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Abstract: 3D convolutional neural networks (CNNs) have been demonstrated to be a powerful tool
in hyperspectral images (HSIs) classification. However, using the conventional 3D CNNs to extract
the spectral–spatial feature for HSIs results in too many parameters as HSIs have plenty of spatial
redundancy. To address this issue, in this paper, we first design multiscale convolution to extract the
contextual feature of different scales for HSIs and then propose to employ the octave 3D CNN which
factorizes the mixed feature maps by their frequency to replace the normal 3D CNN in order to reduce
the spatial redundancy and enlarge the receptive field. To further explore the discriminative features,
a channel attention module and a spatial attention module are adopted to optimize the feature maps
and improve the classification performance. The experiments on four hyperspectral image data sets
demonstrate that the proposed method outperforms other state-of-the-art deep learning methods.

Keywords: hypersctral image classification; octave convolution; feature extraction; channel and
spatial attention

1. Introduction

Hyperspectral images (HSIs) are obtained by a series of hyperspectral imaging sensors and
composed of hundreds of successive spectral bands. Because the wavelength interval between every
two neighboring bands is quite small (usually 10 nm), HSIs generally have a very high spectral
resolution [1]. Analysis of HSIs has been widely used in a large variety of fields, including materials
analysis, precision agriculture, environmental monitoring and surveillance [2–4]. Among the
hyperspectral community, the HSIs classification is most vibrant filed of research which is to assign
a unique class to each pixel in the image [5]. However, due to the excessively redundant spectral
band information and limited training samples, it also poses a great challenge to the classification of
HSIs [6].

Early attempts for HSIs classification including the radial basis functions (RBFs) and K-nearest
neighbor (kNN) methods are all pixel-wise and focus on the spectral signatures of hyperspectral
data. But besides the spectral aspect, the spatial dependency which indicates the adjacent pixels likely
belong to the same category is another useful information in the hyperspectral data. According to
this, in aim to characterize the relationship between the samples, several spatial methods such as
sparse representation and graph-based methods were proposed [7–10]. However, they used the
class label to construct the manifold structure by both labeled and unlabeled data for classification
which didn’t incorporate the spectral feature. Consequently, a promising way is to combine the
spectral and spatial information for classification that can enhance the performance of classification
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due to taking full advantage of HSIs contained [11–13]. In [13], to cleanse the label noise the authors
proposed a random label propagation algorithm (RLPA) which is guided by the spectral−spatial
constraint-based knowledge. The RLPA algorithm constitutes two steps: spectral–spatial probability
transform matrix (SSPTM) generation and random label propagation. However, the feature extraction
of all the above-mentioned methods is hand-crafted which is not enough for the large intra-class
difference or subtle inter-class difference.

Recently, deep learning (DL) has witnessed a great surge of interest that minds the deep feature
and extracts the high-level feature of big data automatically in computer vision and big data field.
Among the various DL models, the deep convolutional neural network (CNN) has become an efficient
and popular tool for image recognition [14–18]. For the HSIs classification task, a series of CNN
methods have been exploited [19–22]. In [19], a CNN architecture containing five layers was developed
to classify hyperspectral images directly in spectral domain. In [20], a CNN network with a multi-layer
perceptron was proposed to encode the pixels’ spectral and spatial information to accomplish the
classification task. In [21], Li et al. proposed a pixel-pair method to increase the training samples and
used deep CNN to learn the pixel-pair features which are expected to have more discriminative power.
However, these methods require a large amount of data as a training set and the over-fitting occurs
easily that greatly decreases the classification accuracy when the labeled hyperspectral data is limited.
In order to reduce the probability to over-fitting, a CNN based on diverse regions was proposed [22].
In this paper, on the one hand, the authors proposed a data enhancement method to obtain more
training data. They cropped and filled the pixel patch according to diverse regions, and then flipped
the original samples and added tiny Gaussian noise to the obtained training samples. On the other
hand, inspired by the [18], they designed the network structure as a residual network, which has been
proved to be effective to prevent the network from over-fitting.

To directly extract the spectral–spatial feature, some methods based on 3D CNN were proposed.
Chen et al. [23] proposed a novel DL framework of 3D CNN to extract the spectral–spatial features
effectively. In [24], Li et al. proposed a lightweight network based on 3D CNN, which required fewer
parameters and performed better compared with 2D CNN method. Inspired by this, He et al. [25]
provided a method based on 3D CNN with multi-scale convolution kernel, which could extract
multiple sets of features by using convolution kernel with different sizes to enlarge receptive field.
In [26], the authors not only effectively integrated spectral–spatial information through the use of 3D
CNN but also employed residual network structure to alleviate the declining-accuracy phenomenon
and facilitated the backpropagation of gradients. Inspired by [26], Wang et al. proposed a fast dense
spectral–spatial convolution network for HSIs classification [27]. They used 3D convolution kernel of
different sizes to extract more recognizable features and utilized dense network structure to prevent
the proposed framework from over-fitting, which has been reported to be more effective than residual
network structure [28]. In [29], a novel HSIs classification method was proposed, which combined
the adaptive dimensionality reduction and semi-supervised 3D CNN. It can overcome the problem of
high dimensionality curse of HSIs and limited training samples.

With the sustaining development of DL technology, some auxiliary technologies have been
emerged. It is remarkable that attention mechanism as a representative has played an important role
in many fields and interested numerous researchers [30–35]. The attention mechanism is based on the
fact that humans focus attention selectively on parts of the visual space to acquire information when
and where it is needed to. This is of significant interest for analyzing remotely sensed hyperspectral
images. In [36], the author incorporated attention mechanisms to a ResNet to better characterize the
spectral–spatial information contained in the data. In [37], a novel DL framework based on dense
connectivity with spectral-wise attention for HSI classification was proposed. In this framework the
dense connectivity is employed to prevent the network from over-fitting and a new spectral-wise
attention is used to refine the features maps.

Although the DL methods for HSIs classification have achieved excellent results, which are better
than the traditional approaches, there are still some problems.
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• There is a lot of spatial redundancy in the hyperspectral data processing which takes up much
memory space. Especially when 3D CNN is adopted to learn the feature, it will include numerous
parameters which is disadvantage to the classification performance, compared to the 2D CNN
and 1D CNN.

• Although the methods of combining DL method and attention mechanism have achieved
successes for HSIs classification, to my best knowledge, there is not much research on the
spatial attention for HSIs classification which does play an important role for HSIs classification.

In this paper, we propose a novel multiscale octave 3D CNN with channel and spatial attention
(CSA-MSO3DCNN) for hyperspectral image classification. In our method, as 3D CNN can mine
information hidden in the hyperspectral data more effectively whereas 1D CNN and 2D CNN can
not, 3D CNN serves as the foundation of the entire architecture to directly extract the spectral–spatial
features. In order to extract the spectral–spatial features of different scales, we design 3D CNN
convolution kernels of different sizes. Due to 3D CNN has a lot of parameters and redundancy,
we propose to use octave 3D CNN to replace the standard 3D CNN to decompose the features into
high frequency and low frequency and reduce the spatial redundancy. Before feeding into the full
connection layer, the channel and spatial attention mechanism modules are added to refine the feature
maps. Through a series of optimization design, our method can extract higher and more recognizable
features compared with the standard methods based on deep learning, like 2D CNN, 3D CNN, etc.
Finally, the contributions of this paper can be summarized as follows:

1. The proposed network takes full advantages of octave 3D CNN with different kernels to capture
diverse features and reduce the spatial redundancy simultaneously. Given the same input
and structure, our proposed method works more effectively than the method based on normal
3D CNN.

2. A new attention mechanism with two attention modules is employed to refine the feature maps,
which selects the discriminative features from the spectral and spatial views. This boosts the
performance of our proposed network which further captures the similarity of adjacent pixels
and the correlation of various spectral bands.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce the CNN
and the attention mechanism in DL. The detailed design of CSA-MSO3DCNN method is given in
Section 3. In Section 4, we present and discuss the experimental results, including ablation experiments.
Finally, Section 5 summarizes this paper.

2. Related Works

2.1. Convolutional Neural Network

Convolutional neural network (CNN) is a hierarchical structure composed of a deep stack of
convolutional layers. It is because of this structure that CNN has a good capability of extracting
the features of the visual data such as images and videos, which is very helpful for the subsequent
operations. The mechanism of CNN is that it is based on the receptive fields and follows the behavior
of neurons in the primary visual cortex of a biological brain [36]. In order to promote the efficiency
of CNN, some improved convolutions, such as group convolution [14], separable convolution [38],
depthwise convolution [39], and dilated convolution [40], have been proposed, which are mainly
distinguished by the different ways of convolution.

At present, convolutional neural network has three different forms of convolution kernels that
are 1D (s1 × n), 2D (s1 × s2 × n) and 3D (s1 × s2 × s3 × n). They have the same principle, specifically,
they have the same element calculation and all adopt the back propagation algorithm to modify the
parameters and train the network. For HSIs classification, the difference between the three forms is
that they characterize different forms of feature, specifically, 1D CNN explores the spectral feature,
2D CNN explores the spatial feature, 3D CNN explores the spatial and spectral feature.



Remote Sens. 2020, 12, 188 4 of 24

Due to the HSIs are originally 3-D and high dimensional, 3D CNN is more suitable for feature
extraction and also used in our proposed network. To build a network for HSIs classification, only 3D
convolution kernel is not enough. The activation function and some regularization measures are also
needed. Therefore, for the input or intermediate feature map, the processing through a layer of the
network can be described by the following formula,

xl = H(F(xl−1) + b) (1)

where xl−1, xl and b are the input, output and corresponding bias respectively, F(.) is the convolution
operation and H(.) is a subsequent processing function which can be batch normalization (BN) and
rectified linear units (RELU). By stacking more and more layers, and adding the pooling layer and fully
connected layer, a trainable network is established. In our proposed network, the same construction
is employed.

2.2. Attention Mechanisms

As early as around the year 2000, studies have shown that attention mechanisms play an
important role in human visual perception [41,42]. Subsequent to these, attention mechanisms have
penetrated into various tasks in the field of information recognition, such as machine translation [43],
object recognition [30], pose estimation [44], saliency detection [45]. In [43], the author proposed an
architecture based on convolutional neural networks which used gated linear units to ease gradient
propagation and equipped each decoder layer with a separate attention module. In [30], a recurrent
neural network (RNN) model which is capable of extracting information from an image or video by
adaptively selecting a sequence of regions or locations and only processing the selected regions at high
resolution was proposed.

In recent years, several attention mechanism networks of great significance have been developed.
Hu et al. [35] proposed a squeeze-and-excitation network based on channel attention. It employed
squeeze and excitation operations, which are composed of pooling and fully connecting, to assign
different weights to different channels of the feature map to achieve the purpose of re-calibrating the
feature map. Furthermore, it is a plug-and-play lightweight model that can be easily combined with
classic DL models such as residual models and can be conveniently applied to various applications.
To investigate attention from more aspects, in [46], Park et al. proposed an effective attention module
called bottleneck attention module (BAM) from channel and spatial pathways separately which can be
embedded in any feed-forward convolutional neural networks. Similar to this, to boost representation
power of CNNs, Woo et al. [47] proposed an attention module along channel and spatial dimensions
separately and plug it at every convolutional block, whereas Park et al. placed BAM module at every
bottleneck of the network.

Inspired by [47], we propose a novel deep learning method combined with channel and spatial
attention, which not only decreases the noise along the spectral bands but also explores the correlation
between them. In the next section, our proposed method will be discussed in detail.

3. CSA-MSO3DCNN for Hyperspectral Images Classification

In this section, we first introduce the octave CNN and attention module, and then present the
proposed network architecture, which is a novel multiscale octave 3D CNN with channel and spatial
attention for HSIs classification (CSA-MSO3DCNN).

3.1. Octave Convolution

The main feature of the CNN is that the parameters of the network and the demand for memory
will increase dramatically as the number of convolution layers increases, especially for the 3D CNN
used in the field of HSIs classification. Recent proposed octave convolution [48] decomposes the
feature map produced by CNN into high and low spatial frequency, which are updated separately and
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exchanged with each other and finally merged together, to reduce the spatial redundancy and enlarge
the receptive field.

Based on this, in this paper we propose to leverage three layers octave 3D convolution.
Let Xj = {x1, x2, . . . , xi, . . . , xnchannels |xi ∈ Rnbands×l1×l2} denote the nchannels feature maps in the jth layer,
where l1 × l2 denotes the spatial dimensions and nbands is the number of spectral bands. As shown in
Figure 1, the first layer of the octave 3D convolution is to decompose the input feature maps into high
frequency group XH

1 and low frequency group XL
1 along the channel dimension by a super-parameter

α, which is the ratio of the low frequency group to the total. The channels of XH
1 and XL

1 are calculated
as (1− α)× c and α× c respectively. Given the input feature maps X1, the output of the first layer of
3D octave convolution is:

XH
1 = F(X1) (2)

XL
1 = F(Avg_pool(X1)) (3)

where F(.) is normal 3D convolution operation and Avg_pool is average pooling operation. In the
middle layer, the high frequency group and low frequency group perform intra-feature update and
inter-feature communication. The output of the middle layer is computed specifically as:

XH
2 = F(XH

1 ) + Up(F(XL
1 )) (4)

XL
2 = F(XL

1 ) + F(Avg_pool(XH
1 )) (5)

where Up(.) is up-sampling operation. Aiming at HSIs classification, in the last layer, the high and
low frequency group are processed to obtain the same shape and then add up to decrease the feature
redundancy, as illustrated in Figure 1. The output of the last layer Y is:

Y = F(Avg_pool(XH
2 )) + F(XL

2 ) (6)
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Figure 1. Three layers octave 3D convolution.

Therefore, in the octave 3D convolution, the group of spatial resolution of low frequency is reduced
by sharing information between neighboring regions. It is believed that the octave 3D convolution has
two distinct advantages, reducing spatial redundancy and enlarging the receptive field. Accordingly,
we propose to use the octave 3D convolution to replace the traditional 3D convolution to improve the
HSIs classification.

3.2. Channel and Spatial Attention

To boost the representation ability of our network, with consideration of the abundant spectral
and spatial information that HSIs have, we propose to employ the channel attention mechanism which
attempts to assign different significance to the channels of feature maps and the spatial attention
mechanism which is in aim to find which portions are more important in a feature map. We adopt the
convolutional block attention module proposed by Woo et al. that is general and end-to-end trainable
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along with the basic CNNs [47]. The structures of the channel and spatial attention module are shown
in Figure 2.
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Figure 2. The detailed structure of channel and spatial attention module. (Top) Channel-wise attention
module. (Bottom) Spatial-wise attention module.

Channel-wise attention is an attention mechanism which emphasizes reducing channel
redundancy and building a channel attention map through capturing the inter-channel relationship
of features [47]. As exhibited in the top of Figure 2, given an intermediate layer of feature maps X =

{x1, x2, . . . , xi, . . . , xnchannels |xi ∈ Rnbands×l1×l2}, to squeeze and aggregate the feature average-pooling
and max-pooling are performed simultaneously to generate two different feature maps: max-pooled
features Xmax and average-pooled features Xavg. Then, Xmax is fed into a shared network which is
composed of two dense layers to train. With the learned weight the Xavg is also fed into the shared
network. As a result, the channel attention MC ∈ Rnchannels×1×1×1 is obtained. In addition, we adopt a
reduction ratio r to reduce parameters [35] and the hidden activation size is set to nchannels/r× 1× 1× 1.
In summary, the channel attention is calculated as:

MC = σ(FC(Max_pool(X)) + FC(Avg_pool(X))) (7)

where σ denotes the sigmoid function and Max_pool is max pooling operation.
In order to further explore where to focus on in a channel of feature map, the spatial-wise attention

mechanism is adopted which can be seen as a supplement to the channel-wise attention. As illustrated
in the bottom of the Figure 2, the spatial attention module is connected behind the channel-wise
attention module. The input of the spatial attention module XC is the channel refined feature maps,

XC = X⊗MC (8)

where ⊗ denotes element-wise multiplication. For taking full advantage of channel information,
global average-pooling and max-pooling operations are both applied to generate 3D feature maps
XCmax and XCavg. Then these are concatenated and convolved by a standard convolution layer to
generate the 3D spatial attention map. The spatial-wise attention is computed as:

MS = σ(F3×3×3([Max_pool(XC); Avg_pool(XC)])) (9)

where F3×3×3 denotes a normal 3D convolution with kernel size of 3× 3× 3. At this point, the output
feature map Y of the two attention module is

Y = XC ⊗MS (10)
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The obtained Y is the optimized feature map of X through the two sequential attention modules
and can improve the classification performance.

3.3. Proposed Network Architecture

In this section, we design our CSA-MSO3DCNN architecture as follows. First, for the
high-dimensional HSIs data, we apply principal component analysis (PCA) to reduce the dimension
before the formal network training, which can decrease the parameters and keep the essential
information as illustrated in Figure 3. Then, a pixel and surrounding pixels are selected from the
processed HSIs data to form a 3D patch which has the shape of s× s× d, where s× s is the spatial
dimension and d is the spectral bands. This is to explore the relationship between the neighbouring
pixels, which has a large probability of belonging to the same category.
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Figure 3. The overall flowchart of the proposed method. (Top) Using principal component analysis
(PCA) and octave 3D CNN to extract features. (Bottom) Utilizing the channel and spatial attention
module to refine features and finally to classify.

Secondly, the 3D patch is fed to three network branches, each of which is composed of three 3D
octave convolution layers to extract multi-scale features. In the three network branches, each octave
3D convolution layer is followed by batch normalization-RELU(BN-RELU). We denote the outputs
of the three branches as X1, X2, X3. It is worth noting that the three branches differ in the size of the
octave 3D convolution kernel, where the convolution kernel sizes of the three branch are 1× 1× 1,
3× 3× 3 and 5× 5× 5 respectively. In each branch, each octave 3D convolution layer is designed with
a different number of convolution kernels, as shown in Figure 3.

Thirdly, for the convenience of concatenation, we keep the size of the original data and the feature
map consistent. Therefore, we concatenate the outputs of the three branches to get X:

X = G(X1, X2, X3) (11)

where G(.) is concatenation operation. Then a normal 3D convolutional layer is used to abstract the
feature map.

Fourthly, we employ an attention module with channel-wise attention and spatial-wise attention
(see in Section 3.2) to refine the obtained feature maps, so that the feature maps can become more
discriminative. Finally, two fully connected layers (FC) and a softmax classifier are used as a classifier.
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Reasonably, we also use ‘dropout’ technology in the fully connected layer, which can effectively
suppress over-fitting without adding a large number of parameters. In addition, the categorical cross
entropy is adopted as a loss function:

E = −∑
k

tk log yk (12)

where tk is the correct label and the yk is the output of the network. In order to continuously reduce
the loss and update network parameters, the Adam method is adopted.

In summary, a novel multi-scale octave 3D CNN based on channel and spatial attention for HSIs
classification has been proposed. It is obvious that our approach can greatly reduce spatial redundancy
and enlarge the receptive field, which are beneficial for improving the classification performance.

4. Experimental Results and Analysis

In this section, we evaluated the performance of our CSA-MSO3DCNN on four public HSI
data sets for HSIs classification. Four popular indicators, class accuracy, overall accuracy (OA),
average accuracy (AA), kappa coefficient (κ) are used to measure the pros and cons of our approach
and the compared five state-of-the-art methods. All experiments are implemented with an NVIDIA
1060 GPU and a Titan graphics card server, Tensorflow-gpu and Keras with Python 3.6.

4.1. Experimental Data

The experiments were conducted on four standard HSIs data sets, including two popular data
sets and two contest data sets, that are, Indian Pines, University of Pavia, grss_dfc_2013 [49] and
grss_dfc_2014 [50].

• Indian Pines Indian Pines is a very popular hyperspectral data set which has 16 different classes.
It was obtained by airborne visible/infrared imaging spectrometer (AVIRIS) which contains
200 spectral bands after removing the noisy bands. The data set has a spatial dimension of
145 × 145 with 10,249 labeled pixels and covers the wavelengths between 0.4 to 2.5 µm with 20 m
spatial resolution. Figure 4a,b are a false color image and the corresponding ground truth map.

• University of Pavia is over an urban area surrounding University of Pavia, Italy. It is collected
by the reflective optics system imaging spectrometer (ROSIS) and has been widely used in HSIs
classification. The data set has a spatial dimension of 610 × 340 and a spatial resolution of
1.3 m per pixel. It has 115 spectral bands ranging from 0.43 to 0.86 µm with 12 noisy bands.
In experiments, the 12 noisy bands are removed. The false color and reference ground truth image
are shown in Figure 5a,b, respectively.

• Grss_dfc_2013 is a public HSI data set, which was released in the 2013 IEEE GRSS Data Fusion
Contest, collected by NSF-funded Center for Airborne Laser Map- ping (NCALM), and acquired
over the University of Houston campus and the surrounding area in 23 June 2012. It has a spatial
dimension of 349 × 1905 with 2.5 m spatial resolution, in the range of 380 nm to 1050 nm, and has
144 spectral bands. In Figure 6a,b, a false color composite image and the ground truth map are
displayed.

• Grss_dfc_2014 is a coarser-resolution long-wave infrared (LWIR, thermal infrared) hyperspectral
data set, which is more challenging and employed in 2014 IEEE GRSS Data Fusion Contest.
It was acquired by an 84-channel imager that covered the wavelengths between 7.8 to 11.5 µm
with approximately 1-m spatial resolution. The size of this data set is 795 × 564 pixels with
22532 labeled pixels and is classed into seven classes. Figure 7a,b give a false color image of
Grss_dfc_2014 and the ground truth map.
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 (a)  (b)

Figure 4. The Indian Pines data set. (a) A false color map. (b) The ground truth map.

(a)           (b)

Figure 5. The University of Pavia data set. (a) A false color map. (b) The ground truth map.

(a)

(b)

Figure 6. The Grss_dfc_2013 data set. (a) A false color map. (b) The ground truth map.
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        (a)                                                (b)

Figure 7. The Grss_dfc_2014 data set. (a) A false color map. (b) The ground truth map.

Tables 1–4 show the distribution of training and testing samples of the four experimental data
sets. For the Indian Pines data set, as shown in Table 1, because the number of samples in different
categories varies widely, for each class we randomly selected a half as the training samples if the
number of samples was less than 600, and took 300 as the training set if the number of samples
was more than 600 and the rest were set as the testing samples. For the University of Pavia and
Grss_dfc_2014 data sets, 200 training samples were randomly selected from each class. The rest of
the samples were taken for testing, as shown in Tables 2 and 4. It can be seen that several classes
had a large number of test samples, such as ’meadows’ and ’asphalt’ in the University of Pavia and
’vegetation’ in the Grss_dfc_2014, which increased the difficulty of classification. For the Grss_dfc_2013
data set, 200 training samples were randomly selected from each class, except the ’water’ class. Because
of the limited samples in class ’water’, we randomly selected 162 samples as the training set. The rest
samples were defined for testing, as shown in Table 3.

Table 1. The distribution of training and testing samples of the Indian Pines data set.

Label Class Name Train Test

1 Alfalfa 23 23
2 Corn-notill 300 1128
3 Corn-min 300 530
4 Corn 118 119
5 Grass/Pasture 241 242
6 Grass/Trees 300 430
7 Grass/Pasture-mowed 14 14
8 Hay-windrowed 239 239
9 Oats 10 10

10 Soybeans-notill 300 672
11 Soybeans-min 300 2155
12 Soybeans-clean 296 297
13 Wheat 102 103
14 Woods 300 965
15 Building-Grass-Trees-Drives 193 193
16 Stone-steel Towers 46 47

- Total 3082 7176
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Table 2. The distribution of training and testing samples of the University of Pavia data set.

Label Class Name Train Test

1 Asphalt 200 6431
2 Meadows 200 18,449
3 Gravel 200 1899
4 Trees 200 2864
5 Sheets 200 1145
6 Baresoil 200 4829
7 Bitumen 200 1130
8 Bricks 200 3482
9 Shadows 200 747

- Total 1800 40,976

Table 3. The distribution of training and testing samples of the Grss_dfc_2013 data set.

Label Class Name Train Test

1 Healthy grass 200 1051
2 Stressed grass 200 1054
3 Synthetic grass 200 497
4 Trees 200 1044
5 Soil 200 1042
6 Water 162 163
7 Residential 200 1068
8 Commercial 200 1044
9 Road 200 1052

10 Highway 200 1027
11 Railway 200 1035
12 Parking Lot 1 200 1033
13 Parking Lot 2 200 269
14 Tennis Court 200 228
15 Running Track 200 460

- Total 2962 12,067

Table 4. The distribution of training and testing samples of the Grss_dfc_2014 data set.

Label Class Name Train Test

1 Road 200 4243
2 Trees 200 893
3 Red roof 200 1654
4 Grey roof 200 1926
5 Concrete roof 200 3688
6 Vegetation 200 7157
7 Bare soil 200 1571

- Total 1400 21,132

4.2. Experimental Setup

In all the experiments, the size of the 3D cube was set to 22× 22× 20, where the ‘20’ is the
spectral bands after PCA dimension reduction. The processed data contained no less than 99.96%
information of the original data. Because the last octave 3D convolution layer contains a half-size
operation (Avg_pooling), the shape of the cube was reduced to 11× 11× 10, which omitted the padding
operation and reduced the noise in this step. In addition, the size of all 3D convolution operation
is depicted in Figure 3, such as 3× 3× 3 with padding ’SAME’. The setting of attention module is
referenced to Figure 2.
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The parameter α was set to 0.25 which was used to reduce the spatial redundancy. The learning
rate was set to 1e− 4 to make sure the convergence speed. We used training steps to represent the
number of iterations of the network, and each iteration was the parameter update of the whole network.
If the number of training steps was too large, it would lead to over fitting. In all the experiments, the
number of training steps was set to 1000 and the training batch was set to 128. The number of hidden
layers and the regularization are shown in Figures 2 and 3. Each branch had three hidden layers, and
each convolution layer was followed by a batch normalization for regularization.

4.3. Experimental Results and Discussion

To evaluate the effectiveness of the proposed method, we compared our method with five
state-of-the-art methods. For fair comparison, for each data set the size of the training set adopted is
same for all the methods. The compared methods are as follows:

• CNN [20]: A method exploits CNN to encode the spectral–spatial information of pixels and a
MLP to conduct the classification task.

• M3DCNN [25]: A multiscale 3D CNN method for HSIs classification, which different branches
have different sizes of 3D convolution kernel.

• SRN: [26] A spectral–spatial 3D deep learning network with residual structure, which effectively
mitigates over-fitting.

• MSDN-SA: [37] A dense 3D CNN framework with spectral-wise attention mechanism.
• MSO3DCNN: Our proposed method without attention module.

In the experimental setup, we randomly chose the training and testing samples for the
classification task. Because each random selection produced a different classification result, for each
data set and each class we ran the experiment for 10 times to obtain the accuracy. We finally computed
the average accuracy and the standard deviation for each class and compute the overall accuracy (OA),
average accuracy (AA) and kappa coefficient (κ) for each data set.

4.3.1. Results for Indian Pines Data Set

The comparison results of the classification accuracy for the Indian Pines data set are presented
in Table 5. From the Table 5, it can be seen that the proposed CSA-MSO3DCNN obtained the best
OA, AA, and κ, which are 99.68%, 99.45%, and 99.62% respectively. Compared with the CNN method,
OA, AA, and κ of our method have improved much more, where the AA has increased by about
8%. The classification results of SSRN and MSO3DCNN methods show that the spatial–spectral
feature obtained by the octave 3D CNN was better than the feature obtained by the normal 3D CNN.
Furthermore, the proposed method was better than MSO3CNN method, which proves the positive
effect of the channel and spatial attention module.

To show the visual classification results, the classification maps and normalized confusion matrices
are shown in Figure 8 and Figure 9 respectively. From Figure 8, the classification map produced by
CSA-MSO3DCNN method is closest to the ground truth map, which means that CSA-MSO3DCNN
method obtains the best classification result. The diagonal values of the matrix in Figure 9 also prove
this, where the row represents prediction value and the column represents actual value.

4.3.2. Results for The University of Pavia Data Set

The comparison results of the classification accuracy and classification maps for the University
of Pavia data set are reported in Table 6 and Figure 10. From Table 6 we can see that the proposed
CSA-MSO3DCNN achieved the best OA, AA, and κ, which are 99.76%, 99.66% and 99.67% respectively.
The classification results of each class obtained by the CSA-MSO3DCNN were much better than others
such as the first three categories ’Asphalt’, ’Meadows’ and ’Gravel’. Compared with the MSO3DCNN
method (without attention module), the OA, AA, and κ of CSA-MSO3DCNN all improved, which
indicates the effectiveness of the attention module. The results also demonstrate the superiority of
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octave 3D CNN which replaces the normal 3D CNN in the CSA-MSO3DCNN method. Furthermore,
from the results we can conclude that methods based on 3D CNN were significantly better than the
methods based on CNN. Although the MSDN-SA method provided the second best results, from the
standard deviation, our proposed CSA-MSO3DCNN performed more stably than MSDN-SA. For the
visual results, from Figure 10, the classification maps obtained by the proposed method were closest to
the ground truth map. For example, the center yellow area, which represents the class ’Baresoil’, in
our feature map, was all yellow without other color, which means there were no misclassified pixels.
The normalized confusion matrices of classification results are depicted in Figure 11. From Figure 11a,
there are several colors of diamonds in the confusion matrix obtained by the CNN method, which
means some pixels were misclassified into other categories. From Figure 11a–f, it can be seen that the
classification accuracy of each class obtained by the CSA-MSO3DCNN was higher than others.

Table 5. Classification accuracy for the Indian Pines data set.

Class CNN M3DCNN SSRN MSDN-SA MSO3DCNN CSA-MSO3DCNN

1 50.72± 10.55 98.55± 2.51 95.65± 4.35 100.00± 0.00 100.00± 0.00 100.00± 0.00
2 87.85± 6.24 98.32± 1.19 99.02± 0.54 98.38± 0.64 99.56± 0.15 98.97± 0.80
3 94.53± 3.71 99.87± 0.11 99.75± 0.22 100.00± 0.00 100.00± 0.00 99.87± 0.11
4 96.08± 5.40 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
5 99.69± 2.71 100.00± 0.00 99.17± 0.41 100.00± 0.00 100.00± 0.00 100.00± 0.00
6 99.67± 0.36 99.92± 0.13 100.00± 0.00 99.92± 0.13 100.00± 0.00 99.92± 0.13
7 30.95± 27.56 97.62± 4.12 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
8 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
9 70.00± 36.10 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

10 90.28± 2.67 99.65± 0.48 99.50± 0.23 99.80± 0.23 99.90± 0.17 99.85± 0.15
11 91.13± 5.35 98.36± 0.72 98.55± 0.26 98.70± 0.52 98.79± 0.31 99.14± 0.53
12 96.41± 3.60 99.21± 0.85 99.33± 0.34 98.88± 1.36 99.66± 0.34 99.66± 0.33
13 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
14 97.55± 1.20 99.79± 0.18 99.83± 0.16 99.55± 0.47 99.97± 0.06 100.00± 0.00
15 97.41± 2.88 99.83± 0.30 100.00± 0.00 99.83± 0.30 100.00± 0.00 99.82± 0.30
16 100.00± 00.00 99.29± 1.23 99.29± 1.23 99.29± 1.23 98.58± 2.46 100.00± 0.00

OA(%) 93.03± 1.68 99.12± 0.24 99.32± 0.06 99.21± 0.09 99.53± 0.07 99.68± 0.06
AA(%) 91.75± 1.62 99.06± 0.09 99.24± 0.11 98.72± 0.55 99.41± 0.23 99.45± 0.54
κ × 100 98.95± 0.28 99.01± 0.31 99.27± 0.07 99.07± 0.10 99.44± 0.08 99.62± 0.07

(a)        (b)          (c)          (d)

(e)          (f)          (g)          (h)

Figure 8. Classification maps provided for the Indian Pines data set by different methods. (a) A false
color map. (b) The ground truth map. (c) CNN (93.03%). (d) M3DCNN (99.12%). (e) SSRN (99.32%).
(f) MSDN-SA (99.21%). (g) MSO3DCNN (99.53%). (h) CSA-MSO3DCNN (99.68%).



Remote Sens. 2020, 12, 188 14 of 24

(a) (b)    (c)

(d) (e)   (f)

Figure 9. Normalized confusion matrices of classification results for the Indian Pines data set. (a) CNN.
(b) M3DCNN. (c) SSRN. (d) MSDN-SA. (e) MSO3DCNN. (f) CSA-MSO3DCNN.

 (a)        (b)    (c)      (d)

(e)          (f)    (g)     (h)

Figure 10. Classification maps provided for the University of Pavia data set by different methods.
(a) A false color map. (b) The ground truth map. (c) CNN (85.89%). (d) M3DCNN (99.03%). (e) SSRN
(99.19%). (f) MSDN-SA (99.31%). (g) MSO3DCNN (99.54%). (h) CSA-MSO3DCNN (99.76%).
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Table 6. Classification accuracy for the University of Pavia data set.

Class CNN M3DCNN SSRN MSDN-SA MSO3DCNN CSA-MSO3DCNN

1 76.85± 0.32 99.15± 0.41 98.91± 0.40 99.15± 0.13 99.48± 0.34 99.89± 0.06
2 86.52± 0.19 99.35± 0.16 99.60± 0.11 99.52± 0.14 99.69± 0.11 99.83± 0.11
3 87.41± 0.34 96.84± 0.57 96.96± 0.89 97.96± 0.36 99.53± 0.15 99.77± 0.11
4 95.43± 0.45 99.56± 0.31 99.37± 0.01 98.77± 0.41 98.65± 0.18 98.78± 0.27
5 99.83± 0.21 100.00± 0.00 100.00± 0.00 100.00± 0.00 99.91± 0.12 99.94± 0.08
6 89.09± 0.45 98.94± 0.75 99.30± 0.54 99.83± 0.12 100.00± 0.00 99.98± 0.03
7 96.64± 0.12 100.00± 0.00 99.94± 0.08 99.91± 0.07 99.76± 0.03 99.85± 0.21
8 75.10± 0.23 97.16± 0.08 97.84± 0.99 98.37± 1.01 98.62± 0.55 99.11± 0.68
9 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.0± 0.00 99.69± 0.23

OA(%) 85.89± 0.09 99.03± 0.01 99.19± 0.13 99.31± 0.06 99.54± 0.05 99.76± 0.02
AA(%) 82.33± 0.34 98.51± 0.22 98.66± 0.11 98.90± 0.08 99.32± 0.12 99.66± 0.01
κ × 100 81.52± 0.12 98.70± 0.20 99.02± 0.05 99.08± 0.06 99.38± 0.08 99.67± 0.02

(a)         (b)           (c)

(d)         (e) (f)

Figure 11. Normalized confusion matrices of classification results for the University of Pavia data set.
(a) CNN. (b) M3DCNN. (c) SSRN. (d) MSDN-SA. (e) MSO3DCNN. (f) CSA-MSO3DCNN.

4.3.3. Results for the Grss_dfc_2013 Data Set

The classification accuracy, the classification maps and the normalized confusion matrices of
classification results of all methods for Grss_dfc_2013 data set are listed in Table 7, in Figures 12
and 13 respectively. It can be seen that the proposed CSA-MSO3DCNN method achieved the best OA,
AA, and κ, which were 99.69%, 99.72%, and 99.66% respectively from the Table 7. The classification
result of each class was 99.09% at least, and our obtained lowest accuracies were all higher than lowest
accuracies obtained by other methods.



Remote Sens. 2020, 12, 188 16 of 24

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 12. Classification maps provided for the Grss_dfc_2013 data set by different methods. (a) A
false color map (b) The ground truth map (c) CNN (94.59%). (d) M3DCNN (99.10%). (e) SSRN (99.32%).
(f) MSDN-SA (99.45%). (g) MSO3DCNN (99.37%). (h) CSA-MSO3DCNN (99.69%).
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Table 7. Classification accuracy for the Grss_dfc_2013 data set.

Class CNN M3DCNN SSRN MSDN-SA MSO3DCNN CSA-MSO3DCNN

1 98.48± 0.31 99.21± 0.15 99.78± 0.09 99.18± 0.38 99.65± 0.43 99.75± 0.36
2 96.49± 0.07 99.49± 0.19 99.78± 0.12 99.68± 0.32 99.81± 0.20 99.84± 0.16
3 100.00± 0.00 100.00± 0.00 100.00± 0.00 99.93± 0.09 99.55± 0.63 100.00± 0.00
4 98.95± .26 99.97± 0.05 99.36± 0.05 99.87± 0.05 100.00± 0.00 99.81± 0.16
5 99.14± 0.05 100.00± 0.00 99.93± 0.09 100.00± 0.00 100.00± 0.00 100.00± 0.00
6 96.93± 0.29 100.00± 0.00 100.00± 0.00 100.00± 0.00 98.69± 0.67 100.00± 0.00
7 89.42± 0.63 98.41± 0.99 98.56± 0.19 98.50± 0.61 98.37± 0.54 99.09± 0.54
8 92.53± 0.49 98.31± 0.93 97.83± 0.82 99.01± 0.67 98.20± 0.53 99.55± 0.44
9 89.64± 0.14 97.21± 0.94 98.07± 0.55 98.95± 0.08 99.45± 0.32 99.11± 0.60
10 97.08± 0.35 98.96± 1.45 99.48± 0.36 99.97± 0.05 99.58± 0.59 99.81± 0.28
11 91.21± 0.25 99.48± 0.43 99.48± 0.39 99.84± 0.16 99.42± 0.47 99.68± 0.39
12 90.61± 0.42 98.48± 0.54 99.32± 0.36 98.68± 0.30 99.42± 0.23 99.77± 0.32
13 82.53± 0.07 99.88± 0.18 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
14 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
15 98.04± 0.04 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

OA(%) 94.59± 0.06 99.10± 0.28 99.32± 0.06 99.45± 0.03 99.37± 0.05 99.69± 0.05
AA(%) 93.91± 0.21 99.09± 0.33 99.24± 0.11 99.34± 0.15 99.27± 0.16 99.72± 0.05
κ × 100 94.13± 0.05 99.01± 0.31 99.27± 0.07 99.40± 0.03 99.31± 0.05 99.66± 0.06

From Table 7, comparing the results of the MSDN-SA method and the CSA-MSO3DCNN
method, the OA, AA, and κ obtained by the CSA-MSO3DCNN method were all improved,
which indicates the effectiveness of octave 3D CNN. Comparing with MSO3DCNN method, the
proposed CSA-MSO3DCNN method gets better classification accuracy. It reveals that the feature maps
selected by the channel and spatial attention module are more discriminative and efficient. From
Figure 12, the classification map obtained by the proposed CSA-MSO3DCNN method is closest to the
ground truth map. From the Figure 13, the normalized confusion matrices also prove this.

(d)      (e)        (f)

(a)      (b) (c)

Figure 13. Normalized confusion matrices of classification results for the Grss_dfc_2013 data. (a) CNN.
(b) M3DCNN. (c) SSRN. (d) MSDN-SA. (e) MSO3DCNN. (f) CSA-MSO3DCNN.
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4.3.4. Results for The Grss_dfc_2014 Data Set

This data set is a challenging data set due to its low resolution. The comparison results of the
classification accuracy and classification maps for The Grss_dfc_2014 data set are shown in Table 8 and
Figure 14.

Table 8. Classification accuracy for the Grss_dfc_2014 data set.

Class CNN M3DCNN SSRN MSDN-SA MSO3DCNN CSA-MSO3DCNN

1 99.18± 0.67 99.29± 0.53 99.68± 0.21 99.59± 0.51 99.52± 0.28 99.81± 0.23
2 38.19± 2.40 92.53± 2.61 87.72± 3.82 95.78± 1.87 96.57± 1.58 97.50± 0.05
3 78.05± 3.51 90.27± 1.02 86.28± 2.72 92.22± 2.91 95.75± 1.32 95.83± 1.54
4 10.54± 4.20 88.65± 1.67 89.22± 2.92 91.87± 2.46 95.41± 1.89 96.99± 0.29
5 46.64± 1.31 92.81± 2.15 94.38± 2.02 96.07± 1.09 97.46± 0.75 97.94± 0.42
6 77.73± 0.89 84.74± 2.06 84.29± 1.50 88.27± 1.51 93.71± 0.29 97.24± 0.28
7 50.32± 2.35 95.86± 1.44 93.87± 2.65 96.77± 1.48 99.43± 0.29 99.26± 0.42

OA(%) 66.78± 2.11 90.45± 0.89 90.60± 1.56 93.49± 0.45 96.39± 0.41 97.96± 0.20
AA(%) 62.45± 1.45 86.25± 1.33 85.46± 2.16 89.17± 0.67 93.62± 0.91 96.19± 0.07
κ × 100 58.18± 1.23 88.84± 1.32 88.33± 1.91 91.89± 0.56 95.48± 0.51 97.37± 0.20

(a)          (b)           (c) (d)

(e) (f)    (g) (h)

Figure 14. Classification maps provided for the Grss_dfc_2014 data set by different methods. (a) A false
color map. (b) The ground truth map. (c) CNN (66.78%). (d) M3DCNN (90.45%). (e) SSRN (90.60%). (f)
MSDN-SA (93.49%). (g) MSO3DCNN (96.39%). (h) CSA-MSO3DCNN (97.96%).

From Table 8, the best OA, AA and κ were obtained by our proposed CSA-MSO3DCNN method,
which were 97.96%, 96.19% and 97.37% respectively. Compared with the most competitive MSDN-SA
method, the proposed CSA-MSO3DCNN method made a great improvement, especially for the
indicator of κ, CSA-MSO3DCNN increased by 7%. For further analysis of two results obtained by
MSO3DCNN and CSA-MSO3DCNN, it could be found that the CSA-MSO3DCNN method was more
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outstanding. The ablation experiment demonstrated that the feature map was optimized by the channel
and spatial attention module, which can be comprehended as feature selection process. Moreover, it is
obvious that the MSO3DCNN method also outperformed the other methods. It can be inferred that
this data set was sensitive to spatial redundancy and the methods based on octave 3D CNN could
obtain better result.

For the visual results, from Figure 14, the classification maps obtained by the CSA-MSO3DCNN
method is closest to the ground truth map. For example, the ’vegetation’ class, at the top right of
the classification map, is all yellow, which is same to the ground truth map, and the classification
maps obtained by other methods have wrong colors to some extent. The corresponding normalized
confusion matrices of classification results are reported in Figure 15. It could be seen that the confusion
matrix obtained by the CSA-MSO3DCNN method diagonal color is closest to yellow, which shows the
best classification accuracy. The experimental results of this data set also demonstrate the superiority
of our approach.

(a)           (b)           (c)

(d)           (e) (f)

Figure 15. Normalized confusion matrices of classification results for the Grss_dfc_2014 data. (a) CNN.
(b) M3DCNN. (c) SSRN. (d) MSDN-SA. (e) MSO3DCNN. (f) CSA-MSO3DCNN.

Overall, our approach excels on all the four data sets compared to other competitive methods,
which indicates the robustness and stability of the CSA-MSO3DCNN method. It is worth noting that
the experimental results show that spatial information has a greater influence on the results. Therefore,
in the next sub-subsection, the effects of several parameters on the experiment are discussed.

4.3.5. The Effects of Parameters and Number of Training Samples

In the deep learning framework, the parameters play a significant role in the experiments.
There are three main parameters in our method, which are α, spatial size and dropout. As the
number of the training samples affects the quality of the ultimate model [51], the effects of the number
of training samples on the ultimate model are also analyzed.

1. In our method, α characterizes the ratio between high frequency and low frequency, which decides
the balance of spatial information and spatial redundancy. Thus we test a series of different α

values to evaluate and get the OA results which are listed in Table 9. The test experimental results
reveal that the best results are obtained for four data sets when α = 0.25.
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Table 9. Overall accuracy (OA) of the proposed method with different α.

α Indian Pines University of Pavia Grss_dfc_2013 Grss_dfc_2014

0.1 97.76 98.38 99.22 96.67
0.2 98.91 99.19 99.56 97.12

0.25 99.68 99.76 99.69 97.96
0.3 98.86 98.15 99.45 97.53

2. To figure out the influence of the size of the 3D patch s× s× d, different spatial sizes s× s are
conducted on the four data sets where d is set to 20. The OA results are provided in Table 10.
The experimental results show that too large or too small spatial size is not recommended
which means excessive noise or too little spatial information is included. It is not beneficial for
the classification.

Table 10. OA of the proposed method with different spatial sizes.

Spatial Size Indian Pines University of Pavia Grss_dfc_2013 Grss_dfc_2014

14× 14 97.87 98.33 98.22 93.47
18× 18 98.63 99.42 99.46 96.42
22× 22 99.68 99.76 99.69 97.96
26× 26 99.10 99.76 99.45 94.23
30× 30 97.54 98.35 99.23 90.57

3. In the fully connected layer, the drop out is generally employed to overcome over-fitting.
The effects of various drop out are depicted in Table 11. It could be observed that 0.5 was
a suitable value for all four data sets, which can suppress over-fitting and train model in a
balanced way.

Table 11. OA of the proposed method with different drop out.

Drop Out Indian Pines University of Pavia Grss_dfc_2013 Grss_dfc_2014

0.2 92.41 90.13 91.43 87.47
0.4 98.96 99.26 99.00 97.38
0.5 99.68 99.76 99.69 97.96
0.6 98.63 98.85 99.26 96.56
0.8 93.33 91.47 90.35 92.31

In order to explore the effects of the number of training samples on the ultimate model, we have
implemented more experiments by using different percentage quantity of the whole samples as the
training set for all the six methods and all the data sets. For the Indian Pines data set the ratio of the
training set to sample is selected from 5% to 20%, for the University of Pavia data set and Grss_dfc_2014
data set the ratio of the training set to sample is selected from 1% to 6%, and for the Grss_dfc_2013
data set the ratio of the training set to sample is selected from 10% to 20%. The obtained OA results for
the four data sets are shown in Figure 16. It can be seen that, for the six methods, with the increase of
the training data, the OA also increases, and our proposed method can always provide a better OA
compared with the state-of-the-art methods.
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Figure 16. The OA of different training set sizes for four data sets. (a) Indian Pines data set.
(b) University of Pavia data set. (c) Grss_dfc_2013 data set. (d) Grss_dfc_2014 data set.

5. Conclusions

In this paper, we have proposed a new framework based on DL for HSIs classification.
Although the method based on DL has achieved good results in HSIs classification, the automatically
extracted features are still rough and contain a lot of noise. Therefore, we investigate to reduce
the noise of features and select more appropriate features by octave 3D CNN and attention
mechanism operations.

The multi-scale octave 3D convolution is designed to decrease the spatial redundancy and
expand the receptive field which are proven to be important for extracting appropriate features.
Then, three different group feature maps are cascaded into one. In addition, a channel attention
module and a spatial attention module are employed to refine the feature maps, which not only
assign different weights to the feature maps along the channel dimension but also along the spatial
dimension. The refined feature maps have been demonstrated to be beneficial for improving the
classification performance. The results of ablation experiments have shown the efficiency of the
attention modules. The experimental results on four public HSIs data sets have demonstrated that
the proposed CSA-MSO3DCNN outperforms the state-of-the-art methods. Accordingly, it can be
concluded that our method is more suitable for HSIs classification.

Because of the limit labeled HSIs pixel samples and the difficult of labeling the HSIs pixel
samples, as future work, we intend to explore the HSI classification methods combined with the data
enhancement techniques and semi-supervised HSIs classification in order to overcome the problem of
the limit labeled HSIs pixel samples.
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