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Abstract: Estimating leaf area index (LAI) and assessing spatial variation in LAI across a landscape is
crucial to many ecological studies. Several direct and indirect methods of LAI estimation have been
developed and compared; however, many of these methods are prohibitively expensive and/or time
consuming. Here, we examine the feasibility of using the free image processing software CAN-EYE to
estimate effective plant area index (PAIeff) from hemispherical canopy images taken with an extremely
inexpensive smartphone clip-on fisheye lens. We evaluate the effectiveness of this inexpensive method
by comparing CAN-EYE smartphone PAIeff estimates to those from drone lidar over a lowland
tropical forest at La Selva Biological Station, Costa Rica. We estimated PAIeff from drone lidar using
a method based in radiative transfer theory that has been previously validated using simulated
data; we consider this a conservative test of smartphone PAIeff reliability because above-canopy lidar
estimates share few assumptions with understory image methods. Smartphone PAIeff varied from 0.1
to 4.4 throughout our study area and we found a significant correlation (r = 0.62, n = 42, p < 0.001)
between smartphone and lidar PAIeff, which was robust to image processing analytical options
and smartphone model. When old growth and secondary forests are assumed to have different
leaf angle distributions for the lidar PAIeff algorithm (spherical and planophile, respectively) this
relationship is further improved (r = 0.77, n = 42, p < 0.001). However, we found deviations in the
magnitude of the PAIeff estimations depending on image analytical options. Our results suggest that
smartphone images can be used to characterize spatial variation in PAIeff in a complex, heterogenous
tropical forest canopy, with only small reductions in explanatory power compared to true digital
hemispherical photography.

Keywords: leaf area index; lidar; hemispherical photography; tropical forest; La Selva Biological
Station

1. Introduction

Leaf area index (LAI) is a characteristic describing vegetated ecosystems that is widely utilized in
the development of Earth system and climate models and in studies of ecophysiology, demography,
biogeochemistry and atmosphere/biosphere interactions [1–5]. LAI is a dimensionless quantity defined
as the one-sided total leaf area (m2) per unit horizontal ground area (m2) [6]. LAI describes the total
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leaf surface area available for the interception of light to drive photosynthesis; calculating one-sided
forest canopy LAI is therefore useful for studying plant respiration and photosynthesis.

Several direct and indirect measurements of LAI have been developed and utilized including
destructive harvesting, litterfall collection and weighing, digital hemispherical photography (DHP),
canopy analyzers (such as the LiCOR LAI 2000), terrestrial laser scanning (TLS), airborne lidar (light
detection and ranging) and spaceborne lidar [7–14]. Each method encounters specific assumptions,
limitations and obstacles. Direct methods (destructive harvesting) are time consuming and limited
in spatial extent while indirect methods to estimate LAI, including LiCOR LAI-2000, DHP, TLS or
airborne lidar methods, are complicated by leaf spatial distribution, leaf angle distribution (LAD)
and the contribution of non-photosynthetic tissue to light attenuation [7]. LAI estimates derived
from indirect methods are therefore often referred to as effective LAI (LAIeff, acknowledging no or
imperfect correction for leaf angle or clumping) and/or plant area index (PAI, acknowledging the
contribution of non-photosynthetic plant material) to denote that these estimations do not reflect true
LAI. Further, many sensor-based methods such as TLS, LiCOR LAI-2000 and airborne lidar require
access to expensive equipment. DHP can be a less expensive and labor-intensive alternative to other
ground-based measurement techniques that requires only a camera, a hemispherical lens and LAI
computation software.

Many studies have compared LAI estimates from different retrieval methods. Bréda (2003) found
that indirect LAI estimation techniques consistently underestimate LAI when compared to direct
techniques due to the contribution of stems and branches and clumping of foliage [15]. Tang et al. (2014)
compared ground based DHP LAI estimations to LVIS (Laser Vegetation Imaging Sensor) airborne
waveform lidar LAI measurements, which have been validated using destructive sampling within
scaffolding towers, in a conifer-dominated forest in California’s Sierra Nevada [16,17]. They found the
two methods correlated well (r2 = 0.80) and concluded that a correction of systematic bias between
these methods is feasible [16]. Calders et al. (2018) compared three ground based LAI measurement
methods, including DHPs, LiCOR LAI-2000 and -2200 and TLS, in a deciduous forest and found that
the standard deviation of DHP estimations of effective PAI (ePAI) were closely related to that of TLS
ePAI estimations [18]. LeBlanc et al. (2005) showed that fish-eye photographs can reliably estimate
PAI in boreal forests by comparing DHP PAI estimations to those from TRAC (tracing radiation
and architecture of canopies) [19], a ground based optical LAI estimation that has been previously
validated [20,21]. Olivas et al. (2013) compared DHP and LiCOR LAI-2000 Plant Canopy Analyzer
LAI estimation techniques to destructive harvesting LAI measurements at La Selva Biological Station
tropical old growth rainforest [22]. They found that while LAI-2000 yielded more accurate LAI
estimations without including a leaf clumping parameter, DHPs are a more practical method and can
be as effective in estimating and characterizing landscape level tropical forest LAI if corrections are
made for leaf clumping.

These studies support the efficacy of using ground based DHP for estimating LAI and span
boreal, temperate and tropical forests. However, in these studies, hemispherical photographs are
obtained using digital cameras with specialized lenses or other expensive equipment. Smartphones
are becoming increasingly common, the quality of smartphones’ built-in cameras continues to rise
and extremely inexpensive clip-on accessories are now available to convert smartphone cameras
to fisheye cameras, which are qualitatively similar to hemispherical lenses. Very few studies have
examined the reliability of extremely inexpensive smartphone clip-on fisheye lenses that can be up to
two orders of magnitude cheaper than cameras used in previous studies [18]. Wang et al. (2018) used
an inexpensive smartphone clip-on fisheye lens to estimate LAI in a pine plantation in China’s Yunnan
province [23]. Despite the fact that fisheye lens images introduce distortions compared to true DHP,
Wang et al.’s results correlated well with LAI-2200 Plant Canopy Analyzer and MODIS LAI products.
They therefore suggest that LAI estimation using clip-on fisheye lenses can be a more efficient and
inexpensive method of LAI retrieval compared to DHP and other ground-based methods. However,
this study was conducted in a pine plantation, which has a relatively simple and homogenous canopy
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cover. To our knowledge, no studies validating the accuracy of inexpensive, smartphone-based LAI
estimation have occurred in tropical rainforests where spatially complex and dense canopy structure
complicates LAI estimation. Further, to our knowledge no studies have compared smartphone LAI
estimates to LAI estimated from airborne lidar data, which capture spatial variation in LAI at a much
finer spatial scale than MODIS products.

Here, we examined whether inexpensive smartphone images, taken with a clip-on fisheye lens,
can be used to assess spatial variation in LAI in a complex tropical forest landscape. We compared
effective plant area index (PAIeff) estimates from ground based smartphone fisheye images to
simultaneous estimates from drone based discrete return lidar in a tropical forest (Figure 1). We choose
to use the term PAIeff to indicate that we have not attempted to tune models for local leaf clumping
values or remove contributions from non-photosynthetic material. We estimated PAIeff from lidar using
an algorithm based in radiative transfer theory that incorporates information about lidar return angle
and number [13]. We expect that lidar characterization of PAIeff spatial variation is accurate because the
efficacy of this algorithm has been validated using simulated data for an in-homogenous canopy [13].
Further, lidar based PAIeff estimates do not share many of the same assumptions and analytical methods
as passive understory estimates (such as DHP and LAI-2000). Therefore, we consider agreement
between smartphone and lidar PAIeff estimates to be a strong test of the ability of smartphones to
characterize spatial variation in PAIeff.
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2. Materials and Methods 

2.1. Study Area 

Figure 1. Overview of study area at La Selva, Costa Rica. (a) Lidar derived canopy height above
ground. Lines show trails through the research reserve and points denote locations where smartphone
images were taken. Shaded areas are secondary forests; old growth forests are unshaded. (b) Example
smartphone fisheye image taken at trail location CES750 (location indicated in (a) with white triangle).
(c) Example lidar point cloud data centered at trail location CES750.
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2. Materials and Methods

2.1. Study Area

Our study area was La Selva Biological Station, situated within an intact lowland tropical forest of
northeastern Costa Rica at 10◦26′ N and 83◦59′ W. The mean annual temperature is 26 ◦C and the mean
annual rainfall is 4000 mm [24]. Average daytime temperature remains fairly constant year-round while
the months of January through April and September and October see drier conditions—however, even
during the drier period, monthly total rainfall rarely fails to exceed 100 mm [25]. La Selva’s forests are
multilayered and biodiverse, containing species of trees, lianas, epiphytes and broad-leafed monocots;
the leguminous tree species Pentaclethra macroloba is particularly abundant in old growth regions [25].
The station includes a mixture of evergreen old growth and secondary tropical wet forest and our data
was acquired from both forest age classes (Figure 1a). The CES trail along with portions of the CEN
trail traverse old terrace primary forest. In addition to Pentaclethra, the upper canopy in this forest type
is characterized by large emergent such as Dipteryx panamensis and Hymenolobium mesoamericanum
(both members of Fabaceae), the subcanopy is abundant in Warscewiczia coccinea (Rubiaceae) and the
understory is dominated by Capparis pittieri (Caparaceae) and the palm Bactris porschiana. Secondary
forest, which encompasses most of the STR and SAZ trail locations included here, is dominated by tree
species such as Cecropia insignis and C. obtusifolia (both Cecropiaceae), Goethalsia meiantha (Tiliaceae)
and Laetia procera (Flacourtiaceae) [25].

2.2. Lidar Data Acquisition and PAIeff Calculation

Airborne lidar data were collected using the Brown Platform for Autonomous Remote Sensing
(BPAR) 10–14 May 2019. BPAR uses a gasoline powered helicopter-style drone platform (designed and
operated by Aeroscout GmbH) and includes a Riegl VUX-1 lidar scanner and an Oxford Technical
Solutions (OXTS) Survey + 2 GPS-IMU [26]. Lidar data from BPAR have a location error <5 cm; this
and other characteristics of BPAR are provided in Kellner et al. (2019), which describes data collected
by this platform with analogous flight design at a different location [26]. For this study, we used lidar
data collected over ~1 km2 of forest (Figure 1). Lidar were collected from the BPAR using two sets of
orthogonal flight lines 90 m above the canopy (yielding footprint size ~5 cm at canopy level), with flight
speed of 6 m/s. Parallel flight lights were 25 m apart, resulting in ~90% overlap between lines. Each
lidar beam had up to 6 returns, resulting in an average total point density of ~3500 pts m−2. Lidar data
were projected in UTM 16N, WGS 1984 ellipsoidal format; we converted lidar returns heights from
absolute height to height above ground using an existing lidar-derived digital terrain model (DTM)
validated using 4184 independent measurements of ground height (intercept = −0.406, slope = 0.999,
r2 = 0.994, RMSE = 1.85 m) [27].

We computed vertical PAIeff profiles from our discrete return lidar cloud point using the algorithm
derived by Detto et al. (2015) which is based on stochastic radiative transfer theory [13]. This algorithm
estimates leaf area in vertical layers using information about light (lidar beam) interception based
on the height, return number and scan angle of lidar returns in an area. PAIeff is estimated based on
an assumed leaf angle distribution (LAD; “spherical”, “planophile”, “erectophile” or user-defined).
We calculated PAIeff profiles using lidar returns with x- and y-coordinates within a given radius around
fisheye image locations (Figure 1). Initially, the radius was calculated as the mean forest canopy height,
20 m, times

√
3 because the field of view of the fisheye lens used to capture the smartphone images was

60◦. Because the algorithm of Detto et al. (2015) does not use information about the horizontal path of
lidar beams (i.e., beams passing into or out of the area of interest) we excluded lidar returns with a scan
angle greater than 5◦, resulting in average point density of 316 pts m−2 used for PAIeff estimation (range
291–347 pts m−2) [13]. Every lidar sample used to estimate PAIeff in this study included >90,000 pts,
well above the density needed to reduce relative bias and error to <5% in a vertically in-homogenous
canopy, as demonstrated by Detto et al. with simulated point cloud data [13]. We calculated PAIeff

profiles in 1-m vertical bins from 1 to 60 m in height; we summed PAIeff across all vertical layers to
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calculate total PAIeff. We will refer to PAIeff estimated using drone based discrete return lidar data as
“lidar PAIeff”.

2.3. Hemispherical Image Acquisition and PAIeff Calculation

Ground based smartphone images were taken along four established trails within the La Selva
research forest. We attached a clip-on fisheye camera lens (Criacr AMIR fisheye lens) to an Apple iPhone
SE or iPhone XR mounted on a tripod stand so that our images were acquired from 1 m above the
ground surface (the purpose of our study was not to compare phone models but fieldwork constraints
necessitated the use of different phones). Images were taken over the time period from 15 May to
22 May in 2019. Images were taken every 50 m at previously geo-referenced trail markers along the STR,
SAZ, CES and CEN trails (Figure 1). Trail markers were geo-referenced using a Garmin GPSMAP®

60CSx unit in 2005. Of the 22 images acquired by the iPhone XR, 1 was taken in the old growth forest
type and 21 were taken in the secondary growth forest type. Of the 20 images acquired by the iPhone
SE, 13 were taken in the old growth forest type and 7 were taken in the secondary growth forest
type. In total, we took 14 hemispherical photos of old growth canopy and 28 hemispherical photos of
secondary growth canopy. We attached a bubble level to each phone to ensure that the camera was flat
when images were taken, and we used a compass to ensure that images were taken using a consistent
orientation. All images were taken under diffuse light conditions at dawn. Both the iPhone SE and
the iPhone XR have a single 12-megapixel wide camera with an f/1.8 aperture and an optical image
stabilization feature. Camera settings were set to the default modes and neither flash photography
nor digital zoom were used during image acquisition. The pixel radius for 60◦ field of view was 1580.
We will refer to PAIeff estimated using smartphone fisheye images as “smartphone PAIeff”.

Smartphone PAIeff was calculated from fisheye images using CAN-EYE (v6.495), a freely available
Windows imaging software developed by the French National Institute of Agricultural Research to
extract canopy structure characteristics from true-color hemispherical images [28]. CAN-EYE accepts
inputs of digital hemispherical images and applies a user interactive segmentation process that classifies
pixels as either vegetation or non-vegetation to create a binarized image from which gap fraction is
derived. Random error introduced by operator subjectivity is not completely avoidable but all images
were processed in CAN-EYE by the same user to avoid issues of subjectivity between users. Optical
distortions were carefully classified in the same manner for each photo and an example classification
is shown in Figure S1. The classification guidelines established in Figure S1 were followed for all
subsequent image processing. Images were limited to a 60◦ field of view to exclude distorted mixed
pixels occurring at the image edges. CAN-EYE computes the gap fraction using the Poisson model
and corrects for leaf clumping by computing a clumping index using the Lang and Yueqin (1986)
logarithm gap fraction averaging method, which assumes vegetation elements are locally randomly
distributed [29]. CAN-EYE includes multiple methods to estimate PAIeff but we used the method based
on LAI-2000 measurements in which the ring angular response is taken into account. The computation
can be made using 3, 4 or 5 rings, which corresponds to the number of directional measurements used
in the calculation [30]. We carried out our initial PAIeff estimations using all three ring methods, which
we call smartphone PAI3, PAI4 and PAI5, respectively. The CAN-EYE user manual includes detailed
explanations of the computations and models used for image processing and PAIeff estimation.

CAN-EYE requires a manual calibration of the optical center of the fisheye lens. We used a
simple calibration method proposed in the user manual to determine an optical center of (1487, 2113)
(see Section 6.2 of the CAN-EYE user manual) [28]. The position of the lens was carefully marked on
both smartphones during the image acquisition process to reduce error that might be introduced into
the optical center calibration by reattaching the lens in the wrong position. We assumed a perfect
optical system and used a linear projection model. The impact of this assumption on results is small
considering other components of measurement uncertainty. See Table 1 for other general parameters
used in CAN-EYE PAIeff computation.
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Table 1. General parameter inputs for CAN-EYE image processing. See the CAN-EYE user manual for
detailed descriptions of each parameter [28].

Zenith Angular Resolution 2.5◦ Azimuth Angular Resolution 2.5◦

Circle of Interest 60◦ PAISat for clumping 8
Integration domain for fCover (◦) 0–10◦ SubSampling Factor 1

2.4. Optimization of Lidar Sample Radius

Smartphone images and lidar data were obtained within two weeks of each other to reduce
any seasonal or stochastic foliage changes between our two datasets. We performed all calculations
comparing lidar and smartphone PAIeff values in R version 3.5.2 [31]. We first examined the overlapping
regions of our image locations and the spatial extent of the lidar data to determine that 42 hemispherical
images lay within the range of available lidar data.

To compare lidar and smartphone PAIeff, we determined the spatial extent of smartphone images
and identified all lidar data in each image. We will refer to this classification as our close points
calculation. The mean canopy height of our study forest is 20.3 ± 6.9 m [32] and the field of view of our
fisheye lens is 60◦. From this information, we determined the projected mean radius of smartphone
images to be 35 m. However, to test the effects of altering the radius in our close points calculation
on the strength of the PAIeff comparison, we calculated close points for each image location over a
range of radii from 10m to 50m in 1m increments. To compare the concordance between lidar and
smartphone PAIeff for each radius, we determined the mean absolute error (MAE) and Pearson’s
correlation coefficient (r) between PAIeff estimates from each method. For this initial assessment,
we assumed a spherical LAD option in the lidar PAIeff algorithm. For subsequent analyses, we used the
radius that gave the highest correlation and lowest MAE. PAIeff data, including all three smartphone
PAIeff estimates, x and y coordinates for each trail location, forest type, phone model, and lidar PAIeff

estimates using the optimized radius and all three LADs, are available for all 42 trail locations in the
Supplement (File S1).

2.5. Comparing Old Growth and Secondary Forests

Our study area encompasses old growth and secondary forest, so we examined if PAIeff estimation
methods varied in concordance between the two different forest types. We compared correlation
values, MAE and mean signed error (MSE) between lidar and smartphone PAIeff estimates for the
subsets of old growth and secondary growth forests using all LAD options in the lidar PAIeff algorithm
(spherical, erectophile and planophile). For subsequent analyses, we used the LAD for each forest type
that resulted in the highest correlation and lowest MAE for that forest type.

2.6. Final Comparison of Lidar and Smartphone PAIeff

Our final comparison of lidar and smartphone PAIeff used the optimal lidar radius and LADs
determined above. Additionally, we tested for residual bias caused by differences between smartphone
models and unaccounted for difference between old growth and secondary forests by comparing four
linear models:

Model 1: Smartphone PAIeff ~ Lidar PAIeff

Model 2: Smartphone PAIeff ~ Lidar PAIeff + Phone model
Model 3: Smartphone PAIeff ~ Lidar PAIeff + Forest type
Model 4: Smartphone PAIeff ~ Lidar PAIeff + Phone model + Forest type

We compared the AIC values of these models. If models 2–4 outperformed model 1 (∆AIC > 2),
we considered there to be evidence that there is significant residual variation in smartphone PAIeff

(after considering real differences in forest structure as measured by lidar PAIeff) that is explained by
phone model and/or forest type.
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3. Results

3.1. Correlation and MAE as a Function of Lidar Radius

The initial maximum correlation between smartphone and lidar PAIeff was r = 0.64 and occurred at
a lidar radius of 25 m using image method PAI5 (DF = 40, p < 0.001; Figures 2 and 3); however, we found
very little difference in correlation values between the three image methods (PAI3, PAI4 and PAI5)
across most of the considered range in radii. MAE and correlation values calculated for each method
varied together and gradually over most of the range of radii tested (Figure 2). The gradual change in
MAE and correlation broke down at radii less than 16m and greater than 47 m. We suspect this is due
to the spatial structure of the forest canopy not being consistent at radii extremely smaller or larger
than the radii of the smartphone images. There were larger differences between the smartphone PAIeff

methods in MAE than in correlation values. The three-ring method (PAI3) consistently introduced the
highest MAE while the four-ring method (PAI4) introduced the lowest; however, correlation values
were more similar across the three methods. PAIeff estimates with each method were highly correlated
(Figure S2), so all subsequent analyses were conducted using the PAI4 method to reduce MAE.
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images taken by both iPhones.
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3.2. Differences in Old Growth versus Secondary Growth Forest

The highest concordance between smartphone and lidar PAIeff in old growth and secondary forest
was found using LADs in the lidar PAIeff calculation that varied by forest type—for old growth locations,
mean absolute error (MAE) between smartphone and lidar PAIeff was more than twice as large when
using a planophile LAD in the lidar PAIeff calculation than when using a spherical or erectophile LAD;
however, for secondary forest locations, MAE was more than twice as large when using a spherical
LAD than a planophile or erectophile LAD (Table 2). Similarly, for old growth locations, mean signed
error (MSE) was minimized when a spherical LAD was used while for secondary forest locations, MSE
was minimized when a planophile LAD was used. The Pearson’s correlation values were higher for
secondary forest locations (r = 0.64, DF = 26, p < 0.001) than for old growth forest locations (r = 0.31,
DF = 12, p = 0.287) and the 95% confidence interval of the old growth correlation value overlapped
with zero. Using the optimal LAD for each forest type, the mean signed error (MSE) was negative for
both old growth and secondary forest types, indicating that smartphone PAIeff was greater than lidar
PAIeff. The magnitude of MSE was greater for old growth forests (−0.124) than for secondary forests
(−0.057) (Table 3).

Table 2. Mean absolute error (MAE), mean signed error (MSE), Pearson’s correlation coefficient (r),
95% confidence intervals (CI) for r and mean PAIeff values comparing lidar and smartphone PAIeff in
subsets of old growth (n = 14) and secondary forest (n = 28) locations. Lidar PAIeff was estimated using
radius = 25 m and spherical (S), planophile (P) and erectophile (E) leaf angle distributions (LADs).
* denotes statistically significant values (p < 0.05).

Forest Type LAD MAE MSE r 95% CI
Mean

Smartphone
PAIeff

Mean Lidar
PAIeff

Old Growth P 1.228 −1.228 0.306 [−0.268, 0.720] 2.816 1.588
Secondary P 0.426 −0.057 0.637 * [0.346, 0.816] 1.538 1.481

Old Growth S 0.542 −0.124 0.306 [−0.268, 0.720] 2.816 2.693
Secondary S 0.973 0.972 0.637 * [0.346, 0.816] 1.538 2.510

Old Growth E 0.531 0.354 0.306 [−0.26, 0.720] 2.816 3.170
Secondary E 1.417 1.417 0.637 * [0.346, 0.816] 1.538 2.955

3.3. Final Comparison of Lidar and Smartphone PAIeff

Using the optimal lidar radius and forest type LADs described above, we found a very significant
correlation between smartphone and lidar PAIeff (r = 0.77, DF = 40, p < 0.001; Figure 4). We used a
model comparison framework to evaluate whether significant residual variation was explained by
phone model and/or forest type (Table 3). We found that only the model including effects of both phone
model and forest type (model 4) was significantly better than the original model (i.e., had ∆AIC < 2).
However, model 4 explained only 4% more variation than model 1, indicating that while bias due to
smartphone model and forest type was significant, its total magnitude was small (Table 3).

Table 3. Comparison among models to explain variation in smartphone PAIeff. All models were fit
using all 42 observations of smartphone and lidar PAIeff at La Selva. All ∆AIC values are relative to
model 1. Values for r2 are the adjusted r2 values for each linear model.

Model ∆AIC p r2

1: Smartphone PAIeff ~ Lidar PAIeff 0.00 <0.001 0.59
2: Smartphone PAIeff ~ Lidar PAIeff + Phone model −0.18 <0.001 0.60
3: Smartphone PAIeff ~ Lidar PAIeff + Forest type −0.97 <0.001 0.61
4: Smartphone PAIeff ~ Lidar PAIeff + Phone model + Forest type −3.00 <0.001 0.63
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4. Discussion

We found that smartphone based PAIeff estimates using an inexpensive (<$20) clip-on fisheye
lens were significantly correlated with PAIeff estimates from high density drone based lidar (Figure 4).
Further, the strength of this correlation was robust to choices of image processing options (Figure 2) and
the model of smartphone used (Table 3). Our results indicate that inexpensive smartphone methods
are valid for characterizing relative spatial variation in PAIeff within a tropical forest canopy.

While we are confident that our lidar method is appropriate for estimating spatial variability in
PAIeff, without destructive measurements of leaf area we cannot know if the magnitude of lidar PAIeff

is itself biased. Both lidar and smartphone PAIeff estimates in this study are smaller than those reported
previously from DHP (3.76 ± 0.11 SE) for 18 0.5 ha plots in the old growth forest at La Selva [10] but our
measurements were taken following an unprecedented blowdown disturbance that caused widespread
mortality at La Selva in May 2019, so our lower PAIeff values may be realistic [33].

Our results are consistent with those of Wang et al. (2018), who also found that smartphone based
methods are appropriate for comparing trends in leaf area—they found r2 values of 0.706 when they
compared fisheye lens PAIeff to LAI-2200 and 0.695 when compared to MODIS satellite data in a pine
tree plantation forest [23]. It is meaningful that our data align with these results because we show
that an inexpensive fisheye lens PAIeff estimation method can be effective in a spatially complex and
heterogeneous tropical forest, in addition to relatively homogeneous plantation canopies examined in
Wang et al. (2018) [23]. Our correlation values were somewhat less strong (r2 = 0.59) than this previous
study. This is expected because we are comparing ground based LAIeff estimates (smartphone LAIeff)
to airborne LAIeff estimates (lidar LAIeff). Sensors beneath and above the canopy view the forest
differently—trunks are prominent in ground-based images (Figure 1b) while a previous study found
that non-photosynthetic material accounts for only 7% of reflected radiation (i.e., lidar returns) in this
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landscape [17]. We believe that finding significant correlation between two approaches to estimate
PAIeff with different views and analytical methods (smartphone images are passive 2D data while
lidar points are active 3D data) shows strong support that smartphones can describe spatial variation
in PAIeff. This result builds off the conclusions of Olivas et al. (2013), who suggested that applying
leaf clumping corrections to DHPs led to the most efficient estimation method of landscape level
PAIeff estimation and characterization in a tropical forest [22]. We extend this conclusion to show that
fisheye images collected by smartphones can be used as a more inexpensive yet still efficient method
of estimating PAIeff spatial variation in a tropical forest.

The strength of our correlation between smartphone and lidar PAIeff is also somewhat smaller than
correlations previously reported by studies comparing LAI estimated with true DHP to LAI estimated
using airborne lidar. These studies—all from temperate regions—report r2 values between 0.72 and
0.86 [16,34,35]. We acknowledge two additional sources of error that could cause the relationship
between smartphone and lidar PAIeff to be weaker in our study compared to previous analyses. First,
PAIeff estimations derived from smartphone images are likely affected by random and systematic
errors introduced by the image processing chains raw data undergo before becoming available to the
user. Second, there may be geo-referencing errors between the smartphone and data because trail
marker locations were geo-located using a handheld GPS unit.

We found that the strength of correlation between smartphone and lidar PAIeff increased
substantially when using forest-type specific LADs in the lidar PAIeff algorithm (Figures 3 and 4).
Specifically, we found that a spherical LAD was best for old growth forest while a planophile LAD
was best for secondary forest (Table 2). We believe that this result is ecologically appropriate because
many common pioneer trees in Neotropical forests, such as Cecropia, have leaves that are much flatter
than predicted by a spherical distribution [36]. MSE was close to zero for secondary growth locations
when a planophile LAD was used for the lidar PAIeff calculation, suggesting no directional systematic
bias between smartphone and lidar PAIeff calculation methods in secondary forests. As expected, both
smartphone and lidar PAIeff found that total PAIeff was higher in old growth than secondary forests
but we found a higher correlation within secondary forest areas compared to old growth forest areas
(Table 2). We cannot know with certainty which method is more accurate without doing destructive
sampling to directly measure PAIeff but we suspect that the passive hemispherical image method may
perform worse in dense vegetation. Using simulations, the active lidar method was found to perform
well at our sample sizes for a range of PAIeff values [13].

It is important to note that we found small (4%) but significant, residual bias explained by a
combination of phone model and forest type (Table 3). Neither phone model nor forest type alone
explained significant residual bias. However, our sampling design was not intended to test for
differences between phone models—the use of two phones in this study was necessitated by the reality
of fieldwork. Future studies could more thoroughly characterize the influence of smartphone camera
characteristics on smartphone PAIeff in different forest types.

5. Conclusions

Our data reveals that inexpensive, smartphone fisheye images can be used to reasonably compare
spatial variation in PAIeff in a heterogeneous tropical forest canopy. This method offers an extremely
inexpensive and efficient alternative to estimating PAIeff using more complicated and expensive
equipment, overcoming the obstacle of price that can be prohibitive to conducting studies of PAIeff

variation. However, absolute differences in smartphone PAIeff and lidar PAIeff vary across parameters
(radius, leaf angle distribution, photo method, smartphone model), suggesting that other information
may be necessary to measure the absolute magnitude of PAIeff. It may be possible to further explain the
remaining variation in the relationship between smartphone and lidar estimates by considering reliable
measurements of other canopy structural properties (e.g., canopy gap fractions) or by comparing to
direct harvest LAI measurements.
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