
Article

Validation of satellite-derived sea surface temperature
and sea surface salinity gradients: Comparisons with
the Saildrone California/Baja and North Atlantic Gulf
Stream deployments

Jorge Vazquez-Cuervo 1,†,‡,∗, Jose Gomez-Valdes 2,‡ and Marouan Bouali 3,‡

1 Jet Propulsion Laboratory/California Institute of Technology; Jorge.Vazquez@jpl.nasa.gov
2 Center for Scientific Research and Higher Education at Ensenada (CICESE); jgomez@cicese.mx
3 Institute of Oceanography of the University of São Paulo (IOUSP); marouan.bouali@usp.br
* Correspondence: Jorge.Vazquez@jpl.nasa.gov
† Current address: Affiliation 3
‡ These authors contributed equally to this work.

Version April 18, 2020 submitted to Remote Sens.

Abstract: Validation of satellite-based retrieval of ocean parameters like Sea Surface Temperature1

(SST) and Sea Surface Salinity (SSS) is commonly done via statistical comparison with in situ2

measurements. Because in situ observations derived from drifting/moored buoys and Argo floats3

are only representatives of one specific geographical point, they cannot be used to measure spatial4

gradients of ocean parameters (i.e., two-dimensional vectors). In this study, we exploit the high5

temporal sampling of the unmanned surface vehicle (USV) Saildrone (i.e., one measurement per6

minute) and describe a methodology to compare the magnitude of SST and SSS gradients derived7

from satellite-based products with those captured by Saildrone. Using two Saildrone campaigns8

conducted in the California/Baja region in 2018 and in the North Atlantic Gulf Stream in 2019, we9

compare the magnitude of gradients derived from six different GHRSST Level 4 SST (MUR, OSTIA,10

CMC, K10, REMSS, and DMI) and two SSS (JPLSMAP, RSS40km) datasets. While results indicate11

strong consistency between Saildrone and satellite-based observations of SST and SSS, this is not the12

case for derived gradients with correlations lower than 0.4 for SST and 0.1 for SSS products.13

Keywords: Ocean fronts; Sea surface temperature/salinity gradients; Satellite observations, Saildrone14

15

1. Introduction16

The paper aims to followup on the work of [1], where the authors compared sea surface17

temperatures (SSTs) and sea surface salinities (SSSs) from the Saildrone deployment along the California18

and Baja Coasts with satellite derived products. The primary conclusions of the paper showed good19

agreement (i.e., correlations higher than 0.95) between Saildrone and satellite-derived SSTs. Those20

products included the Multi-Scale Ultra-High Resolution (MUR) SST, the Operational Sea Surface21

Temperature and Sea Ice Analysis (OSTIA) SST, the Canadian Meteorological Center (CMC) SST,22

the NAVOCEANO K10 SST, the Remote Sensing Systems (RSS) REMS_MW_IR SST and the Danish23

Meteorological Institute (DMI) SST. Salinity products included the Jet Propulsion Laboratory Captive24

Active Passive (CAP) SSS and the Remote Sensing Systems (RSS) 40 km and 70 km derived SSS products25

from the Soil Moisture Active Passive (SMAP) satellite. Salinity comparisons showed significantly26

lower signal-to-noise ratios, an indication that land contamination and the lower spatial resolution27

were both contributing to the lower correlations in the SSS comparisons. The Saildrone California/Baja28
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campaign was also used in [2] for the validation of additional parameters that include satellite-derived29

fluxes and wind vectors. In this study, we extend the previous results, by comparing satellite-based30

SST and SSS gradients with Saildrone measurements. The importance of also validating gradients31

with in situ measurements has been confirmed for both a data quality and scientific perspective.[3,4]32

have shown the coupling that exists between the wind stress curl and SST gradients. [3] found33

that the wind stress divergence was linearly related to the downwind SST gradients in the Eastern34

Tropical Pacific. Results clearly showed the air-sea coupling associated with the formation of thermal35

surface fronts. [4] examined the coupling in the Cape Frio coastal upwelling region off Southeastern36

Brazil. They determined that wind stress curl was more strongly correlated with SST gradients37

than SST. Thus, SST gradients were critical for the relationship between wind stress curl and the38

formation of localized upwelling events. A significant conclusion of the work was how wind stress39

curl could be modified through feedback mechanisms associated with coastal upwelling.[5] also found40

strong summertime coupling between wind stress and the formation of SST fronts in the California41

Current associated with coastal upwelling. The summertime coupling is associated with the seasonal42

intensification of the coastal upwelling system. The coupling was determined to exist for both wind43

stress divergence and wind stress curl. The results point to the importance of SST gradients in air-sea44

coupling. As such, precise and accurate measurements of gradients become critical for numerical45

modeling, inclusive of numerical weather prediction. [6] found that despite statistical consistency,46

there were differences in SST gradients based on the application of the multi-channel sea surface47

temperature (MCSST) algorithm or the non-linear (NLSST) sea surface temperature algorithm. They48

concluded that differences between the SST gradients derived from the two algorithms were most49

likely due to the use of the first-guess SST field in the NLSST formulation. Unlike the MCSST, the50

magnitude of SST gradients derived from NLSST showed a clear correlation with SST values. Other51

studies [7] have also shown that there are warm satellite SST biases in the Eastern Boundary Current52

regions. In a study comparing Terra MODIS SST and AVHRR SST Pathfinder with in situ data, the53

authors found warm summertime SST biases in four major upwelling regions, with values as high54

as 3 to 5◦C. Such biases are due to over-flagging of valid SST pixels associated with anomalous cold55

events typical in upwelling regions. More recently, [8] found large biases when comparing several56

Level 4 SST data sets with buoys measurements during coastal upwelling events. In [9], these biases57

were also observed in Level 2 MODIS data despite using an improved cloud masking method [10]58

and can be attributed to the calibration of Level 2 SST retrieval algorithms [11,12] which is based on59

global in situ measurements and thus does not account for atmospheric processes specific to coastal60

upwelling regions.61

Overall, warm SST biases, along with the air-sea coupling and associated relationship to SST gradients,62

make the case that validation of both SST and SSS, along with their respective gradients, is critical63

for coastal upwelling regions. In this work, we focus on two oceanic regions usually associated with64

high spatial-temporal variability, i.e., a coastal upwelling region and a Western Boundary Current65

region. The Saildrone instrument allows for validation of both SST, SSS, and their gradients using data66

from two separate campaigns conducted in the California/Baja region and in the North Atlantic Gulf67

Stream. The paper is organized as follows: section 1 being the introduction, section 2, the methodology68

and data, section 3 the results and discussion, and section 4 the conclusions.69

2. Methodology and Data70

The validation of satellite SST/SSS gradients using standard in situ measurements derived from
Argo floats, drifting/moored buoys is a challenging task due to the very different nature of acquired
signals. In fact, gradients estimated from satellite observations are bi-dimensional vectors with a given
magnitude and orientation, whereas in situ data are typically associated to one particular geographical
location. The high temporal frequency of Saildrone measurements along its trajectory (1 per minute)
allows one to see the acquired data as a one-dimensional signal where values vary as a function of
time. Given that the sampling frequency of Saildrone is significantly higher than the temporal scale
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Figure 1. Typical configuration of Saildrone trajectory and collocated Level 4 SST that does not allow
to estimate SST gradients using central finite differences.

of ocean submesoscale processes, gradients in the spatial domain can be estimated from successive
measurements. One possible approach to compare satellite-based gradients with those obtained from
Saildrone is to rely on finite differences. In a lat/lon grid for example, the magnitude of the SST
gradient at location (i, j) is typically estimated using a finite central differences scheme as follows:

|∇SST(i, j)| =
(SST(i− 1, j)− SST(i + 1, j)

di+1,j
i−1,j

2

+

SST(i, j− 1)− SST(i, j + 1)

di,j+1
i,j−1

2)1/2
(1)

where di+1,j
i−1,j represents the distance in kilometers between grid points (i − 1, j) and (i + 1, j).

However, this commonly used approach significantly limits the number of grid points where
satellite-based gradients can be compared with the Saildrone data. In fact, such method requires
the Satellite/Saildrone collocated observations to be available for all 4 locations (i− 1, j), (i + 1, j),
(i, j− 1) and (i, j− 1) which is seldom the case. Figure 1 shows a typical configuration of Saildrone
trajectory where SST gradients from Level 4 collocated data cannot be computed due to missing values
in both vertical and horizontal directions. While using a forward or backward finite differences scheme
may alleviate this issue, (i.e., when the Saildrone trajectory allows two consecutive collocated values
along vertical and horizontal directions) an alternative method is required for the validation of SST
gradients. In this paper, we adopt a different collocation strategy from that used for the validation of
SST and SSS in [1]. In the following, we denote ds the spatial resolution of the Level 4 satellite SST/SSS
field. For each grid point (i, j), all Saildrone measurements acquired between latitudes i − ds and
i + ds and longitudes j− ds and j + ds are averaged. This leads to a collocated dataset of Saildrone
and satellite based SST/SSS values in the lat/lon grid. For each location (i, j), we also compute the
average time of all Saildrone measurements, which is then sorted to derive collocated time series of
SST (SSS) denoted hereafter Sat_SST (Sat_SSS) and Sail_SST (Sail_SSS) for the satellite and Saildrone
observations respectively. The temporal window used for the collocation is the temporal resolution of
the Level 4 datasets i.e., one day. The magnitude of SST gradients can then be approximated using
forward finite differences of successive measurements, i.e.,

∇SST =
|SST(t + 1)− SST(t, j)|

dt+1
t

(2)

where dt+1
t represents the distance between collocated observations obtained at times t + 1 and t. We71

use Equation 2 to calculate the magnitude of SST gradients from Saildrone and various Level 4 SST72

products. Grid points with less than 50 Saildrone measurements are discarded as the average of in73
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– – Bias RMSE Correlation

CMC SST -0.074 0.417 0.975
|∇SST| -0.009 0.022 0.315

K10 SST 0.137 0.475 0.969
|∇SST| -0.007 0.022 0.293

REMSS SST 0.075 0.401 0.977
|∇SST| -0.007 0.023 0.243

OSTIA SST 0.022 0.365 0.980
|∇SST| -0.008 0.022 0.306

DMI SST 0.040 0.489 0.966
|∇SST| -0.008 0.023 0.255

MUR SST 0.285 0.500 0.975
|∇SST| -0.003 0.021 0.395

JPLSMAP SSS 0.141 0.414 0.429
|∇SSS| 0.002 0.005 0.128

RSS v4 SSS -0.170 0.336 0.464
|∇SSS| 0.002 0.004 0.072

Table 1. Statistics of SST/SSS and SST/SSS gradients for the selected Level 4 products for the Baja
California campaign

situ| SST may not be representative of the SST value inside the grid point. Note that experiments74

conducted with a higher number of Saildrone measurements for each grid point have little impact on75

results reported in the next section. In this study, 6 GHRSST compliant Level 4 SST datasets have been76

used, namely:77

(1) the Canadian Meteorological Office CMC78

(2) the Naval Oceanographic Office NAVO K1079

(3) Remote Sensing Systems REMSS_MW_IR80

(4) the UK Meteorological Office OSTIA81

(5) the Danish Meteorological Institute DMI, and82

(6) the Jet Propulsion Laboratory MUR.83

84

In addition, two daily SSS datasets produced from 8-day running mean were selected:85

(1) the Jet propulsion Laboratory version 4.0 Soil Moisture Active Passive (SMAP) (JPLSMAP) and86

(2) the Remote Sensing Systems version 4.0, 40 km (RSS40) dataset.87

88

A detailed description of these SST datasets can be found in [1]. Both SST and SSS datasets89

were downloaded from the Physical Oceanography Distributed Active Archive Center (PO.DAAC,90

https://podaac.jpl.nasa.gov/) and reprojected into a 0.1◦ and 0.25◦ resolution grid respectively, using91

bilinear interpolation. We used two different Saildrone campaigns for the validation of satellite92

SST/SSS gradients. The first 60-day campaign, which was used for the validation of SST and SSS93

in [1], was conducted over the period 11 April 2018 to 11 June 2018 in the California/Baja region94

(round cruise from San Francisco Bay down to Guadalupe Island). The California/Baja Saildrone95

campaign data can be download from the PO.DAAC. The second 27-day Saildrone campaign was96

conducted in the North Atlantic Gulf Stream region from 30 January 2019 to 25 February 2019, and the97

corresponding data can be downloaded from the European Marine Observation and Data Network98

(https://www.emodnet-physics.eu/Portal/).99

3. Results100

The California Current Upwelling System (CCUS) and the North Atlantic Gulf Stream (NAGS)101

have been selected in this study as they are representative of large spatio-temporal variability associated102

with both mesoscale and submesoscale fronts. Previous results [6] had already demonstrated how103

https://podaac.jpl.nasa.gov/
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Figure 2. Magnitude of SST gradients derived from Saildrone, CMC, OSTIA and MUR for the Baja
California campaign

– – Bias RMSE Correlation

CMC SST -0.350 1.310 0.962
|∇SST| -0.012 0.054 0.374

K10 SST -0.688 1.928 0.917
|∇SST| -0.009 0.062 0.072

REMSS SST -0.085 0.962 0.977
|∇SST| -0.016 0.055 0.342

OSTIA SST -0.209 1.185 0.968
|∇SST| -0.012 0.053 0.371

DMI SST 0.002 1.401 0.951
|∇SST| -0.017 0.058 0.210

MUR SST -0.051 1.057 0.975
|∇SST| -0.010 0.054 0.321

JPLSMAP SSS -0.325 0.437 0.591
|∇SSS| 0.001 0.006 0.084

RSS v4 SSS -0.151 0.457 0.932
|∇SSS| 0.001 0.007 0.140

Table 2. Statistics of SST/SSS and SST/SSS gradients for the selected Level 4 products for the North
Atlantic Gulf Stream campaign

the high correlation between SST values derived from various satellite products does not necessarily104

apply when analyzing SST gradient magnitudes. From a similar perspective, the two Saildrone105

campaigns are used to compare SST and SSS gradients measured by satellite products with those106
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Figure 3. Magnitude of SSS gradients derived from Saildrone, JPLSMAP and RSS40km for the Baja
California campaign

from Saildrone. Using the methodology described in the previous section, we generated time series of107

SST/SSS gradient magnitude for the two Saildrone campaigns. Due to the high temporal variability of108

SST/SSS gradients, the time series are not shown here.109

3.1. California Current Upwelling System (CCUS)110

Figure 2 shows the magnitude of SST gradients derived from the Saildrone and collocated Level111

4 CMC, OSTIA, and MUR along the Baja California deployment. First, we note that the Saildrone112

captures a more important number of high SST gradients compared to all Level 4 SST datasets. The113

magnitude of SST gradients captured by Saildrone in the CCUS can reach values above 0.1 ◦C/km,114

whereas for CMC, and OSTIA, maximum values are mostly lower than 0.04 ◦C/km. This can be115

explained by the use of optimal interpolation and the underlying spatio-temporal smoothing which116

does not preserve small scale features. The Level 4 MUR, which is based on wavelet analysis, is able117

to capture higher magnitudes of SST gradients with maximum values of the order of 0.75 ◦C/km.118

As expected, while Saildrone and Satellite SST simultaneously observed several thermal fronts, the119

magnitude of gradients is significantly underestimated in Level 4 SST analysis, which only provide a120

daily estimate of the SST field as opposed to the synoptic observation from Saildrone. In contrast,the121

analysis of SSS gradients illustrated in Figure 3, indicates that higher gradients are found in satellite122

products compared to Saildrone. Significant differences of up to 0.02 PSU/km between the magnitude123

of SSS gradients in JPLSMAP/ RSS40km and Saildrone are observed. The maps of Figure 3 indicate124

that these discrepancies increase as the Saildrone gets closer to the coast. This can be seen in the125

Saildrone track portions located between 34 and 36◦N and between 29 and 32◦N and is likely due to126
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Figure 4. Magnitude of SST gradients derived from Saildrone, CMC, OSTIA and MUR for the North
Atlantic Gulf Stream campaign

land contamination which affects the accuracy of satellite SSS values and consequently, associated127

gradients.128

3.2. North Atlantic Gulf Stream (NAGS)129

Figure 4 shows the values of SST gradient magnitudes for Saildrone, CMC, OSTIA, and MUR130

along the NAGS deployment. Similarly to what is observed in the CCUS campaign, we note that131

gradients in Level 4 SST are also significantly underestimated in the NAGS region. Maximum SST132

gradients associated with frontal activity in the GS and measured by Saildrone exceed values of133

0.2◦C/km. However, for CMC, OSTIA, and MUR, most thermal fronts have magnitudes lower than134

0.1◦C/km. In this region dominated by intense mesoscale and submesoscale surface fronts, the average135

of SST gradient magnitudes for the entire campaign period for MUR, for example, is 0.22◦C/km,136

whereas Saildrone measured an average of 0.35◦C/km. Analysis of SSS gradients illustrated in Figure137

5 also indicates significant discrepancies between Saildrone and satellite observations, including138

in areas distant from the coast. As an example, at the end of the campaign, i.e., in the area located139

between 35-38◦N and 57-60◦W, RSS40km and JPLSMAP measure many gradients with values higher140

than 0.005 PSU/km whereas most values derived from Saildrone are lower than 0.001 PSU/km.141

Overall, maps of SST and SSS gradients in the CCUS and the NAGS show that the differences between142

Saildrone and satellite data sets are related not only to the magnitude but also to the location of143

temperature and salinity fronts.144

145

To further analyze the consistency between Saildrone and satellite-based observations, biases,146
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Figure 5. Magnitude of SSS gradients derived from Saildrone, JPLSMAP and RSS40km for the North
Atlantic Gulf Stream campaign

root mean square differences, and correlation coefficients were computed. Values for both SST/SSS147

and derived gradients are reported in Table 1 for the CCUS and Table 2 for the NAGS regions. We148

note that for both campaigns, correlation coefficients with Saildrone are higher than 0.96 for all level 4149

products. We also note that overall, SST biases in the NAGS are slighter higher than those observed in150

the CCUS, where all biases are below 0.15◦C in absolute value, with the exception of MUR (bias of the151

order of 0.285◦). The differences in SST validation statistics between the CCUS and the NAGS can be152

attributed to the amount of cloud coverage in these regions as well as the higher magnitude of thermal153

fronts in the NAGS, which can lead to over-masking of valid pixel values. Overall, results reported in154

Tables 1 and 2 for SST indicate that all Level 4 data sets are statistically consistent with the Saildrone155

data. However, this is not the case when analyzing corresponding gradients. Correlation coefficients156

computed for the magnitude of SST gradients are lower than 0.4 for both campaigns, indicative of the157

discrepancies observed in maps from Figures 2 to 5.158

Further, all biases computed for the magnitude of SST gradients for both campaigns are negative.159

This is a clear indication that Level 4 SST products tend to underestimate the intensity of thermal160

fronts. Similar observations can be made for salinity where correlation coefficients, although lower161

than those associated with SST, also significantly decrease when analyzing derived gradients. In the162

NAGS region, for example, the correlation between salinity derived from RSS40km and Saildrone is of163

the order of 0.93, but only 0.14 for salinity gradients. Although correlations of the gradients between164

the satellite-derived SSS products and Saildrone were lower than 0.2, examining the cross-correlation165

indicated this could be due to the temporal sampling of the SMAP orbit. Unlike SST, the 8-day files166

averages are averages over the full repeat of SMAP. Maxima correlations of approximately 0.2-0.3167

were found at lags of several days, indicative that Saildrone could be sampling a front offset from the168
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Figure 6. Taylor diagram summarizing the performance of the six GHRSST Level 4 products for the
estimation of SST (a) and SST gradient magnitudes (b) using the Saildrone Baja California campaign

Figure 7. Taylor diagram summarizing the performance of the six GHRSST Level 4 products for the
estimation of SST (a) and SST gradient magnitudes (b) using the North Atlantic Gulf Stream campaign

center point of the satellite 8-day SSS average. This justifies future research examining correlations169

with Level 2 data, but is beyond the scope of this work. We also note that unlike SST, biases for SSS170

gradients are always positive, suggesting that the satellite-based estimates of SSS contain more spatial171

variability than that observed by Saildrone and likely due to noise in the products. Results for SST172

reported in Table 1 for the CCUS campaign are summarized with Taylor diagrams using Saildrone as173

a reference. Taylor diagrams simultaneously show the standard deviation, the centered root mean174

square difference and the correlation coefficient for each of the six GHRSST Level 4 SST products.175

Figures 6 and 7 illustrate how the performance of Level 4 SST data sets decreases significantly when176

analyzing SST gradients instead of SST values. Note that the Taylor diagrams are not used here to177

determine which product performs best with respect to in situ data but to demonstrate how statistical178

validation based solely on the comparison of SST/SSS values does not provide much insight on the179

accuracy of derived gradients.180

4. Conclusions181

Few studies have attempted to evaluate the ability of satellite-based products to capture the182

location and intensity of ocean fronts. In this work, we have described a methodology that exploits183

the high sampling frequency of Saildrone in order to validate sea surface temperature and salinity184

gradients. Using data from two Saildrone campaigns conducted over regions known for intense frontal185
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Figure 8. Maps of gradient magnitudes in the CCUS derived from (a) MUR SST and (b) JPLSMAP SSS.
The data was acquired on April 24 of 2018

activity, we show that Level 4 satellite-based estimates of SST and SSS are overall statistically consistent186

with Saildrone measurements but fail to capture both locations and magnitude of surface fronts. In SST,187

this is mostly due to the spatio-temporal smoothing and ingestion of low-resolution passive microwave188

data required to generate Level 4 gap-free maps of ocean parameters. In SSS, land contamination189

introduces noise that increases spatial variability and thus the magnitude of salinity gradients. During190

periods of persistent cloud cover, where no satellite-derived infrared pixels are retrieved, the exclusive191

availability of the lower resolution passive microwave data leads to smoother SST gradients. As192

SMAP is a passive microwave instrument, it will inherently not resolve the submesoscale variability193

available under clear sky SST conditions. Animations showing the temporal evolution of SST and SSS194

gradient magnitude for all satellite products used in this study for both CCUS and NAGS Saildrone195

campaigns are provided as supplemental files. Figure 8 shows a typical example of the gradients196

derived from MUR SST and the JPLSMAP SSS products. Clearly visible are the inherent differences in197

the resolvability of features associated with the CCUS region.198

While not shown here, similar experiments were conducted using high-resolution infrared Level 2199

data from Terra and Aqua MODIS, with the intent of reducing the temporal size of the collocation200

window (one day when analyzing Level 4 products). However, persistent cloud coverage in infrared201

observations and the relatively short duration of Saildrone campaigns (1-2 months) results in a202

significantly low amount of collocated points to derive reliable statistics. As future Saildrone campaigns203

are conducted in the future, the methodology presented here offers a valuable perspective for the204

validation of gradients in both Level 2 and Level 4 satellite ocean products. Finally, results reported205

here underline the need for improved Level 4 analysis methods, able to provide not only accurate206

estimates of surface and salinity but also a reliable representation of ocean surface dynamics.207
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