remote sensin N
?J & bpy

Article

Land Use/Land Cover Changes Impact on
Groundwater Level and Quality in the Northern Part
of the United Arab Emirates

Samy Elmahdy *{9, Mohamed Mohamed ?{* and Tarig Ali 13

1 GIS and Mapping Laboratory, American University of Sharjah, Sharjah P.O. Box 26666, UAE; atarig@aus.edu
2 (ivil and Environmental Engineering Department, United Arab Emirates University, Al-Ain P.O. Box 15551,
UAE; m.mohamed@uaeu.ac.ae

Civil Engineering Department, College of Engineering, American University of Sharjah,

Sharjah P.O. Box 26666, UAE

*  Correspondence: selmahdy@aus.edu; Tel.: +971-6-515-4918

check for
Received: 7 April 2020; Accepted: 24 May 2020; Published: 27 May 2020 updates

Abstract: This study aims to develop an integrated approach for mapping and monitoring land
use/land cover (LULC) changes and to investigate the impacts of LULC changes and population
growth on groundwater level and quality using Landsat images and hydrological information in a
Geographic information system (GIS) environment. All Landsat images (1990, 2000, 2010, and 2018)
were classified using a support vector machine (SVM) and spectral analysis mapper (SAM) classifiers.
The result of validation metrics, including precision, recall, and F1, indicated that the SVM classier
has a better performance than SAM. The obtained LULC maps have an overall accuracy of more than
90%. Each pair of enhanced LULC maps (1990-2000, 2000-2010, 2010-2018, and 1990-2018) were used
as input data for an image difference algorithm to monitor LULC changes. Maps of change detection
were then imported into a GIS environment and spatially correlated against the spatiotemporal maps
of groundwater level and groundwater quality. The results also show that the approximate built-up
area increased from 227.26 km? (1.39%) to 869.77 km? (7.41%), while vegetated areas (farmlands,
parks and gardens) increased from about 76.70 km? (0.65%) to 290.70 km? (2.47%). The observed
changes in LULC are highly linked to the depletion in groundwater level and quality across the study
area from the Oman Mountains to the coastal areas.

Keywords: landsat; land use/land cover; United Arab Emirates; support vector machine; change
detection; groundwater quality; groundwater level

1. Introduction

Groundwater is the major water source on the Arabian Peninsula, including the United Arab
Emirates (UAE). Globally, the UAE has one of the highest per capita water consumption rates in the
world, at approximately 500 L per day [1]. Groundwater and water supply can be influenced by
population growth and land use /land cover (LULC) changes [2-5]. The increase in LULC is expected
to extensively increase the rate of evaporation and depletion in groundwater level and quality [5-10].
This depletion has caused serious economic and environmental problems [1-3]. The UAE, including
the study area, has not shied away from these issues, given that its rapid development and decline in
groundwater level and quality depletion have increased over the last two decades [3]. These problems
are more severe in the alluvial and coastal areas in the east and the west, which account for 75% of the
study area [4]. The LULC changes are considered to contribute to 25% of the regional greenhouse gas
emissions [11]. Rapid change in LULC represents one of several major environmental problem in the
NUAE [12]. For example, a study undertaken in Dubai, UAE showed that, growing the farmland and
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industrial areas by 21%, an increase of groundwater salinity of up to 5% can be observed, especially
during the summer season [12,13].

Further studies revealed that most of the landscape of the NUAE was extensively changed
with development between 1990 and 2018 [11]. However, the impact of LULC changes on the
groundwater level and quality in the NUAE has not yet been investigated. Multi-temporal Landsat
images, monitoring LULC changes and spatiotemporal hydrological information, provide excellent
information on the impact of LULC changes on groundwater level and quality depletion [8].

Rapid changes in farmlands and irrigation increase evapotranspiration (ET) and groundwater
recharge by irrigation return flow [6,14]. An increase in groundwater recharge by irrigation return flow
and agricultural development can increase soil salinisation and groundwater salinity in the shallow
aquifer [9,15]. The impact of LULC change on groundwater was partially described in some earlier
studies [10-13]. These studies were carried out based on the hypothesis that the sharp decline in
groundwater level and quality is mainly controlled by LULC expansion (e.g., built-up and vegetation
areas) and climate change (e.g., temperature rise and rainfall scarcity).

Landfill and septic tanks in undeveloped urban areas are predictable sites of groundwater pollution
by infiltration.

Past studies support the direct impact of LULC and human activities, seawater intrusion,
and groundwater level and quality as well as hydro-meteorological factors [14-24]. Dias et al.
(2015) [25] investigated the impact of LULC changes on evapotranspiration and groundwater storage.
Haddeland et al. (2014) [26] found direct effects of the human population on the terrestrial water cycle.
There is a positive spatial relationship between LULC changes and groundwater recharge, groundwater
discharge, and groundwater level [27].

Further studies used logistic regression to estimate the impact of agricultural expansion on nitrate
concentration [28]. Zampella et al. (2007) [29], evaluated the spatial relationship between LULC
patterns and the chemical properties of groundwater. Pan et al. (2011) [30] studied the impact of LULC
on groundwater recharge using balance modelling and Wetpass in GIS.

The integration of multi-temporal remote sensing and hydrological information in a GIS
environment has been found to be a suitable approach to investigate the LULC change impacts on
groundwater level and quality over a regional scale at low cost and with greater accuracy [12,13,23,24].
The study of the spatial association between LULC changes and groundwater level and quality permits
a better understanding of how LULC changes affect groundwater and is important in building an
adaptation strategy [14,25].

In this research, we monitor LULC changes over the NUAE to investigate their spatial relation
to the groundwater level and quality. Groundwater level fluctuation and spatial variation of the
groundwater solutes (total dissolved solids (TDS) and nitrate (NO3)) provide hydrological information
on the regional response to the rapid LULC changes. The main objectives of the current study are:
(i) to monitor and analyse LULC changes on a regional scale by modifying an optimal support vector
machine SVM and compare its performance against the spectral analysis mapper (SAM) algorithm and
(ii) to investigate and explore whether LULC changes and population growth have a significant impact
on the groundwater level and quality in the NUAE. The main findings of this study can help identify
and/or predict areas that may experience seawater intrusion, groundwater contamination, and land
subsidence as a response to rapid urbanisation and groundwater level depletion.

2. Datasets and Methods

2.1. Study Area Description

The study area stretches from longitude 54°58’21” E to 56°29’42” E and latitude 24°33’45” N to
26°5’24” N and has an area of about 11,871 km?. It includes the Emirates of Dubai, Sharjah, Ajman,
Umm Al Quwain, Ras Al Khaimah, and Fujairah (Figure 1). Most of the built-up area is concentrated on
coastal strips and waterfronts, such as creeks and artificial lakes, while the agricultural area is limited



Remote Sens. 2020, 12, 1715 3of24

to the alluvial plains, sand dune corridors, and desert plains, wherever rainfall and palaeochannels
(wadis) are found. Topographically, the area is interrupted and separated by the Oman mountain
in the east and Musandam Peninsula mountain in the northeast (Figure 1) towns in the study area
(green stars). Black dots highlight the locations of groundwater wells.
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Figure 1. Elevation map generated from a DEM showing the location of the study area and main

cities and.

According to the world population prospect, the population of the UAE rapidly grew from
1.83 million in 1990 to 9.89 million in 2019 and is predicted to grow to 10.65 million by 2050
(https://population.un.org/wpp/). Thus, the estimated daily water consumption varies from 540 to
570 L per person and represents the highest per capita consumption of water (www.watercalculator.
org/footprints/water-footprints-by-country).

The area is characterised by hot and humid weather during the summer with average daily
evaporation of 8.2 mm and is warm during the winter (Figure 2a). The monthly rainfall has reduced
sharply and varies from 30 mm in the southeastern desert near the city of Dubai to 180 mm in the east
and northeast mountainous areas [27,28].

The maximum number of rainfall days over the study is 4-6 days per month during the period
from December to March (Figure 2b). The maximum daily precipitation value is 1.2 mm during March
(Figure 2c¢) [5]. Generally, the highest rainfall and the lowest temperature values were reported in the
Oman mountains and eastern coastal strip, while the lowest rainfall and the highest temperature values
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were observed in the sand dune and the western coastal strip (Figure 3a,b). The estimated annual
rainfall over the mountainous and coastal areas was about 97% of total rainfall over the NUAE [27].
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Figure 2. Monthly temperature and precipitation (a), number of days of rainfall (b), and daily

precipitation (c) over

the NUAE.

Recently, rainfall scarcity has been reported over the last two decades, and thus drought has
persisted [24,25]. This may be due to climate change and global warming as a response to air pollution

in the entire region.

Soil texture is predominantly gravel, sandy loam, and silt formed by a long period of eolian fluvial
processes [27]. Hydrologically, the area is comprised of five aquifers: sand dune aquifer, carbonate
aquifer, ophiolite aquifer, coastal aquifer, and alluvial aquifer (Figure 3c). The various physical
geography and commercial importance of the NUAE make a case for investigating the impact of rapid
LULC on groundwater level and quality. These aquifers are drained by several near surface and
near-surface palaeochannels (Figure 3d). Their trends are commonly in the NW-SE, NNW-SSE, NE-SW
and NNE-SSW directions [19] (Figure 3d). These features play an important role in groundwater
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quality by washing and dissolving solids and carrying and accumulating them downstream to the

west [12,13,25].
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Figure 3. Maps of the spatial distribution of rainfall (a) and air temperature (b), and geohydrology (c),
and wadi courses and palaeochannels generated from a DEM (d) of the study area.

2.2. Datasets and Pre-processing

Three datasets were collected from different sources to investigate the impact of LULC changes on
groundwater level and quality. The first dataset included remote sensing data (Table 1). This includes
the Landsat images with a time span of about 10 years and a spatial resolution of 30 m. These time
spans and spatial resolutions were the most suitable remote sensing data to monitor LULC change
over a regional scale in a timely and free of charge manner [12,13,23]. The Landsat images include the
Landsat Thematic Mapper (TM) acquired on 23 August 1990, the Landsat Enhanced Thematic Mapper
(ETM+) acquired on 23 August 2000 and 19th August 2010, and the Operational Landsat Imager (OLI)
Landsat 8 acquired on 15 August 2018 (Path 160, rows 42 and 43). In addition to Landsat images, a
single of QuickBird image with a spatial resolution of 0.6 m acquired on 27 August 2018 and employed
to collect the training datasets or region of interests (ROIs) and the textural features of LULC classified
using Landsat images were compared visually against those in QuickBird images [24].

The dataset of Landsat images was downloaded from the USGS Global Visualization Viewer
(GloVis) (www.glovis.usgs.gov) portal. After that, all Landsat images were registered as an image
to image with an RMS of less than 0.6 and then an atmospherically corrected by Fast Line-of-sight
Atmospheric Analysis of Hypercubes (FLAASH) implemented in Envi v. 4.6 software. The FLAASH
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process consists of radiometric calibration and dark subtraction. In radiometric calibration, beta
nought calibration, all DN values were converted into the top of atmosphere (TOA), reflectance. TOA
was performed using four parameters, namely calibration type (reflectance), output interleave (BSQ),
output data type (float), and scale factor value of 1. In dark objects subtraction, TOA was converted
into surface reflectance (SR) using band minimum.

Table 1. Characteristics of Landsat and QuickBird images used in the study area.

Bands Resolution (m) Wavelength (mm)

Band 1 30 0.45-0.52
Band 2 30 0.52-0.60
Thematic Mapper (TM)and Band 3 30 0.63-0.69
Enhanced Thematic Mapper Band 4 30 0.77-0.90
Plus (ETM+) (23 August 1990) Band 5 30 1.55-1.75

(23 August 2000) Band 6 60*(30) 10.40-12.50
Band 7 30 2.09-2.35
Band 8 15 0.52-0.90
Band 1 Coastal aerosol 30 0.43-0.45
Band 2 Blue 30 0.45-0.51
Band 3 Red 30 0.53-0.59
Landsat 8 Operational Land Band 4 Red 30 0.64-0.67
Imager (OLDand thermal Band 5 Near Infrared (NIR) 30 0.85-0.88
infrared sensor (TIRS) Band 6 SWIR 1 30 1.57-1.65
(15 August 2018) Band 7 SWIR 2 . 30 2.11-2.29
Band 8 Panchromatic 0.50-0.68
Band 9 Cirrus 30 1.36-1.38

Band 10 Thermal Infrared (TIRS) 1 100*(30) 10.60-11.19

Band 11 Thermal Infrared (TIRS) 2 100*(30) 11.50-12.51
B1 Blue 450-520
B2 Green 520-600
QuickBird (27 August 2018) B3 Red 630-690
Near IR 760-900
Pan 450-900

The second dataset was the ALOS Phased Array type L-band Synthetic Aperture Radar Mission
DEM with a spatial resolution of 30 m and downloaded from the USGS Global Visualization Viewer
(GloVis) (www.glovis.usgs.gov) portal.

The third dataset was the hydrological information (as shapefiles) collected from 80 groundwater
wells during the period from 1990 to 2018 maintained by Sharjah electricity and the annual reports of the
Ministry of Environment and Climate Change, UAE (https://www.moccae.gov.ae/en/). Hydrological
information includes groundwater level, nitrate concentration (NOs3), and total dissolved solids
(TDS) that provides information on regional response to climate and LULC change from 1990 to
2018 [12,15,18,31].

The fourth dataset was a collection of ancillary data including the annual population growth
collected from the webpage of the Department of Economic and Social Affairs Population Dynamics
of the United Nations (https://population.un.org/wpp/), and the annual water consumption and
water usage collected from the Fanak water webpage (https://water.fanack.com/uae/water-resources).
We collected this various information to spatially investigate the impact of population growth on
groundwater level and water resources and to support the spatial analysis of population growth and
water consumption.

2.3. Data Classification and Processing

To investigate the impact of LULC changes on groundwater level and quality, seven steps
were performed (Figure 4): (i) collecting training datasets (ii), selection of classifiers and optimal
parameterisation, (iii) evaluation of classifiers performance, (iv) accuracy assessment of LULC maps,
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(v) monitoring LULC changes, (vi) monitoring spatiotemporal variations of groundwater level and
quality, and (vii) spatial analysis and investigation.
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Figure 4. Flowchart of the methodology applied to the study area.

2.3.1. Collecting Training Datasets

Each training dataset or region of interest was collected as pixels from the zooms of the QuickBird
images and verified using field observations from the area in which the authors live. The collected
training datasets of four classes (built-up, park/garden, farmland and industrial areas) were chosen
and then randomly divided into 70% (140) for training and 30% (60) for validation and employed as
input to learning the selected classifiers.

2.3.2. Selection of Classifiers and Optimal Parameterisation

The SAM presented by Kruse et al. (1993) [31], which is used in the related literature, is a likely
solution to the classification of LULC in Dubai. The SAM offers physically based spectral classification,
which uses a n-D angle to match the pixels to reference spectra. The algorithm detects the spectral
similarity between two spectra by calculating the angle between the spectra and treating them as
vectors in a space with dimensionality equal to the number of bands. The SAM matches the spectral
angle between the endmember spectrum vector and each pixel vector in the n-D space.

The SAM algorithm simplifies this geometric interpretation to n-dimensional space, determining
the similarity by applying the following equation:

b
1 ity tiri
nb 2 nb 2
\/Zi:1 t: \/Zizl T

where nb is the number of bands in the image, t is the pixel spectrum, r is the reference spectrum, and
alpha is the spectral angle.

As the SAM classifier uses only the direction of the spectra, it is insensitive to the unknown gain
factor, with all possible illuminations treated equally [31].

Support vector machine (SVM), which is used widely in the literature, was chosen [32-40]. We
employed SVM due to its ability to reduce classification errors and creating LULC maps with higher
accuracy, overcoming the limitations of parametric classification and because it was recommended
by several researchers [38-40]. The algorithm starts by transforming the original data into space to
hyperplane that maximises classes to be classified [35,36]. Several SVM parameter values were tested

)

a = cos
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on Landsat images to choose the proper parameters and combination function with the highest overall
accuracy (Table 2). These parameters include kernel type, gamma in kernel function (y), penalty
parameter (C), pyramid level (P) and classification probability threshold. The use of combination
function with threshold values ranging from 0.02 to 0.05. The use of P values varying from 100 to 120
and the best kernel was the RBF kernel. The suitable value for gamma in kernel function (y) was 0.007,
penalty parameter (C) was 120, pyramid level (P) value of 0 and classification probability threshold
value of 0.05. These parameter values were chosen as the finest SVM options.

Table 2. The SVM algorithm option tested to classify LULC.

Y P Threshold C
0.1 0 0.02 100
0.03 1 0.03 100
0.005 2 0.05 120
0.007 2 0.04 110

Once the SMV parameters were optimised, we trained the SVM and SAM classifiers by training
datasets before classification was performed. All spectral bands of Landsat images were used in the
classification process, except thermal and panchromatic bands. A total of four classes, namely built-up,
garden/park, industrial, and farmland, was created.

2.3.3. Evaluation of the Performance of the Classifiers

Once the classification process was achieved, it was important to evaluate the performance
of the classifiers. Confusion metrics include accuracy, precision, recall, and F1 score. The F1 was
found to the best technique and used widely in literature [32]. The calculation of accuracy, precision,
recall, and F1 score is based on four parameters, namely true positive (ITP), true negative (TN), false
positive (FP), and false negative (FN). Accuracy, precision, recall, and F1 score can be calculated via the
following equations:

Accuracy = TP + (TN/TP) + FP + FN + TN (2)
or
1 nsamples_l
Accuracy (]// ]/predi) = 1 (]/predi = ]/i) 3)
Msamples i—0

where Yr.4; is the predicted value and y is the corresponding true value
Kappa=po -pe/1-pe 4)

where po is the observed agreement ratio and pe is the expected agreement

Precision = TP/ TP +FP 5)
Recall = TP/TP + FN (6)
F1 = 2 * precision * recall/precision + recall ?)

where TP is the true positive, FP is the false positive, and FN is the false negative.
The performance of SVM and SAM were evaluated using the open source R 4.0.0 software.

2.3.4. Accuracy Assessment of LULC Maps

The accuracy of each enhanced LULC map was then assisted by applying a confusion matrix to
each classification map. The confusion matrix calculates Kappa, user’s, and producer’s accuracy [37].
Kappa analysis, which is a discrete multivariate technique, yields a khat statistic which is a measure
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of agreement or accuracy [38,39]. Further validation was performed by comparing some parts of the
LULC maps, such as the Emirates of Ajman and Dubai, against those constructed by Elmahdy and
Mohamed (2018) [12,13].

2.3.5. Monitoring LULC Changes

To monitor LULC changes, each pair of LULC maps (1990-2000, 2000-2010, 2010-2018, and
1990-2018) was used. Monitoring changes were performed using the change detection tool implemented
in the Envi v. 4.5 software. The tool subtracts the initial state image from the final image. The negative
changes correspond to the last (n/2) classes, while the positive values correspond to the first (2/n) classes.
The no-change class (n/2 + 1) corresponds to the middle class. Finally, a total area in km? of each LULC
class was calculated by converting raster to vector tool implemented in the Envi. 4.5 software.

2.3.6. Monitoring Spatiotemporal Variations of Groundwater Level and Quality

To monitor spatiotemporal variations of groundwater level and quality, we produced raster
maps of groundwater level and quality for the years 1990, 2000, 2010 and 2018 by interpolating the
hydrological information such as groundwater level, nitrate concentration NOj3, total dissolved solids
(TDS) concentration in groundwater. The interpolation process was performed using the inverse
distance weighted (IDW) algorithm implemented in ArcGIS v. 10.5 software. The algorithm determines
the values of points based on a weighted combination of a group of selected points and takes into
account the points closer to each other than the other distant points. The main advantages of IDW are
that it is a simple procedure, easy to understand, intuitive, and efficient [41-45]. Finally, the total area
and its percentage for each hydrological class on the interpolated groundwater level, NO3, and TDS
maps were calculated using the raster calculator tool implemented in ArcGIS v.10 software.

2.3.7. Spatial Analysis and Correlation

To investigate whether or not there was an impact of LULC changes on groundwater level and
quality, the raster maps of LULC and groundwater level and quality were imported into the GIS
environment and pixel by pixel spatial analysis and class by class correlation were performed by
draping raster maps of the groundwater level, NOs3, and TDS on the LULC maps. After that, statistical
analysis was performed between the following datasets: (i) NO3 and NDV], (ii) population growth
and water consumption, (iii) water use and household, irrigation, and built-up areas expansion, and
(iv) TDS and residential and agricultural areas population growth. To investigate the impacts of
population growth and LULC changes on groundwater level and seawater intrusion, the Na/Cl ratio
was used. The data were imported into a GIS environment to create a map of the Na/Cl ratio using
IDW interpolator implemented in the ArcGIS Software.

3. Results and Discussion

3.1. Comparing the Performance of Classifiers

The results of the evaluation confusion metrics and a comparison of the precision, recall, and F1
scores is shown in Figure 5. The results showed the precision, recall, and F1 values for SVM classifier
were high (0.89-95), and much more than those produced using SAM classifier for all LULC classes
(0.33-0.71). All LULC classes produced using SVM showed similar values for precision, recall, and F1.
Water body class showed the highest value for precision, recall, and F1 using the SAM classifier (0.71).

3.2. Accuracy Assessment of LULC Maps

The spatial and temporal variation and pattern of the LULC in the NUAE during the period from
1990 to 2018 are shown in Figure 6. The accuracy assessment (Table 3) of the produced LULC maps
show that the 1990 map has an overall accuracy of 90.15 % (kappa coefficient of 0.811), while the 2000
map has an overall accuracy of 91.35% (kappa coefficient of 0.841).
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Figure 5. A comparison of the F1, precision, and recall scores for the Landsat image (15 August 2018)
using SVM and SAM classifiers.
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Figure 6. Spatiotemporal variation of built-up and vegetation areas of the NUAE during 1990, 2000,
2010, and 2018. Bare land such as sand dune, desert plain, Ophiolite rock was excluded.
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Table 3. Overall accuracy (%) of the LULC maps for the years 1990, 2000, 2010 and 2018.

1990 2000 2010 2018

Overall Accuracy (%)  90.15 91.35 93.01 95.14
Kappa Coefficient 0.811 0.841 0.88 0.918

The accuracy assessment also shows that the 2010 and 2018 maps have an overall accuracy of
93.01% (kappa coefficient of 0.88) and 95.14% (kappa coefficient of 0.918). It is observed that the
LULC maps of 2010 and 2018 are much better and more accurate maps than those in 1990 and 2000.
These differences appear to be due to the lifetime and sensitivity of the sensor detectors and enhanced
signal-to-noise and characteristics of the sensors [46—49].

3.3. LULC Classification

The LULC maps show that built-up areas such as residential and industrial and vegetated areas
such as garden/parks are concentrated on the eastern and western coastal areas (coastal aquifers) of the
NUAE, while the farmlands and agricultural activities are distributed in sand dune corridors (sand
dune aquifer), alluvial plains (alluvial aquifer), and mountainous wadis courses (Ophiolite aquifer).

The built-up and vegetated areas extend like two strips in shapes on the coastal areas. The first
strip extends like a triangle in shape, with its head in the city of Ras Al Khaimah and base in the city of
Dubai near the Dubai-Abu Dhabi border. The second strip extends like a narrow vertical strip along
the eastern coastal area (aquifer) from Dibba in the north to Khor Fakkan in the south of about 60 km
in length and about 2 km in width (Figure 6). However, some portion of built-up types and small
roads cannot be discriminated against and were misclassified due to the pixel size, moderate spatial
resolution, and intensive vegetation cover in a built-up area [47]. The calculated built-up area covered
869.76 km? (7.40%), while the vegetation area was 254.1 km? (2.15%) (Figure 6 and Table 4).

Table 4. LULC classes estimation (in km? and percentage) for the years 1990,2000,2010, and 2018 L

cl Subcl 1990 2000 2010 2018
ass ubelass m?) (%) km? (%) km?) (%) (km?) (%)
. Residential 198.8 1.69 387.1 3.30 494.72 4.21 623.83 5.31
Build-up

Industrial 28.46 0.24 52.70 0.44 168.92 1.44 245.94 2.09

Park/garden 6.93 0.05 7.19 0.06 67.18 0.57 125.26 1.06
Farmland 64.76 0.55 64.79 0.55 149.71 1.27 128.84 1.09

1 Total Area NUAE 11,727 km?.

Vegetation

From 1990 to 2018, two expansions were clearly observed in the onshore and offshore areas. In the
offshore area, the Palm Jumeirah, the Palm Jebel Ali, and the Continental islands were constructed in
Dubai covering an area of about 195 km?. In the onshore area, three expansions in the built-up area
were observed: the first one in the north-west to the south-east direction, while the second in the west
and the east directions (Figures 6 and 7).

3.4. Monitoring LULC Changes

The overall changes in built-up and vegetation areas over the year from 1990 to 2018 and population
density measures the number of persons per square kilometres is shown in Figure 7 and details of the
changes in LULC classes over 28 years are summarised in Table 5. From 1990 to 2000, the residential
area increased from 198.8 km? (1.69%) to 387.1 (3.30%) with positive change of 188.3 km? (1.60%), while
the industrial area increased from 28.46 km? (0.24%) to 52.70 km? (0.44%) with a positive change of
24.24 km? (0.20%). The gardens/parks slightly increased from 6.93 km2 (0.05%) to 7.19km? (0.06%) with
very slight positive change of 0.26 km? (0.002%), while farmlands increased from 64.76 km? (0.55%) to
64.79 km? (0.55%) without any change.
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Figure 7. The overall change in the areas of built-up (a), and vegetation (b) from 1990 to 2018, and
(c) population density of the NUAE. The red line separates the garden/ parks and farmlands. The
population density measures the numbers of persons per square meter. These maps are draped over

a DEM.
Table 5. Estimates of LULC changes (in km? and percentage) from 1990 to 2018.
al Subcl 1990-2000 2000-2010 2010-2018 1990-2018
s TPEE (km?) m?) (%) (md) (%) km) (%)
Build-u Residential 188.3 107.62 0.91 129.11 1.10 425.03 3.62
P Industrial 24.24 116.22 0.99 77.02 065 21748 185
Vegetation  Park/garden 0.26 59.99 0.51 58.08 049 11833 1.0

From 2000 to 2010, the residential area increased from 387.1 km? (3.30%) to 494.72 km? (4.21%)
with a positive change of 107.62 km? (0.91%), while the industrial area increased from 52.70 km?2 (0.44%)
to 168.92 km? (1.44%) with a positive change of 116.22 km? (0.99%). From 2010 to 2018, the residential
and the industrial areas continue to increase in area by 129.11 km? (1.10%) and 77.02 km? (0.65%),
respectively. The result also shows that the farmland area decreased from 149.71 km? (1.27%) to 128.84
km? (1.09%) with a negative change of —20.87 km? (0.17%) (Figure 7b). The reason for the farmland
decrease (during the period from 2010 to 2018) could be due to the decrease in groundwater level as a
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response to over-pumping, depletion of groundwater quality, and scarcity of rainfall (Figure 6 and
Table 3).

In terms of overall changes, the built-up area, especially in the emirates of Dubai and Sharjah, have
grown rapidly in sabkha and sand dune areas towards the southwest and east directions (Figure 7).
Spatial analysis of the LULC classes showed that all LULC subclasses (i.e., gardens/parks, farmlands,
residential, and industrial) increased in time and space (Figures 6—8 and Table 5).

900
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Figure 8. The graphical representation of the total area in km? of built-up and vegetated area changes
(a), and their differences from 1990 to 2018 (b).

Similarly, the total population of the UAE was observed to increase from 1.8 million in 1990 to 3
million in 2000 and 9.5 million in 2018 with population density distributed in the study area (Figures 7c
and 8a).

The reason for the increase built-up and population could be a rapid commercial leap of the
Emirate of Dubai, while the sharp increase in the vegetated areas may be due to an increase in the total
areas of gardens and golf clubs, which are distributed in the NUAE [47]. From the above results, it is
clear that rapid urbanization with a significant expansion in the built-up areas, population growth,
gardens, and parks has led to the excessive use of desalinated water and groundwater, and caused
considerable changes to groundwater conditions [47]. Additionally, these changes have increased the
probability of the occurrence of environmental issues in the next decades, which is consistent with
Elmahdy and Mohamed (2018) [47].

The aforementioned results are supported by Elmahdy and Mohamed (2015) (2018) [12,47], who
reported that built-up and vegetation areas increased rapidly during the period between 1990 and
2018. They also reported that agricultural cover decreased compared with parks and gardens between
2010 and 2015. This may be due to groundwater level depletion as a response to rainfall scarcity.

3.5. Monitoring Spatiotemporal Variations of Groundwater Level and Quality

Figure 9 shows the interpolated maps constructed from hydrological information collected from
80 groundwater wells distributed across the study area. The maps consist of different colour codes
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representing the spatial variation of the groundwater level in the study area. The maps show that the
groundwater level (depth to groundwater) has sharply dropped down over the 28 years and the depth
to groundwater level ranges from 25 m in the coastal areas in the east and the west to 100 m in the
alluvial area at the foot of mountainous areas, following the same direction of topographic elevation.
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Figure 9. Regional spatial distribution of the groundwater level depletion (in m) in the NUAE from
1990 to 2018.

From 1990 to 2018, the groundwater level depleted and some groundwater wells have gone dry in
response to over-pumping, especially in the sand dune and alluvial plains where intensive farming is
found [49]. As shown in Figure 8, the depth to groundwater level has been depleted in the eastern and
western alluvial plains and coastal areas that experienced intensive urbanisation, population growth,
and agricultural activity.

Figure 9 shows a hydrologic profile constructed from hydrological information collected from the
groundwater wells across the study area. The profile shows two steep slopes in the groundwater level.
The first slope is between alluvial plains and coastal areas, and the second, between mountainous and
alluvial plains in the east and west.

Along with the coastal areas, the groundwater level declined under sea level with about -25
m (m.s.l) suggesting seawater intrusion. Toward the alluvial plains, a dramatic depletion in the
groundwater level was observed. From 1990 to 2000, the groundwater level depleted from 150 to 135
m (m.s.l), and the areas experienced a serious groundwater depletion, increasing from 4.904 km? to
5.934 km? with a positive change of about 1030 km? (8.78 %) (Figure 9a,b and Figure 10). Between 2000
and 2010, the groundwater level dropped slightly from 135 m in 2000 to 128 (m.s.l) m in 2010 and the
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study area experienced a decline in the groundwater level from 5934 km? in 2000 to 6698 km? in 2010
(Figure 9b,c and Figure 10).

G roundwater Level (m)

Figure 10. E-W hydrological profile constructed from hydrological information collected from selected

groundwater wells showing the spatial and temporal variations of groundwater level for the years
1990, 2000, 2010, and 2018.

From 2010 to 2018, the groundwater level continued to be depleted by about —25 m (a.s.l) and the
affected area increased from 6698 km? in 2010 to 8258 km? (70.41%) in 2018 (Figure 9¢,d and Figure 10).
Elmahdy and Mohamed (2014) [48] showed that groundwater quality improves with depth under the
water level. As the depth to the water table increases, the groundwater quality increases. Figure 10 shows
a regional spatiotemporal variation in NO3 consecration in groundwater wells across the entire areas from
1990 to 2018. It is clearly noticed that there was a dramatic increase in NO3 concentration in groundwater
over space and time from the Oman mountains to the coastal areas in the east and the west. The area
contaminated by NOj increased from about 1673 km? in 1990 to 6178 km? in 2018 (Figure 11).
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Figure 11. Regional spatial and temporal variations of nitrate concentration in groundwater across the
study area for the years 1990, 2000, 2010, and 2018.
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Large spots of NO3 concentration were observed in the sand dunes and the alluvial aquifers. The
reason for that could be the leaching of salts that accumulated in micro-depressions, alluvial plains,
and the shallow aquifer during the last two decades before irrigation activity and LULC development,
as well as the intensive use of fertilisation in farmland areas such as Hamranih, Al Dhaid, and Al
Awier [50] (Figures 1, 6, 7 and 11). This indicates that nitrate contamination of groundwater in irrigated
agricultural land is the main concern in arid and semi-arid regions [12,18]. The sharp increase in NO3
concentration is caused by increasing solutes in groundwater.

Figure 12 shows a continuous increase in TDS concentration in groundwater across the study
area ranging from 2000 in mountainous areas to 70,000 mg/l in the coastal areas, which is double the
seawater salinity [50-54]. From 1990 to 2018, the total area influenced by TDS pollutants increased
from 2571 km? (21.91%) in 1990 to 3931 km? (33.25%) in 2018 (Figure 12).
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Figure 12. Regional spatiotemporal variations of TDS concentration in groundwater wells across the
study area for the years 1990, 2000, 2010, and 2018.

Towards the coastal areas, a gradual increase of TDS in groundwater was observed. The gradual
increase in TDS is attributed to intensive urbanisation, industrial and gardening activities, and the
use of fertilizer and retreated water for gardening. The gradual increase in TDS concentration is
also attributed to seawater intrusion and the carriage of dissolved and non-dissolved solutes by
groundwater flow along the palaeochannels (the wadi courses) during wet seasons [15,18].

Groundwater seeps out of the mountainous areas, dissolves carbonate rocks, mixes dissolved
salts with trace elements, and they accumulate along coastal areas.
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With distance away from the mountainous areas, TDS concentration in groundwater increases
and the groundwater becomes more saline (Figure 12). The dissolution of evaporates, leakage of
saline water, and circulation of flow irrigation of the groundwater aquifer are also sources of TDS
in groundwater [55-61]. However, population growth and density have a strong impact on TDS
concentration in groundwater in the NUAE.

3.6. Spatial Analysis and Correlation

3.6.1. Impacts of LULC Changes and Population Growth on Groundwater Level

The results show that the connections between urbanisation, population growth, and groundwater
level (which is part of water usage) are obvious when comparing the groundwater level depletion rate
against the irrigated agricultural and built-up area expansions and population growth (Figures 6, 7,
9 and 13). The population growth trends since 1990 were projected to 2050 to estimate water needs
during the next 30 years and the estimated daily water consumption varies from 540 to 570 L per
person and total water usage from 100 mem in 1990 to 3000 mcm in 2018 (Figure 13).
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Figure 13. Relationship between annual population growth and water usage (mcm).

This means that the UAE is consuming groundwater reserves more than 20-fold compared to
recharged water, and the UAE may run out of groundwater by 2030 [49]. This relationship was
observed between annual population growth and groundwater and water usage (mcm) since 1990
(Figure 13).

The link between population growth, urbanization, and groundwater level is clear when comparing
the changes in residential areas and water usage of households (Figures 7 and 14). The rapid changes
in the built-up areas and population growth are highly correlated with water usage, including
groundwater level (Figures 13 and 14).

A negative relationship between the groundwater level and the irrigated agricultural area is
observed (Figure 15). Irrigation of the agricultural sector was found to be the major water consumer,
with an average of about 60%, while the water used for industrial and household purposes is about
40% of the total water consumption [19,49,50]. The spatial relationship shows that the areas affected
by high NO3 concentration and groundwater depletion are, at the same time, the areas that have the
greatest need for water, including the irrigated agricultural areas (Figures 15 and 16).
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Figure 16. Relationship between NOj concentration in groundwater and calculated NDVI (r? = 0.84)
based on hydrological information collected from groundwater wells and NDVI calculated from
satellite images.
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The impact of vegetation, as part of LULC, on groundwater recharge and groundwater level can
be both negative and positive by facilitating the surface water infiltration and transpiration obtained
from the rooted soil profile [61-65]. While the irrigated agricultural areas and water demand in
the study area increase depletion in the groundwater level and the rate of evapotranspiration (2-3
m/year), the built-up areas decrease water infiltration and the recharge rate (<4%/year) due to their
impervious surfaces [12,13,66]. This finding coincides with those of Scanlon et al. (2005) [32], ElImahdy
and Mohamed (2016) [12], and Sherif and Singh (1999) [50], who reported that the rainfall scarcity,
increase in temperature anomaly and rapid urbanisation, as well as intensive human activities are
greatly impacting groundwater levels and quality decline. The sharp depletion of groundwater
levels by irrigated agricultural area expansion has led to groundwater depletion, soil and water
salinization, and seawater intrusion into the coastal areas, especially in the Emirates of Fujairah and
Ras Al Khaimah [27,49-51].

3.6.2. Impacts of LULC Changes and Population Growth on Groundwater Quality

A comparison between the maps of LULC changes and groundwater level and quality suggests
a strong spatial correlation between LULC changes and groundwater quality. The rapid changes in
LULC have led to the degradation of water quality in the entire region. Degradation of groundwater
quality and increased TDS concentration is attributed to the leaching and dissolution of salts that are
cemented in the soil, intensive use of fertilizers, and irrigation water return flow from agricultural
activity to the shallow aquifer [66,67]. The estimated return flow is on average 25% of the total amount
of groundwater application [48-50]. While the irrigation return flow increases the groundwater
recharge, it decreases the groundwater quality and increases NO3 concentration. The intensive use of
N fertilisers is well recognised by several studies all over the world that have documented a systematic
increase in nitrate concentration in the groundwater due to the long-term intensive application of N
fertilisers [54-57]. The NOsj is the highest concentration of a commonly recognised contaminant in the
groundwater [46,57].

The NDVI provides an excellent tool for measuring biomass and characterising landscape
dominated by grass (parks/gardens) and agricultural areas [51,52]. From LULC change and NOj3
concentration maps (Figures 5, 6, 14, 15 and 16a), it is obvious that the highest value of NO3 almost
correlated well with NDVI during 1990 and 2018 (r2 = 0.84) (Figure 16). This finding is consistent
with Scanlon et al. (2005), [32] who stated that groundwater and soil quality decrease with increased
agricultural and irrigation efficiency, and Chu et al. (2013) [60] who identified the relationship between
LULC changes and the water quality.

Figure 17 shows a strong spatial association between septic tanks, sewage treatment plants,
landfills, and TDS concentration in the groundwater. The use of unsystematic drainage and septic
tanks in the industrial and agricultural areas (e.g., labour camps) is also a significant factor increasing
the TDS concentration in the groundwater [18,52].

The wastewater increased from 1.3 Mn? in 1990 to 4.7 Mn? in 2018 as a result of increasing
population and wastewater discharge from septic tanks and landfills [54]. High TDS concentration in
the groundwater appears to be due to sulphates, bicarbonate, carbonate, chloride, sodium, and nitrate,
which may originate from natural sources (e.g., carbonate rocks), urban runoff, and agricultural and
industrial wastewater [1,18,27,55]. The highest TDS concentration in the groundwater is notably limited
to the coastal areas. In the coastal areas, there are rapid urbanisation, septic tanks, sewage treatment
plants, and landfills leaking effluent to the shallow aquifer and contaminating the groundwater [46].
The high TDS and CI” concentration in the groundwater are also positively associated with intensive
urbanisation. This phenomenon can be explained by the fact that groundwater level depletion due to
overpumping is mainly responsible for groundwater level depletion, and thus seawater intrusion as
indicated by the Na/Cl ratio map [49,50,61] (Figure 16d). The low value (<1) for the Na/Cl ratio in the
groundwater indicates seawater intrusion and regional brine and sabkha impacts [11,19,49,54,61,62].
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The presence of Na* indicates the dilution influence of water leaking from the sewage pipeline
and septic tanks towards groundwater aquifer [62-67]. From the point of view of this study, further
LULC and climate changes (e.g., rainfall scarcity, increase in air temperature, transpiration, and soil
erosion) are expected to influence groundwater levels and quality. Therefore, it is recommended that
more efforts are made to control the sources of wastewater discharges (such as septic tanks, landfill and
sewage treatment plants as well as cement factories) into the shallow aquifer. Furthermore, unnecessary
farms and unsystematic labour camps in residential and agricultural areas should be reconsidered.
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Figure 17. Built-up and vegetation areas draped over the maps of groundwater level (a), locations of
septic tanks, sewage treatment plants, landfill, and farmland are draped over the maps of NO3 and
TDS for the year 2018 (b,c), and map of the Na/Cl ratio showing the area affected by water intrusion in
2018 (d).

4. Conclusion and Recommendation

An integration free of charge monitoring approach based on combining remote sensing data and
hydrological information is proposed. This approach was applied to the NUAE to investigate the
impact of the LULC changes on groundwater level and quality. The proposed approach and Landsat
images with a spatial resolution of 30 m showed a powerful ability for mapping LULC over a regional
scale with an overall accuracy of 90.15%-95.14%. The result of confusion metrics, including precision,
recall, and F1, indicated that the SVM classifier performs better than SAM classifier.
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Almost all types of building and vegetated areas were observed to increase for the periods
1990-2000 and 2000-2010, whereas the period 2010-2018 was characterised by a slight reduction in
agricultural area. The results provide strong evidence of the rapid and significant LULC change and
population growth in the UAE during the period between 1990 and 2018. The increase in built-up
and vegetated areas was accompanied by an increase in population and water consumption and a
decrease in desert and coastal areas. These changes may have a considerable impact on the overall
water resources and ecosystem implementation. Our results indicate that the study area is experiencing
a sharp depletion in groundwater levels in the residential and agricultural areas. Thus, its increasingly
susceptible to seawater intrusion and groundwater contamination. The rate of groundwater level
depletion and diminished quality has increased continually since the 1990s and is expected to increase
year after year. Agricultural and human activities were shown to have a strong correlation with
the NOj3 concentration (r = 0.91) in the groundwater, while the groundwater level was negatively
correlated with NOjs.

High TDS concentration is caused by seawater intrusion. Seawater intrusion is caused by
overpumping, and overpumping may be caused by an increase in population/farmland increase to
fulfill obvious needs. The UAE including the study area is characterised by a scarcity of rainfall
and a high rate of evapotranspiration (2-3 m/year), which is very vulnerable to drought and earth
subsidence [68,69]. Thus, there is a need for legislation to manage the use of water, and the rapid change
in LULC should be controlled. A continued rapid change in LULC represents a serious threat to the
hydrological resources of the UAE. The results of the proposed approach provide various information
for land-use planners and water resources management. The use of LULC and hydrological maps
could elicit a new spatial relationship between rapid LULC changes and land subsidence. Further
investigation of the impact of groundwater level depletion (influenced by rapid LULC change) on
seawater intrusion and land subsidence is suggested. This investigation permits a better understanding
of the impact of the spatiotemporal variations in groundwater level and quality on the environmental
and geotechnical setting. Future work should incorporate Sentinel-1 to monitor land subsidence
(vertical movement) over the NUAE and support the correlation of results with the rapid changes in
LULC and groundwater level.

Author Contributions: Project administration, M.M.; Supervision, T.A.; Writing—original draft, S.E. All authors
have read and agreed to the published version of the manuscript.

Acknowledgments: The authors would like to thank the American University of Sharjah, UAE for supporting
this research. The research has received funding under financial grant SCRI 18 Grant EN0-284.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Parkinson, J.A. Irrigation in the Near East Region in Figures; Water Report; Food and Agriculture Organization:
Rome, Italy, 1997; Volume 9.

2. Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim.
Chang. 2016, 134, 371-385. [CrossRef]

3. Weber, H.; Sciubba, ].D. The Effect of Population Growth on the Environment: Evidence from European
Regions. Eur. J. Popul. 2018, 35, 379-402. [CrossRef] [PubMed]

4.  Patra, S.; Sahoo, S.; Mishra, P.; Mahapatra, S.C. Impacts of urbanization on land use/cover changes and its
probable implications on local climate and groundwater level. . Urban Manag. 2018, 7, 70-84. [CrossRef]

5. Giri, S.; Singh, A.K. Human health risk assessment via drinking water pathway due to metal contamination
in the groundwater of Subarnarekha River Basin, India. Environ. Monit. Assess. 2015, 187, 63. [CrossRef]
[PubMed]

6.  Immerzeel, W. Historical trends and future predictions of climate variability in the Brahmaputra basin. Int. J.
Clim. 2008, 28, 243-254. [CrossRef]

7.  Kleve, B.; Ala-Aho, P,; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kveerner, J.; Uvo, C.B. Climate change
impacts on groundwater and dependent ecosystems. |. Hydrol. 2014, 518, 250-266. [CrossRef]


http://dx.doi.org/10.1007/s10584-013-0853-x
http://dx.doi.org/10.1007/s10680-018-9486-0
http://www.ncbi.nlm.nih.gov/pubmed/31105504
http://dx.doi.org/10.1016/j.jum.2018.04.006
http://dx.doi.org/10.1007/s10661-015-4265-4
http://www.ncbi.nlm.nih.gov/pubmed/25647791
http://dx.doi.org/10.1002/joc.1528
http://dx.doi.org/10.1016/j.jhydrol.2013.06.037

Remote Sens. 2020, 12,1715 22 of 24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Mishra, N.; Kumar, S. Impact of Land Use Change on Groundwater Recharge in Haridwar District. In
Proceedings of the 20th International Conference on Hydraulics, Water Resources and River Engineering, IIT
Roorkee, India, 17-19 December 2015.

Lindquist, L.W.; Palmquist, K.A.; Jordan, S.E.; Lauenroth, WK. Impacts of climate change on groundwater
recharge in Wyoming big sagebrush ecosystems are contingent on elevation. West. N. Am. Nat. 2019, 79,
37-48. [CrossRef]

Elmahdy, S.I.; Mohamed, M.M. Influence of geological structures on groundwater accumulation and
groundwater salinity in Musandam Peninsula, UAE and Oman. Geocarto Int. 2013, 28, 453-472. [CrossRef]
Ministry of Environment and Water (MEW). UAE State of Environment Report; Ministry of Environment and
Water (MEW): Abu Dhabi, United Arab Emirates, 2015.

Elmahdy, S.I.; Mohamed, M.M. Land use/land cover change impact on groundwater quantity and quality: A
case study of Ajman Emirate, the United Arab Emirates, using remote sensing and GIS. Arab. |. Geosci. 2016,
9, 722. [CrossRef]

Samy, I.E.; Mohamed, M.M. Natural hazards susceptibility mapping in the Kuala Lumpur, Malaysia: An
assessment using remote sensing and geographic information system (GIS). Nat. Hazard. Risk 2012,2012,1-21.
Mohamed, M.M.; Elmahdy, S.I. Natural and anthropogenic factors affecting groundwater quality in the
eastern region of the United Arab Emirates. Arab. ]. Geosci. 2015, 8, 7409-7423. [CrossRef]

Sultan, M.; Sturchio, N.; Al Sefry, S.; Milewski, A.; Becker, R.; Nasr, I.; Sagintayev, Z. Geochemical, isotopic,
and remote sensing constraints on the origin and evolution of the Rub Al Khali aquifer system, Arabian
Peninsula. J. Hydrol. 2008, 356, 70-83. [CrossRef]

Elmahdy, S.I; Mohamed, M.M. Groundwater of Abu Dhabi Emirate: A regional assessment by means of
remote sensing and geographic information system. Arab. J. Geosci. 2015, 8, 11279-11292. [CrossRef]

Nas, B.; Berktay, A. Groundwater quality mapping in urban groundwater using GIS. Environ. Monit. Assess.
2008, 160, 215-227. [CrossRef] [PubMed]

Elmahdy, S.I; Mohamed, M.M. Remote sensing and geophysical survey applications for delineating
near-surface palaeochannels and shallow aquifer in the United Arab Emirates. Geocarto Int. 2015, 30, 723-736.
[CrossRef]

JICA (Japanese International Cooperation Agency). The Master Plan Study on the Groundwater Resources
Development for Agriculture in the Vicinity of Al Dhaid in the UAE, Final Report; JICA International Cooperation
Agency: Sharjah, UAE, 1996.

Bellot, J.; Bonet, A.; Sanchez, ].R.; Chirino, E. Likely effects of land use changes on the runoff and aquifer
recharge in a semiarid landscape using a hydrological model. Landsc. Urban Plan. 2001, 55, 41-53. [CrossRef]
Elmahdy, S.I.; Mohamed, M.M. Factors controlling the changes and spatial variability of Junipers phoenicea
in Jabal Al Akhdar, Libya, using remote sensing and GIS. Arab. ]. Geosci. 2016, 9, 478. [CrossRef]

Nobrega, R.L.B.; Guzha, A.C.; Lamparter, G.; Amorim, R.S.S.; Couto, E.G.; Hughes, H.J.; Jungkunst, H.F,;
Gerold, G. Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon
biomes. Sci. Total Environ. 2018, 635, 259-274. [CrossRef]

Mohamed, M.M.; Elmahdy, S. Land Use/Land Cover Changes Monitoring and Analysis of Dubai Emirate,
UAE Using Multi-Temporal Remote Sensing Data. EPiC Ser. Eng. 2018, 3, 1435-1443.

Elmahdy, S.I.; Mohamed, M.M. Automatic detection of near surface geological and hydrological features and
investigating their influence on groundwater accumulation and salinity in southwest Egypt using remote
sensing and GIS. Geocarto Int. 2014, 30, 132-144. [CrossRef]

Dias, L.C.P.; Macedo, M.N.; Costa, M.H.; Coe, M.T.; Neill, C. Effects of land cover change on evapotranspiration
and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. ]. Hydrol. Reg. Stud.
2015, 4, 108-122. [CrossRef]

Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Florke, M.; Hanasaki, N.; Stacke, T. Global water resources
affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251-3256.
[CrossRef] [PubMed]

Sherif, M.; Almulla, M.; Shetty, A.; Chowdhury, R.K. Analysis of rainfall, PMP and drought in the United
Arab Emirates. Int. |. Clim. 2013, 34, 1318-1328. [CrossRef]

Mohamed, M.M.; ElImahdy, S.I. Remote sensing and information value (IV) model for regional mapping
of fluvial channels and topographic wetness in the Saudi Arabia. GIScience Remote Sens. 2016, 53, 520-541.
[CrossRef]


http://dx.doi.org/10.3398/064.079.0104
http://dx.doi.org/10.1080/10106049.2012.724455
http://dx.doi.org/10.1007/s12517-016-2725-y
http://dx.doi.org/10.1007/s12517-014-1737-8
http://dx.doi.org/10.1016/j.jhydrol.2008.04.001
http://dx.doi.org/10.1007/s12517-015-1932-2
http://dx.doi.org/10.1007/s10661-008-0689-4
http://www.ncbi.nlm.nih.gov/pubmed/19096909
http://dx.doi.org/10.1080/10106049.2014.997306
http://dx.doi.org/10.1016/S0169-2046(01)00118-9
http://dx.doi.org/10.1007/s12517-016-2500-0
http://dx.doi.org/10.1016/j.scitotenv.2018.03.356
http://dx.doi.org/10.1080/10106049.2014.883433
http://dx.doi.org/10.1016/j.ejrh.2015.05.010
http://dx.doi.org/10.1073/pnas.1222475110
http://www.ncbi.nlm.nih.gov/pubmed/24344275
http://dx.doi.org/10.1002/joc.3768
http://dx.doi.org/10.1023/A:1008127027743

Remote Sens. 2020, 12,1715 23 of 24

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Zampella, R.A.; Procopio, N.A.; Lathrop, R.G.; Dow, C.L. Relationship of Land-use/Land-cover Patterns and
Surface-water Quality in the Mullica River Basin. |. Am. Water Resour. Assoc. 2007, 43, 594-604. [CrossRef]
Pan, Y.; Gong, H.; ZHou, D.; Li, X.; Nakagoshi, N. Impact of land use change on groundwater recharge in
Guishui River Basin, China. Chin. Geogr. Sci. 2011, 21, 734-743. [CrossRef]

Kruse, FA.; Lefkoff, A.B.; Boardman, ].W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, PJ.; Goetz, A.FEH. The
spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer
data. In Proceedings of the AIP Conference, Pasadena, CA, USA, 1 August 1993; American Institute of
Physics: Pasadena, CA, USA, 1993; Volume 283, pp. 192-201.

Ha, N.T.; Manley-Harris, M.; Pham, T.D.; Hawes, I. A Comparative Assessment of Ensemble-Based Machine
Learning and Maximum Likelihood Methods for Mapping Seagrass Using Sentinel-2 Imagery in Tauranga
Harbor, New Zealand. Remote Sens. 2020, 12, 355. [CrossRef]

Scanlon, B.R.; Reedy, R.C.; Stonestrom, D.A.; Prudic, D.E.; Dennehy, K.E. Impact of land use and land cover
change on groundwater recharge and quality in the southwestern US. Glob. Chang. Boil. 2005, 11, 1577-1593.
[CrossRef]

Le Maitre, D.C.; Scott, D.E; Colvin, C. A review of information on interactions between vegetation and
groundwater. Water S. Afr. 1999, 25, 137-152.

Minnig, M.; Moeck, C.; Radny, D.; Schirmer, M. Impact of urbanization on groundwater recharge rates in
Diibendorf, Switzerland. J. Hydrol. 2018, 563, 1135-1146. [CrossRef]

Mittal, R.; Mittal, C.G. Impact of population explosion on environment. WeSchool Knowl. Build. Nat. |. 2013,
1,1-5.

Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185-201.
[CrossRef]

Mantero, P.; Moser, G.; Serpico, S.B. Partially supervised classification of remote sensing images through
SVM-based probability density estimation. IEEE Trans. Geosci. Remote Sens. 2005, 43, 559-570. [CrossRef]
Support vector machines in remote sensing: A review. ISPRS |. Photogramm. Remote. Sens. 2011, 66, 247-259.
[CrossRef]

Xie, L.; Li, G.; Xiao, M.; Peng, L.; Chen, Q. Hyperspectral image classification using discrete space model and
support vector machines. IEEE Geosci. Remote Sens. Lett. 2017, 14, 374-378. [CrossRef]

Lu, D.; Weng, Q.; Moran, E.; Li, G.; Hetrick, S. Remote Sensing Image Classification; CRC Press, Taylor and
Francis: Boca Raton, FL, USA, 2011; pp. 219-240.

VanNiel, T.G.; McVicar, T.R.; Datt, B. On the relationship between training sample size and data dimensionality:
Monte Carlo analysis of broadband multi-temporal classification. Remote Sens. Environ. 2005, 98, 468—-480.
[CrossRef]

Congalton, R.G. Putting the map back in map accuracy assessment. Remote Sens. GIS Accuracy Assess. 2004,
5,1-11.

Jensen, J.R.; Cowen, D.; Huang, X.; Graves, D.; He, K.; Mackey, H.E. Remote sensing image browse and
archival systems. Geocarto Int. 1996, 11, 33—42. [CrossRef]

Setianto, A.; Triandini, T. Comparison of kriging and inverse distance weighted (IDW) interpolation methods
in lineament extraction and analysis. J. Appl. Geol. 2013, 5, 21-29. [CrossRef]

Elmahdy, S.I.; Mohamed, M.M. Groundwater potential modelling using remote sensing and GIS: A case
study of the Al Dhaid area, United Arab Emirates. Geocarto Int. 2013, 29, 433-450. [CrossRef]

Elmahdy, S.I.; Mohamed, M.M. Monitoring and analysing the Emirate of Dubai’s land use/land cover changes:
An integrated, low-cost remote sensing approach. Int. J. Digit. Earth 2017, 11, 1132-1150. [CrossRef]
Elmahdy, S.I.; Mohamed, M.M. Relationship between geological structures and groundwater flow and
groundwater salinity in Al Jaaw Plain, United Arab Emirates; mapping and analysis by means of remote
sensing and GIS. Arab. . Geosci. 2013, 7, 1249-1259. [CrossRef]

Brook, M.; Dawoud, M. A. Coastal Water Resources Management in the United Arab Emirates; Integrated Coastal
Zone Management in the United Arab Emirates: Abu Dhabi, United Arab Emirates (UAE), 2005; pp. 1-12.
Sherif, M.M.; Singh, V.P. Effect of climate change on sea water intrusion in coastal aquifers. Hydrol. Process.
1999, 13, 1277-1287. [CrossRef]

Mahmood, R;; Pielke, R.A., Sr.; Hubbard, K.G.; Niyogi, D.; Bonan, G.; Lawrence, P.; Qian, B. Impacts of land
use/land cover change on climate and future research priorities. Bull. Am. Meteorol. Soc. 2010, 91, 37—46.
[CrossRef]


http://dx.doi.org/10.1111/j.1752-1688.2007.00045.x
http://dx.doi.org/10.1007/s11769-011-0508-7
http://dx.doi.org/10.3390/rs12030355
http://dx.doi.org/10.1111/j.1365-2486.2005.01026.x
http://dx.doi.org/10.1016/j.jhydrol.2017.09.058
http://dx.doi.org/10.1016/S0034-4257(01)00295-4
http://dx.doi.org/10.1109/TGRS.2004.842022
http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
http://dx.doi.org/10.1109/LGRS.2016.2643686
http://dx.doi.org/10.1016/j.rse.2005.08.011
http://dx.doi.org/10.1080/10106049609354532
http://dx.doi.org/10.22146/jag.7204
http://dx.doi.org/10.1080/10106049.2013.784366
http://dx.doi.org/10.1080/17538947.2017.1379563
http://dx.doi.org/10.1007/s12517-013-0895-4
http://dx.doi.org/10.1002/(SICI)1099-1085(19990615)13:8&lt;1277::AID-HYP765&gt;3.0.CO;2-W
http://dx.doi.org/10.1175/2009BAMS2769.1

Remote Sens. 2020, 12,1715 24 of 24

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Zhou, Y.; Wenninger, J.; Yang, Z.; Yin, L.; Huang, J.; Hou, L; Wang, X.; Zhang, D.; Uhlenbrook, S.
Groundwater-surface water interactions, vegetation dependencies and implications for water resources
management in the semi-arid Hailiutu River catchment, China—A synthesis. Hydrol. Earth Syst. Sci. 2013,
17,2435-2447. [CrossRef]

Ojeda Olivares, E.A.; Sandoval Torres, S.; Belmonte Jiménez, S.I.; Campos Enriquez, J.O.; Zignol, F;
Reygadas, Y.; Tiefenbacher, J.P. Climate Change, Land Use/Land Cover Change, and Population Growth
as Drivers of Groundwater Depletion in the Central Valleys, Oaxaca, Mexico. Remote Sens. 2019, 11, 1290.
[CrossRef]

Wakode, H.B.; Baier, K.; Jha, R.; Azzam, R. Impact of urbanization on groundwater recharge and urban water
balance for the city of Hyderabad, India. Int. Soil Water Conserv. Res. 2018, 6, 51-62. [CrossRef]

Sharp, J.M. The impacts of urbanization on groundwater systems and recharge. Aqua Mundi 2010, 1.
[CrossRef]

Mas-Pla, J.; Mencio, A. Groundwater nitrate pollution and climate change: Learnings from a water
balance-based analysis of several aquifers in a western Mediterranean region (Catalonia). Environ. Sci. Pollut.
Res. 2018, 26, 2184-2202. [CrossRef]

Qin, R,; Wu, Y,; Xu, Z,; Xie, D.; Zhang, C. Assessing the impact of natural and anthropogenic activities on
groundwater quality in coastal alluvial aquifers of the lower Liaohe River Plain, NE China. Appl. Geochem.
2013, 31, 142-158. [CrossRef]

Appelo, C.AJ.,; Postma, D. Geochemistry, Groundwater and Pollution; Balkema: Rotterdam, The Netherlands,
1999; p. 636.

Zhu, B,; Yang, X; Rioual, P; Qin, X; Liu, Z; Xiong, H.; Yu, J. hydrogeochemistry of three watersheds (the
Erlgis, Zhungarer and Yili) in northern Xinjiang, NW China. Appl. Geochem. 2011, 26, 1535-1548. [CrossRef]
Chu, HJ; Liu, C.Y,; Wang, C K. Identifying the relationships between water quality and land cover changes in
the tseng-wen reservoir watershed of Taiwan. Int. ]. Environ. Res. Public Health 2013, 10, 478-489. [CrossRef]
[PubMed]

Al-Hogaraty, E.A.; Rizk, Z.S.; Garamoon, H K. Groundwater pollution of the quaternary aquifer in northern
United Arab Emirates. Water Air Soil Pollut. 2008, 190, 323-341. [CrossRef]

McMahon, P.B. Water Movement through Thick Unsaturated Zones Overlying the Central High Plains Aquifer,
Southwestern Kansas, 2000-2001; US Department of the Interior, US Geological Survey: Lawrence, KS, USA,
2003; Volume 3.

Al-Rashed, M.; Sherif, M.M. Water Resources in the GCC Countries: An Overview. Water Resour. Manag.
2000, 14, 59-75. [CrossRef]

Daniéls, E.E. Land Surface Impacts on Precipitation in the Netherlands. Ph.D. Thesis, Wageningen University,
Wageningen, The Netherlands, 2016.

Gebru, B.M.; Lee, WK.; Khamzina, A.; Lee, S.G.; Negash, E. Hydrological Response of Dry Afromontane
Forest to Changes in Land Use and Land Cover in Northern Ethiopia. Remote. Sens. 2019, 11, 1905. [CrossRef]
Shahin, S.; Salem, M.A. The Challenges of Water Scarcity and the Future of Food Security in the United Arab
Emirates (UAE). Nat. Resour. Conserv. 2015, 3, 1-6. [CrossRef]

Saou, A.; Maza, M; Seidel, J.L. Hydrogeochemical Processes Associated with Double Salinization of Water in
an Algerian Aquifer, Carbonated and Evaporitic. Pol. |. Environ. Stud. 2012, 21, 1013-1024.

Cantone, A ; Riccardi, P; Baker, H.A.; Pasquali, P.; Closson, D.; Karaki, N.A. Monitoring Small land Subsidence
Phenomena in the Al-Ain Region by Satellite SAR Interferometric Stacking. In Proceedings of the Second
EAGE International Conference on Engineering Geophysics, Al-Ain, UAE, 24-27 Novmber 2013.

Liosis, N.; Marpu, P.R.; Pavlopoulos, K.; Ouarda, T.B. Ground subsidence monitoring with SAR interferometry
techniques in the rural area of Al Wagan, UAE. Remote. Sens. Environ. 2018, 216, 276-288. [CrossRef]

® © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.5194/hess-17-2435-2013
http://dx.doi.org/10.3390/rs11111290
http://dx.doi.org/10.1016/j.iswcr.2017.10.003
http://dx.doi.org/10.4409/Am-004-10-0008
http://dx.doi.org/10.1007/s11356-018-1859-8
http://dx.doi.org/10.1016/j.apgeochem.2013.01.001
http://dx.doi.org/10.1016/j.apgeochem.2011.06.018
http://dx.doi.org/10.3390/ijerph10020478
http://www.ncbi.nlm.nih.gov/pubmed/23358232
http://dx.doi.org/10.1007/s11270-007-9584-9
http://dx.doi.org/10.1023/A:1008127027743
http://dx.doi.org/10.3390/rs11161905
http://dx.doi.org/10.13189/nrc.2015.030101
http://dx.doi.org/10.1016/j.rse.2018.07.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Datasets and Methods 
	Study Area Description 
	Datasets and Pre-processing 
	Data Classification and Processing 
	Collecting Training Datasets 
	Selection of Classifiers and Optimal Parameterisation 
	Evaluation of the Performance of the Classifiers 
	Accuracy Assessment of LULC Maps 
	Monitoring LULC Changes 
	Monitoring Spatiotemporal Variations of Groundwater Level and Quality 
	Spatial Analysis and Correlation 


	Results and Discussion 
	Comparing the Performance of Classifiers 
	Accuracy Assessment of LULC Maps 
	LULC Classification 
	Monitoring LULC Changes 
	Monitoring Spatiotemporal Variations of Groundwater Level and Quality 
	Spatial Analysis and Correlation 
	Impacts of LULC Changes and Population Growth on Groundwater Level 
	Impacts of LULC Changes and Population Growth on Groundwater Quality 


	Conclusion and Recommendation 
	References

