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Abstract: Freshwater lakes provide many important ecosystem functions and services to support
biodiversity and human well-being. Proximal and remote sensing methods represent an efficient
approach to derive water quality indicators such as optically active substances (OAS). Measurements
of above-ground remote and in situ proximal sensors, however, are limited to observations of the
uppermost water layer. We tested a hyperspectral imaging system, customized for underwater
applications, with the aim to assess concentrations of chlorophyll a (CHLa) and colored dissolved
organic matter (CDOM) in the water columns of four freshwater lakes with different trophic conditions
in Central Germany. We established a measurement protocol that allowed consistent reflectance
retrievals at multiple depths within the water column independent of ambient illumination conditions.
Imaging information from the camera proved beneficial for an optimized extraction of spectral
information since low signal areas in the sensor’s field of view, e.g., due to non-uniform illumination,
and other interfering elements, could be removed from the measured reflectance signal for each
layer. Predictive hyperspectral models, based on the 470 nm–850 nm reflectance signal, yielded
estimates of both water quality parameters (R2 = 0.94, RMSE = 8.9 µg L−1 for CHLa; R2 = 0.75,
RMSE = 0.22 m−1 for CDOM) that were more accurate than commonly applied waveband indices
(R2 = 0.83, RMSE = 13.2 µg L−1 for CHLa; R2 = 0.66, RMSE = 0.25 m−1 for CDOM). Underwater
hyperspectral imaging could thus facilitate future water monitoring efforts through the acquisition of
consistent spectral reflectance measurements or derived water quality parameters along the water
column, which has the potential to improve the link between above-surface proximal and remote
sensing observations and in situ point-based water probe measurements for ground truthing or to
resolve the vertical distribution of OAS.

Keywords: chlorophyll a; colored dissolved organic matter; in situ measurements; vertical distribution;
water column; snapshot hyperspectral imaging

1. Introduction

Lake ecosystems provide essential functions and services, including contributions to biodiversity,
hydrologic regulation and water supply, and human well-being through their recreational benefits [1,2].
At the same time, they are subject to various threats from climate change, alterations of catchment land
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use, anthropogenic pollutants, aquatic invasive species, or human harvest including aquaculture [3].
Hence, appropriate monitoring adapted to relevant temporal and spatial scales is necessary for an
improved understanding of lake ecosystems and their feedbacks.

Remote sensing in the visible and near-infrared (VNIR) range (400–1000 nm) allows for the
spatio-temporal monitoring of various water quality parameters in freshwater lakes [4,5]. The most
important indicators of water quality, in general, are phytoplankton, colored dissolved organic matter
(CDOM) and total suspended matter (TSM), which represent optically active substances (OAS) [4,6].
Changes in the quantity of the OAS have a direct effect on the spectral signature detected by remote
(or proximal) sensors, which, in turn, enables the estimation of OAS contents from measured spectra
through physically-based analytical or empirical models [4,7,8]. Nevertheless, in the case of optically
complex inland water bodies, the variety of OAS concentrations and their specific inherent optical
properties is wide and independent from each other [6,9]. This complexity limits the use of simple
band ratio approaches and might affect the accuracy of analytical models due to partly unknown
optical properties of contributing OAS [7,10].

Beyond this, the general application of remote sensing methods may be limited, e.g., by cloud
cover during overflight. Accurate atmospheric correction is another critical issue for retrieving surface
reflectances from remotely sensed data; inaccuracies might affect the OAS retrieval, especially in the
case of optically complex inland waters [9,11–14].

While remote sensing observations can per se provide consistent, spatially-distributed
measurements of water quality parameters at large scales, such spectral measurements can be
limited by the lake specific penetration depth of light, which might be shallower than the actual
constituent layer; otherwise the constituent layer might just form a thin layer within the remotely sensed
water layer [15–18]. Consequently, remotely-sensed measurements cannot resolve the distribution of
constituents in the water column, which may impede the correct retrieval of column OAS contents
when strong density gradients occur in the remotely-sensed water layer and below.

Water-quality probes, on the other hand, can acquire information from the entire water column,
which is relevant, for example, for a series of ecological issues including the detection and analysis
of the deep chlorophyll maximum as a hot spot of primary production and nutrient cycling [19].
Besides OAS such as CHLa and CDOM, these sensors can also retrieve additional water parameters
including, e.g., temperature, dissolved oxygen, conductivity and pH (e.g., [20–22]). Remote sensing
and in situ methods can therefore complement each other, for example by allowing ground truthing of
satellite-derived biochemical data products or, conversely, the extension of point information across
larger spatial scales [23].

In this context, the in situ hyperspectral measurement of water columns, from the uppermost layer
observable by remote sensing through deeper layers that are limited to point sensor observations, offers
the potential to improve the link between in situ water monitoring networks and Earth observation
systems through consistent radiometric measurements along a water profile. Various studies have
used hyperspectral point or imaging sensors to provide ground truth data for overflight campaigns
and to validate satellite imagery products (e.g., [22,24,25]), but also for the direct derivation of OAS
products for water monitoring purposes [21,26,27]. Recently, Keller et al. (2018) [21] deployed a
hyperspectral snapshot camera mounted on a boat to collect hyperspectral imagery (450–950 nm)
along the Elbe river in Germany with the goal to quantify multiple OAS such as CDOM and CHLa.
While they could successfully estimate OAS quantities with surface measurements, it could also be
advantageous to transfer this technology into the water column to measure OAS at multiple depths
with the same device.

In this study, we evaluated the capabilities of a hyperspectral snapshot camera system to resolve the
vertical distribution of CHLa and CDOM in pre-defined segments in the water column. The camera’s
spectral imaging quality and capabilities for underwater sensing were first tested in a laboratory
experiment against a well-established point spectrometer. Afterward, we conducted a field campaign
with multiple water column measurements in four freshwater lakes in Central Germany with the aims
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to (i) develop an approach to measure water column reflectance without distortions through variations
in ambient illumination and (ii) to estimate CHLa and CDOM concentrations through multivariate
calibrations with partial least squares regression (PLSR) in comparison to commonly applied CHLa
and CDOM indices.

2. Materials and Methods

2.1. Hyperspectral Snapshot Camera

We collected hyperspectral measurements with a snapshot camera system (UHD 285; Cubert
GmbH, Ulm, Germany) incorporated in a waterproof casing. The camera used a silicon CCD chip,
which enabled the simultaneous acquisition of an entire three-dimensional hyperspectral image cube
with one trigger pull. Its built-in sensor covered the spectral range of 450–998 nm with 8 nm spectral
resolution at a 4 nm sampling interval. The acquired hyperspectral image cubes had a resolution of
50 × 50 pixels, resulting in 2500 spectra at 138 wavelengths. Due to spectral artifacts in the first few
spectral bands and a Si-induced sensitivity loss at the end of the spectrum [28], we reduced the final
spectral range to 470–850 nm with 96 spectral bands.

2.2. Laboratory Experiment

To test the camera’s ability to capture small changes in OAS contents, we compared its
performance with parallel measurements using an ASD FieldSpec 4 (Malvern Panalytical Ltd.,
Almelo, The Netherlands) point spectrometer in a laboratory experiment.

The laboratory setup included a small water tank with a 20 × 20 cm Zenith Polymer® (white panel
with an average absolute reflectance of 0.95) placed at the bottom. Both spectrometers were installed
with a nadir viewing geometry, and the scene was illuminated with an ASD ProLamp (14.5 V, 50 W) at
a 45◦ zenith angle. After calibrating the instruments, we filled the tank with distilled water up to a
column height of 20 cm. The ASD measurements were carried out directly above the water surface as
the instruments’ fiber optics cable could not be immersed in the water. To exclude contributions to
the measured radiance due to specular reflection at the air-water interface, the fibre optics cable was
encased with a non-reflective material. The measured reflectance thus referred to the water-leaving
radiance after passage through the interface:

ρASD =
Lw

L0,lamp
(1)

where Lw is the water-leaving radiance and L0,lamp is the radiance of the light source at the water
surface, measured through the reference panel.

Measurements with the hyperspectral camera were carried out with the camera opening
placed slightly below the water surface. The measured reflectance thus refers to the upwelling
underwater radiance:

ρCam =
Lu

L0,lamp
(2)

where Lu is the upwelling radiance before transmission through the surface.
The two reflectances can be related through a dimensionless proportionality factor that accounts

for the transmission through the water–air interface [29]. Since we were mainly interested in the quality
of the camera’s data acquisition, i.e., shape of reflectance spectra, resolution of peaks, signal-to-noise
ratio, and also carried out the field measurements (Section 2.5) below the water surface, we decided
not to convert the ASD spectra to camera-equivalent reflectances.

We carried out two separate series of measurements to test the spectral response of CDOM and
CHLa. Humic acid-sodium salt and a commercial Chlorella sp. powder were used as surrogates
for CDOM and CHLa, respectively. Both substances were each mixed into the tank’s water at
increasing concentrations (CDOM with absorption coefficients at 440 nm: 0.0–0.5 m−1 in 0.1 increments,
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and 0.5–3.0 m−1 in 0.5 increments; CHLa: 0.0–12.5 µg L−1 in 2.5 increments, and 12.5–112.5 µg L−1 in
12.5 increments) and reflectance spectra were recorded at each stage.

2.3. Field Campaign

For the field campaign, we investigated four artificial freshwater lakes in Central Germany
(Figure 1), which were characterized by significant differences in size, trophic state index,
and management practices (Table 1). The studied lakes were selected to cover a broad range in
terms of depths of visibility, OAS concentrations and trophy with the aim to test the camera’s image
acquisition and CHLa and CDOM modelling capabilities in different environments (Section 2.6).
The shallow, hypereutrophic lake Auensee is a flooded, groundwater-fed former gravel pit with an
average depth of 3.5 m, located in an inner city hardwood floodplain forest [30]. The groundwater-fed
Cospuden Lake, with a maximum depth of ~54 m, represents a former open cast lignite mine [31],
currently used as a recreational area. The Mulde and Kriebstein sites are both reservoirs, fed by the
Mulde and the Zschopau river, respectively.
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Figure 1. Location of the lake sites in Central Germany and sampling points (red dots) for water column
measurements (satellite imagery: Sentinel 2A - RGB – 432 (17/04/2019); coordinate system of the map:
ETRS89/UTM zone 33N).

Table 1. Characteristics of the investigated lake sites in Central Germany.

Site Area (ha) Trophic State Index Type Secchi
Depth * (m)

Number of
Sampling Points

Number of
Sampling Units

Auensee 12 Eutrophic/hypereutrophic Former gravel pit 0.40–0.65 6 27
Cospuden 436 Oligotrophic Former open cast mine 6.00–6.05 2 10
Kriebstein 132 Oligotrophic Reservoir 2.35–2.45 2 10

Mulde 630 Mesoeutrophic Reservoir 1.25–1.30 2 9

* Refers to the viewing depth at the time of measurement using a 20 cm Secchi disk.

At each lake, spectral measurements and reference samples were collected at near-shore sampling
points accessible by footbridges and at fixed markings within the lakes (Figure 1). Additionally,
we determined the viewing depth using a 20 cm Secchi depth at each sampling point. For the
Mulde, Kriebstein and Cospuden sites, measurements were carried out at two sampling points in
each lake; whereas for the more variable Auensee site, samples were collected at six sampling points.
Measurements were carried out for up to five continuous 0.5 m segments from the water surface
down to a depth of 2.5 m, if possible, and for four segments in shallower waters. In total, 56 samples
were taken.
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2.4. CHLa and CDOM Reference Analysis

In parallel with the spectral measurements of the water column, we collected bulk water samples
for each segment with a Ruttner water sampler (1.7 l, height: 24.5 cm). The samples were stored in
cooling boxes and transported to the laboratory on the same day for the analysis of chlorophyll a (CHLa)
and colored dissolved organic matter (CDOM). CHLa absorption was determined photometrically
after hot ethanol extraction by using a SPECORD double-beam photometer with pure water (Milli-Q)
as reference; CHLa concentrations were calculated afterwards according to ISO 10620 [32]. CDOM
contents were also determined photometrically after filtering subsamples through Whatman GF/F-filters
(pore size of 0.45 µm). The remaining filtrate was used to measure the absorbance of CDOM at 440 nm
in 1 cm quartz cuvettes by using a SPECORD double-beam photometer with pure water (Milli-Q) as
reference. Absorption coefficients were calculated according to the following expression [33]:

aCDOM(440 nm) = 2.303 ·
A(440 nm)

l
(3)

where aCDOM(440 nm) is the CDOM absorption coefficient at 440 nm, A(440 nm) is the measured
absorbance at 440 nm, and l is the path length of the cuvette in m.

2.5. Hyperspectral Image Acquisition and Processing

For water column measurements, the hyperspectral camera system was mounted on a customized
rack equipped with a portable halogen lamp (100 W). A Zenith Polymer® reference panel (average
absolute reflectance of 0.95; 25 × 25 cm) was attached in front of the camera at a fixed distance of 40 cm
so that it covered the entire field of view of the camera (Figure 2).
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Figure 2. Hyperspectral camera system for underwater measurements: (a) camera system mounted on
a rack with halogen light source and reference panel; (b) in situ measurement of uppermost water layer
(0–0.5 m); (c) top-down view of night-time measurement in the water column (0.5–1.0 m).

Images of the reference panel above the water surface and of the individual water column
segments were recorded in the raw digital number format (DN). Under optimal illumination conditions,
the conversion from DN to radiance is a linear function and reflectance values can be calculated as:

ρsample =
DNsample

DNre f
· ρre f ·

( tre f

tsample

)
(4)

where ρsample = reflectance of sample, DN = digital number, ρre f = reflectance factor of the reference
panel and t = integration time during the measurement.
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At each sampling point, we measured the reference panel above the water surface to acquire
a calibration file for the entire water column. Since ambient illumination varies for each measured
segment due to non-linear sunlight attenuation through the water column, we compensated for this
effect through parallel measurements of the reflectance target with and without artificial illumination
to retrieve the final reflectance curves. That is, two separate images were taken for each measurement,
both for the reference panel above the water surface and for the individual segments within the
water column. The first image was taken with the external lamp switched on, the second image
with the lamp switched off. The difference between the two respective images then represents the
signal of the measured water column segment without the impact of ambient stray light (Figure 3).
Before calculating the final mean reflectance spectrum, we performed two processing steps for each
image (Figure 4) to define an optimally illuminated region within the image while minimizing the
impact of interfering objects. First, we applied a binary mask by thresholding pixel values at 710 nm,
the wavelength of maximum signal intensity of the halogen lamp. This wavelength yielded a high
discrimination accuracy for the applied threshold due to an optimal signal-to-noise ratio and was also
less influenced by absorption processes of our target variables (see Section 3.1).
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Figure 3. Field measurement setup for underwater reflectance retrieval: the upper row shows radiance
measurements on the reference panel for calibration with light source turned on (a) and turned off

(b). The difference of (a) and (b) represents the signal contributed by the light source only, which was
used for instrument calibration (c). The lower row shows measurements below the water surface
with the light source turned on (d) and turned off (e). The difference between measured spectra in
configuration of (d) and (e) represents the reflected signal that only refers to the illumination from the
artificial light source (f).

Since the illumination conditions and OAS contents varied between the images, each image-specific
threshold was defined as the mean DN value at 710 nm. All pixels with a DN value less than the image
mean were discarded to remove poorly illuminated pixels and interfering image objects (e.g., shadowing
effects of surface waves, bubbles due to gaseous emissions from the seafloor, or floating plant residues
in the water column). In the second step, we defined a square region of interest (ROI) with a maximum
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of 121 pixels centered at the pixel with the largest DN value (710 nm) to calculate the mean DN
spectrum for each image (Figure 4).
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Figure 4. Image processing steps to extract optimal mean spectra for multivariate calibrations:
(a) example of 2D image (at 710 nm) recorded near the bottom of the Auensee site where suspended
particles and bubbles appeared during image acquisition; (b) masking of poorly illuminated image
areas and interfering elements; (c) definition of a region of interest (ROI) around the ‘brightest’ pixel
(at 710 nm).

Finally, the reflectance of each water column segment was calculated from the extracted mean DN
spectra as:

ρsample =
DN(x)sun+lamp −DN(x)sun

DN(x = 0)sun+lamp −DN(x = 0)sun

· ρre f ·

( tx=0

tx

)
(5)

where the numerator represents the averaged sunlight-compensated DN of the measurement at depth x,
the denominator represents the averaged sunlight-compensated DN of the reference panel measured
above the water surface (x = 0), and tx and tx=0 are the corresponding integration times.

Accordingly, the calculated reflectance curves were only dependent on the energy input of the
external halogen light source and were thus comparable across all investigated water bodies.

To validate the compensation algorithm, we compared the calculated reflectance curves of daytime
and nighttime measurements at the Cospuden site. During nighttime measurements, ambient light
does not interfere with the measurements, so that these measurements only reflect the contributions of
the halogen light source. As the Cospuden site was oligotrophic, no additional OAS variability was
expected to contribute to the spectral information. The shape of the spectral signatures was therefore
expected to remain constant throughout the entire vertical profile, regardless of any daytime ambient
light effects.

2.6. Predictive Modeling of CHLa and CDOM

Based on the aggregated field dataset, we tested two different empirical approaches to estimate
CHLa and CDOM including two waveband indices for each target variable and multivariate regression
based on the full spectrum. For CHLa, we used the following three-band ratio, which is widespread in
remote sensing applications [34], see in [8]:

CHLa = a + b
(

1
R670

−
1

R710

)
·R750 (6)

where a and b are model coefficients that were empirically re-optimized in the cross-validation loop,
R is reflectance, and the subscript indicates the wavelength in nm. Additionally, we applied a single
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waveband model based on the first derivative of the reflectance signal at 690 nm, shown to work well
for CHLa estimation in reservoirs by [35]:

CHLa = a + b(R′690) (7)

where R′ is the first derivative of the reflectance curve.
For CDOM, we used a published two-band ratio model [36], which was tested successfully at

various lakes by Zhu et al. (2014) [37]:

CDOM = a
(

R570

R654

)b

(8)

The choice between existing CDOM algorithms was limited to the spectral range we used for our
dataset (470–850 nm) since many of the empirical algorithms are based on wavelengths <470 nm [37].
In parallel to the approach of [35] for CHLa, we empirically defined the wavelength at 602 nm as the
one with the strongest correlation between CDOM and the first derivative of reflectance, resulting in
the following model:

CDOM = a + b(R′602) (9)

To compare the performance of target variable-specific waveband indices with the use of
hyperspectral data, we calibrated partial least squares regression (PLSR) models [38] with reflectance
(PLSref) and first derivative spectra (PLSfda) using the full spectral range. PLSR is widely used in
chemometrics to develop multivariate calibrations with hyperspectral data. The method can cope
with multicollinear and noisy datasets and has been applied in hyperspectral water spectroscopy
of optically complex waters where OAS specific empirical band ratios might produce inaccurate
results (e.g., [39–42]).

All models were evaluated with a ‘leave-one-profile-out’ cross-validation (CV). Therefore, we split
the entire dataset iteratively up into eleven water column profiles for calibration, applying either the
above-mentioned waveband models or full range PLSR, and the remaining water column profile for
validation. Subsequently, we pooled the estimates of the individually cross-validated profiles for each
method and calculated the following performance measures to evaluate the models: coefficient of
determination (R2), root mean square error (RMSE):

RMSE =

√∑
(ŷ− y)2

n
(10)

where y = measured value, ŷ = estimated value and n = number of samples, and the ratio of performance
to interquartile range (RPIQ):

RPIQ =
IQR

RMSE
(11)

where IQR is the interquartile range of the reference data.

3. Results and Discussion

3.1. Laboratory Experiment

The results of the performed laboratory experiments are summarized in Figure 5. For reasons of
comparison with the hyperspectral camera, we reduced the ASD spectra to a range between 470 and
850 nm. Additionally, we normalized all spectra to the measured reflectance at 810 nm to minimize
potential scattering effects due to particulate characteristics of the added substances. The spectra
recorded with the UHD 285 hyperspectral camera and the ASD FieldSpec point spectrometer were very
similar overall. Reflectance patterns and absorption features at various levels of CDOM and CHLa
were clearly defined and did not show any significant deviations between the instruments. The minor
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systematic offset between the spectra of the point spectrometer and the hyperspectral camera was
presumably a result of the measurement setup, as the front of the camera was positioned slightly below
the water surface, in contrast to the fiber optic cable of the ASD spectrometer with a position just above
the water surface. The addition of CDOM caused a gradual increase in absorption in the ‘blue-to-green’
spectral range (<550 nm) that leveled off at higher wavelengths as already described in previous studies
(e.g., [43–45]). CDOM did not show any distinct absorption features in the VNIR range. The high
absorption in the shorter wavelengths presumably reflected large absorption features of dissolved
organic matter (DOM) in the ultraviolet (UV) range that tailed off in the VIS [43]. Increasing the
concentrations of algae showed a more differentiated effect on the spectra with a characteristic CHLa
absorption feature around 670 nm, but induced also less pronounced peaks around 620 nm and 540 nm
that might have originated from accessory pigments of Chlorella sp.
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Figure 5. Comparison of experimental laboratory measurements between ASD FieldSpec 4 and
UHD 285 hyperspectral camera at various levels of colored dissolved organic matter (CDOM) (a,b),
and chlorophyll a (CHLa) (d,e) concentrations. Panels (c,f) show a direct comparison of the measured
reflectance at specific key wavelengths sensitive to changes in CDOM and CHLa, respectively.

The normalization of the reflectance spectra to the wavelength at 810 nm resulted in an almost
perfect match of the spectral signatures at wavelengths longer than 710 nm. This documented that both
substances were not spectrally active in this range. On the other hand, both substances showed overlaps
in the entire range below 710 nm. Hence, the presence of one substance might impair the spectral
retrieval of the other substance, leading to a non-unique solution referred to as the ill-posed problem of
spectra analysis [46]. Besides the absorption coefficient at a certain wavelength in the 400–460 nm range,
CDOM could also be characterized by the spectral slope that describes the exponential decay of CDOM
absorbance with increasing wavelength and which strongly depends on the molecular composition
of DOM (see [43]). The reference analysis in the performed experiment with dissolved humic acid
in the given concentration range indeed revealed a spectral slope of 0.008 in the 400–500 nm range.
In freshwater lakes, however, the spectral slope of CDOM typically varies in a range between 0.014
and 0.020 (see [44,45,47]), and therefore has a smaller impact on the ‘red’ spectral range at each given
absorption coefficient. Nevertheless, high amounts of CDOM with typical values of the described
spectral slope might also affect empirical algorithms for CHLa retrieval in optically complex waters if
based on wavelengths around the CHLa feature at 670 nm.

In summary, the hyperspectral camera was able to capture small OAS variabilities with an accuracy
comparable to the ASD point spectrometer under laboratory conditions. The signal quality of the image
mean was comparable to the point measurement of the ASD instrument and the minor divergence in
total reflectance resulted from differences in the instrumental setup.
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3.2. Water Quality Characteristics of the Investigated Lakes

The two target variables showed a high degree of variability between the studied lakes (see Table 2).
The CHLa contents of the complete dataset varied between 0 and 96 µg L−1, with an overall mean
concentration of 37.2 µg L−1. The Cospuden and Kriebstein sites generally had low CHLa contents
throughout the complete measured water column with site-specific mean values of 0.6 µg L−1 and
2.3 µg L−1, respectively, and a standard deviation of 0.5 µg L−1. In the other two lakes mean
concentrations were significantly higher with 63.9 µg L−1 at the Auensee site and 36.9 µg L−1 at the
Mulde site.

Table 2. Descriptive Statistics of reference values of chlorophyll a—contents (CHLa, in µg L−1)
and CDOM absorbance at 440 nm (in m−1). OAS = optically active substance, n = number of
samples, min = minimum, Q1 = first quartile, Q2 = median, Q3 = third quartile, max = maximum,
mean = arithmetic mean, sd = standard deviation.

OAS Site n Min Q1 Q2 Q3 Max Mean sd

CHLa all 56 0 2 37 64 96 37.2 32.2
Auensee 27 27 46 64 84 96 63.9 20.9

Cospuden 10 0 0 1 1 1 0.6 0.5
Kriebstein 10 2 2 2 3 3 2.3 0.5

Mulde 9 15 35 36 41 53 36.9 10.5
CDOM all 56 0.1 0.9 1.0 1.3 1.6 0.97 0.43

Auensee 27 0.9 1.0 1.0 1.2 1.3 1.10 0.12
Cospuden 10 0.1 0.1 0.2 0.2 0.2 0.16 0.03
Kriebstein 10 1.4 1.4 1.4 1.6 1.6 1.45 0.11

Mulde 9 0.7 0.9 0.9 1.2 1.2 0.95 0.18

A vertical CHLa stratification occurred in those lakes with relatively high CHLa contents (Figure 6).
At the Auensee site, the layer-specific CHLa means ranged between 70 and 76 µg L−1 within the upper
1.5 m, and the upper layers were also characterized by a high variability (indicated by wide ranges
within each layer). By contrast, the average concentration dropped to almost half (40 µg L−1) at a
depth of 2.5 m. A similar pattern was observed at the Mulde site with mean values between 38 and 45
µg L−1 in the upper 1.5 m and 15 µg L−1 in the lowest layer. Due to the overall low CHLa contents,
no substantial stratification was observed at the Cospuden and Kriebstein sites.

Remote Sens. 2020, 11, x FOR PEER REVIEW 10 of 19 

 

3.2. Water Quality Characteristics of the Investigated Lakes 

The two target variables showed a high degree of variability between the studied lakes (see Table 
2). The CHLa contents of the complete dataset varied between 0 and 96 µg l−1, with an overall mean 
concentration of 37.2 µg l−1. The Cospuden and Kriebstein sites generally had low CHLa contents 
throughout the complete measured water column with site-specific mean values of 0.6 µg l−1 and 2.3 
µg l−1, respectively, and a standard deviation of 0.5 µg l−1. In the other two lakes mean concentrations 
were significantly higher with 63.9 µg l−1 at the Auensee site and 36.9 µg l−1 at the Mulde site. 

Table 2. Descriptive Statistics of reference values of chlorophyll a—contents (CHLa, in µg l−1) and 
CDOM absorbance at 440 nm (in m−1). OAS = optically active substance, n = number of samples, min 
= minimum, Q1 = first quartile, Q2 = median, Q3 = third quartile, max = maximum, mean = arithmetic 
mean, sd = standard deviation. 

OAS Site n Min Q1 Q2 Q3 Max Mean sd 
CHLa all 56 0 2 37 64 96 37.2 32.2 

 Auensee 27 27 46 64 84 96 63.9 20.9 
 Cospuden 10 0 0 1 1 1 0.6 0.5 
 Kriebstein 10 2 2 2 3 3 2.3 0.5 
 Mulde 9 15 35 36 41 53 36.9 10.5 

CDOM all 56 0.1 0.9 1.0 1.3 1.6 0.97 0.43 
 Auensee 27 0.9 1.0 1.0 1.2 1.3 1.10 0.12 
 Cospuden 10 0.1 0.1 0.2 0.2 0.2 0.16 0.03 
 Kriebstein 10 1.4 1.4 1.4 1.6 1.6 1.45 0.11 
 Mulde 9 0.7 0.9 0.9 1.2 1.2 0.95 0.18 

A vertical CHLa stratification occurred in those lakes with relatively high CHLa contents (Figure 
6). At the Auensee site, the layer-specific CHLa means ranged between 70 and 76 µg l−1 within the 
upper 1.5 m, and the upper layers were also characterized by a high variability (indicated by wide 
ranges within each layer). By contrast, the average concentration dropped to almost half (40 µg l−1) at 
a depth of 2.5 m. A similar pattern was observed at the Mulde site with mean values between 38 and 
45 µg l−1 in the upper 1.5 m and 15 µg l−1 in the lowest layer. Due to the overall low CHLa contents, 
no substantial stratification was observed at the Cospuden and Kriebstein sites. 

 
Figure 6. Vertical distribution of CHLa (a) and CDOM (b) for the investigated lake sites. Points mark 
the layer-specific mean, solid lines mark the layer-specific range of measured reference values. 

Figure 6. Vertical distribution of CHLa (a) and CDOM (b) for the investigated lake sites. Points mark
the layer-specific mean, solid lines mark the layer-specific range of measured reference values.



Remote Sens. 2020, 12, 1745 11 of 19

The results of the CDOM analysis showed less variability across the lakes with CDOM values
between 0.1 and 1.6 m−1. We found the lowest CDOM levels at the Cospuden site with a maximum
absorption coefficient of 0.2 m−1, whereas the remaining lakes showed mean levels between 0.95 at the
Mulde site and 1.45 m−1 at the Kriebstein site. In all four lakes, the vertical profile of CDOM showed
an approximately uniform distribution.

In line with the relatively high CHLa concentrations in the surface layer, the Auensee site
and the Mulde site showed the lowest Secchi disk depths measured during the field campaigns
with ~0.5 m and ~1.3 m, respectively. Given that the Secchi depth approximates the water depth
suitable for above-ground remote or proximal sensing, this documents the need for underwater in situ
measurements to assess the complete vertical distribution of OAS.

3.3. Validation of Ambient Light Compensation

To validate the applicability of Equation (5) under realistic conditions, we compared the measured
reflectance values of nighttime measurements at the Cospuden site with the calculated reflectance
values of daytime measurements carried out only a few hours later at the same position (Figure 7).
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Figure 7. Comparison of reflectance spectra acquired at Cospuden site during (a) nighttime measurements,
(b) daytime measurements without compensation for sunlight attenuation, and (c) daytime measurements
with compensation for sunlight attenuation.

The spectra of the nighttime measurements were almost identical for all five increments.
The reflectance curves showed no variability in terms of OAS absorption features (Figure 7a), which was
in line with the results of the laboratory reference analysis, as the entire water column showed negligible
contents of CHLa and CDOM. The calculation of reflectance based on daytime measurements without
sunlight compensation (Equation (4)) resulted in an increased spectral variability throughout the entire
spectral range (Figure 7b). This was solely caused by varying conditions of the ambient light field
with increasing water depth. Accordingly, the application of the sunlight compensation algorithm
(Equation (5)) removed these differences almost entirely (Figure 7c) and implied an optimization for
the retrieval of CDOM and CHLa at different depths, as both absorb in the affected wavelength ranges
(as shown in Section 3.1).

At the Auensee site, with a Secchi depth of ~0.5 m, the measured signal below a depth of ~2 m
was very low, even with greatly increased integration times, and the retrievable spectral information
was therefore limited to the range between 500–700 nm (data not shown), corresponding to the energy
maximum of sunlight in the visible range. In the remaining parts of the spectrum, the signal was
overlaid by dark current. The authors of [22] also reported a signal loss of >78 % for wavelengths longer
than 620 nm within the first meter of a freshwater lake with noticeable algae and cyanobacteria contents.
The use of a portable lamp, as shown in the present study, therefore allowed to compensate for the
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effects of sunlight attenuation and the associated signal loss with increasing depth. The combination
of a constant light source and a reference panel at a fixed distance in front of the camera simulated
shallow water with a standardized bottom and resulted in almost constant measurement conditions
throughout the entire water column. Consequently, all acquired reflectance spectra were comparable
between the investigated lakes and across different depths.

3.4. Predictive Modeling of CHLa and CDOM

The lake specific mean reflectance spectra (Figure 8) mirrored the measured OAS reference values.
Starting with the mean spectrum of the Cospuden site, which represented low contents of CHLa
and CDOM, a clear decrease of reflectance mainly at the shorter wavelengths was observed for the
Kriebstein site, mainly attributable to high CDOM levels. Since CHLa was low, reduced reflectance
values in the ‘red’ range might also be caused by CDOM at this site. Although CDOM absorption
decays exponentially with increasing wavelengths, this finding suggests that high and variable CDOM
contents may also affect CHLa retrieval based on the absorption feature at around 670 nm. The Auensee
site showed the lowest overall reflectance curves due to both, high CDOM and CHLa contents, with a
marked CHLa feature at ~670 nm. The application of the first derivative on the spectra resulted in
the removal of the baseline and a narrowing of the reflective range especially in the region below
670 nm. Values at zero indicated pronounced peaks and troughs of the reflectance spectra, whereas
slope differences were highlighted by the first derivative.
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minimum and maximum values at each wavelength for the entire data set.

Based on the found spectral sensitivities, the three-band ratio model worked well for CHLa
retrieval in the case of the eutrophic and turbid Auensee waterbody (Table 3, Figure 9), which confirmed
the applicability of this index for turbid and productive waters (see [8]).

Table 3. Root mean square error (RMSE) (in µg L−1) for CHLa estimation per lake.

Site Three-Band Ratio Single Wavelength PLSref PLSfds

Auensee (63.9) * 9.52 19.86 11.24 10.29
Cospuden (0.6) * 11.04 1.72 2.69 3.46
Kriebstein (2.3) * 12.07 13.78 5.17 5.98

Mulde (36.9) * 22.78 15.23 8.72 7.13

* Values in parentheses represent measured CHLa mean concentrations (in µg L−1) of the lakes.
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Figure 9. Measured and cross-validated prediction values of CHLa with error metrics based on the
entire dataset: (a) three-band ratio, (b) single wavelength at 690 nm of first derivative, (c) partial least
squares (PLS)ref = PLS regression based on reflectance spectra, and (d) PLSfds = PLS regression based
on first derivative spectra. The dashed line represents the 1:1 line.

For the Mulde site, however, values of nearly all samples were underestimated; conversely,
we found a general overestimation of values for the remaining two sites (Cospuden, Kriebstein) with
low CHLa contents. The single waveband approach based on spectral values of the first derivative at
690 nm showed similar results for the Mulde and Kriebstein sites compared to the three-band ratio.
However, more accurate and precise estimates were achieved for the oligotrophic Cospuden site,
whereas values of Auensee site samples with high CHLa levels being greater than 70 µg L−1 were
all underestimated (Figure 9). For lakes with very low CHLa (and CDOM) concentrations, however,
relative estimation errors, compared to the lake-specific mean values, were very large due to the small
dynamic range in CHLa and CDOM. In the case of the Cospuden and Kriebstein sites, the water
bodies were essentially transparent and the range of observed values was consequently lower than the
sensitivity of the reflectance spectra given the uncertainties included in field measurements.

For all studied samples, the overall RMSE of cross-validation was 13.2 µg L−1 (three-band ratio)
and 16 µg L−1 (single waveband), respectively. Similar results were found by Duan et al. (2010) [48]
who investigated a single eutrophic lake and achieved slightly better results with the three-band
ratio compared to the use of the single waveband of the first derivative at 680 nm. Nevertheless,
Cheng et al. (2013) [49] showed that first derivative models using one waveband in the 690–700 nm
range might be more robust when transferred to independent datasets compared to two-, three-,
and four-band ratios of reflectance spectra.

With regard to the entire dataset, the PLSR models based on the full spectral information provided
higher accuracies with RMSE values at 8.9 µg L−1, and 8.2 µg L−1, the latter for the first derivative
(Figure 9). In addition, there was no systematic over- or under-estimation of a lake-specific sample set
or a certain CHLa range. These results suggest that the use of full range reflectance in combination
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with an empirical multivariate model produces potentially more accurate and robust results than
spectral indices, which is in line with other studies (e.g., [40–42]). The authors of [41], who combined
PLSR with a genetic algorithm to identify most suitable CHLa sensitive wavelengths, emphasized
a better transferability of models calibrated in that way to new sites compared to empirical models
based on three-band indices. Nevertheless, the data in Table 3 indicate that CHLa related band indices
may provide similarly good or even more accurate results at specific lakes compared to full spectrum
approaches. However, prior expert knowledge of the lake under consideration seems to be necessary
for the selection of a suitable index, as their estimation accuracies showed a higher variability between
the lakes compared to the use of full spectrum models.

These findings suggest that the use of continuous hyperspectral data in the range between ~400
and ~1000 nm for CHLa retrieval is generally of advance compared to the use of band ratio models.
Benefits relate to accuracy and transferability, especially for highly diverse water bodies or multiple
water bodies with variable conditions.

For CDOM, the results were different (Table 4, Figure 10), which may be traced back to strong
influences of e.g., algal biomass on the main region of CDOM absorption in the visible domain
(see Section 3.1). Regarding the lake-specific error metrics (Table 4), the indices again show a variable
pattern of estimation accuracies. While the single wavelength approach based on the first derivative
value at 602 nm achieved the most consistent result of all models for the Cospuden site, the most
accurate estimations for the Mulde site were yielded by the two-band ratio. Full spectrum models
provided their best results for the Auensee and Cospuden sites.

Table 4. RMSE (in m−1) for CDOM estimation per lake.

Site Two-Band Ratio Single Wavelength PLSref PLSfds

Auensee (1.10) * 0.42 0.18 0.11 0.15
Cospuden (0.16) * 0.32 0.12 0.17 0.16
Kriebstein (1.45) * 0.22 0.35 0.27 0.27

Mulde (0.95) * 0.23 0.36 0.38 0.36

* Values in parentheses represent measured CDOM mean levels (in m−1) of the lakes.

Overall estimation accuracies, as indicated by RPIQ values (Figure 10), were thus significantly
lower than those for CHLa. The two-band ratio approach produced the poorest results. This contrasts
to Zhu et al. (2014) [37], who achieved—with this index—RMSE values at 0.28 m−1 for lakes with
CDOM levels between 0.9 and 2.1 m−1 and at 0.05 m−1 for CDOM levels beyond 3.4 m−1. Nevertheless,
they also stated that the algorithm might overestimate low CDOM levels. In our study, the single
waveband index derived from the first derivative spectra outperformed the two-band ratio index.
At this point, the physical relevance of the wavelength region at around 602 nm for the retrieval of
CDOM is not obvious, but Brezonik et al. (2015) [47] also summarized several studies that included
(at least with moderate success) wavelength regions beyond 500 nm for the retrieval of CDOM.
Shao et al. (2016) [50] also tested different index approaches and found a ratio index calculated from
reflectance values at 584 nm and 646 nm to outperform a single band index based on values of the first
derivative at 406 nm (which showed the highest correlation with CDOM in their dataset). Additionally,
they applied PLS with a back-propagation artificial neural network, but this provided less accurate
results compared to the two-band ratio approach. Our results showed, different from that, that PLSR
with both reflectance and first derivative spectra produced overall more accurate results with an RMSE
at 0.22 m−1. The plotted CDOM values revealed two clusters with markedly different levels of CDOM
(which qualifies the applicability of one common linear approach and the retrieved statistical measures).
Regardless of achieved estimation accuracies, the first derivative waveband approach and the PLS
models were both able to separate these two classes, as evident from Figure 10.
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Results for CDOM were generally poorer compared to CHLa, which might be due to a missing
diagnostic absorption feature within the investigated spectral range of 470–850 nm and due to a large
overlap between CDOM and CHLa absorption in the ‘blue’ spectral range. Additionally, further OAS
such as detritus (non-living organic suspended matter), which is known to absorb in a similar pattern
as CDOM does [51], may also affect CDOM retrieval. Therefore, accurate CDOM retrieval based on
empirical methods seems to be still challenging, especially in optically complex waters.

Similar to our study, Abd-Elrahman et al. (2011) [26] also studied the retrieval of CHLa in fishery
ponds by using a combination of hyperspectral measurements and submergible targets. To this end,
they installed a hyperspectral scanner (400 to 1000 nm) above the water surface of 14 aquaculture
ponds, where CHLa concentrations ranged from 0.8 to 494.4 µg L−1. Additionally, they developed a
three-level design of vertically arranged reflective targets. The first one was positioned above the water
surface for calibration purposes, the second one 10 cm below, and the third one 30 cm below the water
surface to test the effect of fixed viewing depths by using standardized bottoms. For CHLa retrieval,
they used two-band and three-band indices. The best results were achieved with a three-band index
and the target that was positioned 10 cm below the water surface (RMSE = 13.4 µg L−1), whereas the
lowest accuracy was obtained with the target 30 cm below the water surface (RMSE = 89.9 µg L−1).
They confirmed the advantage of using reflective targets in the upper water column to enhance the
quality of the spectral signal. We successfully extended that approach by measuring multiple depths
of 2.5 m water columns while being almost independent from ambient illumination conditions.

Generally, our results imply a strong potential for resolving the vertical water column at a
fine scale for the provision of both, hyperspectral information and OAS products, which could be
helpful for modelling approaches regarding the water leaving spectrum [15,16,52] and additionally
provides insights into water layers below the viewing depth of above-ground remote or proximal
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sensors. Further, our measurement protocol proposes an experimental approach to cope with variable
illumination conditions in order to obtain consistent reflectance spectra, which can be a critical aspect
for in situ measurements [53]. The combination of its use for above-water surface measurements
(e.g., [21,26]) and for underwater use (this study), hyperspectral cameras provide a potential link
between point source underwater measurements and spectral imaging above the water surface.

4. Conclusions

We evaluated the performance of a submersible hyperspectral camera for underwater reflectance
measurements and the estimation of CHLa and CDOM at various depths in four freshwater lakes
with different trophic levels. The measurement configuration we developed allows a consistent
retrieval of reflectance spectra throughout the water column with potential applications in OAS
retrieval or radiometric ground truthing for remote sensing observations of the uppermost water layer.
The available image information allows a pixel-wise analysis of the sensor’s field of view to improve
data quality through the removal of poorly illuminated areas or interfering objects. For quantitative
OAS retrieval, predictive models based on hyperspectral reflectance data can achieve more robust
and accurate estimates for CHLa and CDOM than empirical algorithms based on specific wavebands,
at least in complex datasets that include multiple lakes at different trophic levels. As our comparison
included only two common waveband indices, however, a lake-specific selection of different band
ratios might yield similar results to hyperspectral algorithms.

While the UHD 285 camera used in this study is a commercial-grade instrument with a mature data
acquisition and processing chain, the customizations for underwater use, including the camera mount
and the required instrument calibration procedures, were at a research level. Further refinements
in the technology are necessary to allow a more rapid deployment, data acquisition and analysis,
e.g., for near-real time water monitoring, the integration in sensor networks or operational use by
environmental agencies.

Despite these present and future challenges, hyperspectral measurements throughout the water
column may potentially bridge the gap between spatially continuous remote sensing observations of
the surface water layer and point sensors that can provide continuous water monitoring data at and
below the surface.
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