufficient bands
for the implementation of the semi-analytical method, which can achieve desirable Zsd estimations
with roughly estimated Rrs AHSI images. Although further validation is still required for highly turbid
and clear waters, our results indicate that the AHSI is effective to retrieve accurate water clarity data at
different levels of transparency.
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