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Abstract: Gullying is a type of soil erosion that currently represents a major threat at the societal
scale and will likely increase in the future. In Iran, soil erosion, and specifically gullying, is already
causing significant distress to local economies by affecting agricultural productivity and infrastructure.
Recognizing this threat has recently led the Iranian geomorphology community to focus on the
problem across the whole country. This study is in line with other efforts where the optimal
method to map gully-prone areas is sought by testing state-of-the-art machine learning tools. In this
study, we compare the performance of three machine learning algorithms, namely Fisher’s linear
discriminant analysis (FLDA), logistic model tree (LMT) and naïve Bayes tree (NBTree). We also
introduce three novel ensemble models by combining the aforementioned base classifiers to the
Random SubSpace (RS) meta-classifier namely RS-FLDA, RS-LMT and RS-NBTree. The area under
the receiver operating characteristic (AUROC), true skill statistics (TSS) and kappa criteria are used for
calibration (goodness-of-fit) and validation (prediction accuracy) datasets to compare the performance
of the different algorithms. In addition to susceptibility mapping, we also study the association
between gully erosion and a set of morphometric, hydrologic and thematic properties by adopting
the evidential belief function (EBF). The results indicate that hydrology-related factors contribute
the most to gully formation, which is also confirmed by the susceptibility patterns displayed by
the RS-NBTree ensemble. The RS-NBTree is the model that outperforms the other five models,
as indicated by the prediction accuracy (area under curve (AUC) = 0.898, Kappa = 0.748 and
TSS = 0.697), and goodness-of-fit (AUC = 0.780, Kappa = 0.682 and TSS = 0.618). The analyses are
performed with the same gully presence/absence balanced modeling design. Therefore, the differences
in performance are dependent on the algorithm architecture. Overall, the EBF model can detect
strong and reasonable dependencies towards gully-prone conditions. The RS-NBTree ensemble
model performed significantly better than the others, suggesting greater flexibility towards unknown
data, which may support the applications of these methods in transferable susceptibility models in
areas that are potentially erodible but currently lack gully data.
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1. Introduction

In the last two decades, computational capacity and methodological development have improved
significantly in all branches of science dealing with predictive modeling [1]. Geomorphology has
experienced technological advancements in two ways. The first was the creation of geographic
information systems (GIS), which started as a means to managing spatial data and gradually became a
fundamental tool for planning [2], visualizing and communicating [2] in geoscience.

The second major advancement was the implementation of predictive/susceptibility models [3].
The GIS structure enabled very early or even pioneering studies via bivariate models [4]. These models,
and all their proposed variations, essentially boil down to the calculation of relative frequencies
of geomorphological processes, be they landslides [5], or gullies [6], within specific portions of
preconditioning factors’ domains. These frequencies are used to derive weights describing the
associations between a given hazard and predisposing factors, and, ultimately, the spatial susceptibility
distribution [7]. Bivariate models are very convenient as the required calculations are so simple that they
can be entirely made within any GIS [8]. However, despite their simplicity, bivariate models have also
proved to have good predictive performance and support clear geomorphological interpretation [9].

Nevertheless, most of the proposed bivariate models do not strictly rely on an underlying
probability distribution [10,11], which makes multivariate statistical approaches more suited to
assessing the susceptibility of a given region. The generalized linear models (GLMs) [11], where the
underlying probability distribution corresponds to the Bernoulli exponential family [12], are the most
commonly applied multivariate applications in geomorphology. As a result, GLMs rely on more
rigorous statistical assumptions, provide good performances compared to multivariate models and
allows for interpreting linear effects of the given set of predisposing factors [13]. An extension to
this paradigm is the so-called generalized additive models (GAMs) [14], in which the algorithmic
structure remains the same as in the GLMs but allows for testing nonlinear effects of each predisposing
factors [15].

Pourghasemi and Rossi [16] mention that multivariate models have largely dominated the literature
in the last decade. However, during the same period, machine learning tools proved to be an even better
alternative to multivariate models for susceptibility analysis with greater performance reported in
many comparative studies [17]. Greater performance being reported due to the different way in which
machine learning approaches model natural hazards and their association with predisposing factors.
For instance, decision trees, and their proposed variations all share a common feature. They slice each
predisposing factors’ domain in successive halves and derive data-driven rules to differentiate between
stable and unstable conditions [18]. However, the high performance in terms of modeling is reached
by sacrificing the interpretability of the model results. In fact, machine learning tools only provide a
measure of how much variability in the data is explained by a given factor, which is commonly known
as predictor importance [19]. The high performances in terms of modeling may also be affected by
overfitting issues.

To overcome the overfit, an even more recent approach has been proposed and tested, namely
ensemble modeling [20]. Ensembles are combinations of several predictive models into a single model.
The summary of different outputs can be generally expressed as the mean, or another aggregative
measure, of the various models. It guarantees that the large differences resulting from several different
model structures are smoothed out, leaving the common pattern where either high or low susceptibility
estimates have been recognized through multiple approaches of the different models [21].

In this work, we tested the most recent trend in susceptibility modeling by considering the
predictive performances of three machine learning algorithms namely, Fisher’s linear discriminant
analysis (FLDA), logistic model tree (LMT), naïve-Bayes tree (NBTree) and their corresponding
ensemble with a Random SubSpace (RS, Barandiaran, 1998). In a nested experiment, we also adopted
an evidential belief function (EBF) [22] to assess the predisposing factors’ effects. The purpose of
this study was to model gully erosion-prone areas in Iran. Approximately 76% of Iran is affected by
water-driven erosion, and widespread gullying has been reported in almost the entire nation, from the
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south [23] to the north [24] and from the west [25] to the central provinces [26], leaving only the
easternmost sectors of the country less affected. The combined effect of water erosion is responsible for
permanently washing away one millimeter of soil per year across the whole country. For this reason,
a national-wide effort is currently being coordinated by local research institutions to study erosional
processes and plan mitigation/remediation actions. Of the erosion processes, gullying is one of the most
evident in the short-term and also one of the most prominent examples of how dangerous soil loss can
be, especially in arid to semi-arid environments. In such geographic settings, a single gully can extend
vertically for several meters and horizontally up to several hundred meters [9]. In coordination with
the national effort, we focus on the Toroud watershed, where 129 gullies have been recently reported.
This area was still untested despite the worrying number of gullies, and we opted to investigate it
via state-of-the-art machine learning approaches. The manuscript is organized as follows: Section 2
introduces the study area; Sections 3.1 and 3.2 provide a description of the gully phenomena and the
predisposing factors we selected; Section 3.3 describe the predictive models used in this work and
ultimately Section 4 report the results, their interpretation and the concluding remarks, respectively.

2. Materials and Methods

2.1. Study Area

The study area lies within the Semnan province in Iran, and it is centered at approximately
35◦26′10”N and 55◦06′44” (Figure 1). It covers a relatively small area of approximately 2400 km2,
where the maximum variation in elevation is in the NE–SE axis. Specifically, the average altitude in
the NE part is 2160 m.a.s.l., while in the SE it is 680 m.a.s.l. Since the catchment is relatively small,
the associated slope significantly varies between flat conditions and 70◦, but the average steepness is
approximately 3 degrees. Due to the predominantly flat conditions, water stagnation prevails rather
than runoff, which is generally the case under the local meteorological conditions responsible for a mean
yearly discharge confined to between 48 and 206 mm during the wet season from January to March [27].
The associated temperature regimes reach a peak of 42 ◦C during summer, especially in the South.
It decreases to below 0 ◦C during winter, towards the Northern regions. The temperatures during
the rest of the year range from 14 ◦C to 24 ◦C. Overall, these are already indicators of meteorological
stress with high variations and local spikes. This may generate freezing and thawing processes in
soils as well as expansion and contractions also in the soils, which in turn can open cracks along the
regolithic profile.

The local land cover encompasses agricultural fields, bare land, kavir, poorrange, rock outcrops,
a salt lake, wetlands and salt lands. The latter are particularly vulnerable to dissolution processes during
the wet season as the salt crust is easily chemically weathered, giving rise to pores, which promote water
fluxes and associated erosion within soils. The distribution of these salt crusts is much more evident in
the soil map (primarily featuring Aridisol and Entisols) and where the outcropping lithologies are also
reported. The outcropping lithotypes [28] include: Quaternary sediments, comprising Qft1 (High-level
piedmont fan and valley terrace deposits), Qft2 (Low-level piedmont fan and valley terrace deposits),
Qsl (salt lake) Qsf (Salt flat) and Jurassic sediments, comprising Jph (phyllite, slate and meta-sandstone
(Hamadan phyllites) and Jdav (Jurassic dacite to andesite lava flows).
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Figure 1. Study area. (a) Location of Iran in the world, (b) location of study area in Iran and (c) location
of training and validation gullies in the study area.

2.2. Data Collection

2.2.1. Gully Phenomena and Inventory Map

The target variable we want to model needs to be digitally represented in a gully erosion inventory
map (GEIM), where the spatial distribution of gullies is reported. To generate the GEIM for the
present study area, we initially accessed the archive compiled by the Isfahan Agricultural and Natural
Resources, Research and Education Center (http://esfahan.areeo.ac.ir/). This information represents the
foundation upon which we investigated the historical reports of gully occurrences. Upon which we
organized our field and remote mapping procedures to update and refine the inventory. Specifically,
we visited the sites (see Figure 2) for precise mapping via GPS (global positioning system) ground
points measured at the gully head-cuts; whereas, for a broader view of the area, we used Google
Earth to map the gully extents. Overall, we mapped a total of 129 gully head-cuts, which we then
used during the modeling procedure as the target variable to be fitted and predicted. Specifically,
we fitted each of the implemented models with 90 head-cuts (70%) and predicted the complementary
39 gully occurrences (30%). Some of mapped gullies in the study area are shown in Figure 2. However,
as the selection of models corresponds to a presence–absence type, we randomly selected an equal
number of absence locations. In turn, this procedure creates a balanced dataset for the subsequent
analyses. However, it should be noted that the geomorphological community still debates on whether
balanced [9] or unbalanced [15] datasets should be built prior to any susceptibility analysis.

http://esfahan.areeo.ac.ir/


Remote Sens. 2020, 12, 140 5 of 25
Remote Sens. 2018, 10, x FOR PEER REVIEW    5  of  25 

 

   

 
Figure 2. Sample of mapped gullies in the study area. 

2.2.2. Predisposing Factors 

From an original DEM (digital elevation model) acquired from ALOS (advanced land observing 

satellite), with  12.5 m  resolution, we  derived  a  set  of morphometric  properties  to  describe  the 

geomorphology of  the area. Specifically, we extracted a series of DEM derivatives and combined 

them  into  a  set  of  thematic  properties  that  we  either  directly  accessed  from  local  territorial 

institutions, or computed. These are listed in Table 1 and shown in Figure 3.   

 

 

 

 

Figure 2. Sample of mapped gullies in the study area.

2.2.2. Predisposing Factors

From an original DEM (digital elevation model) acquired from ALOS (advanced land observing
satellite), with 12.5 m resolution, we derived a set of morphometric properties to describe the
geomorphology of the area. Specifically, we extracted a series of DEM derivatives and combined
them into a set of thematic properties that we either directly accessed from local territorial institutions,
or computed. These are listed in Table 1 and shown in Figure 3.
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Table 1. List of Predisposing Factors and their Source.

ID Predisposing Factor Reference

1 Elevation –
2 Slope Zevenbergen and Thorne, 1987
3 Aspect Zevenbergen and Thorne, 1987
4 Planar Curvature Heerdegen and Beran, 1982
5 Convergence Index Olaya and Conrad, 2009
6 Topographic Wetness Index (TWI) Beven and Kirkby, 1979
7 Stream Power Index (SPI) Moore et al., 1991
8 Slope Length Factor (LS) Desmet and Govers, 1996
9 Terrain Ruggedness Index Riley et al., 1999

10 Topographic position Index De Reu et al., 2013
11 Drainage Density –
12 Distance to Stream –
13 Rainfall –
14 Distance to Road –
15 Normalized Difference Vegetation Index (NDVI) –
16 Land Use/Cover –
17 Lithology –
18 Soil Type –

In addition to the morphometric factors, we computed hydrologically oriented properties such
as drainage density, which is defined as the total stream length divided by the area of a moving
circular neighborhood; the distance to stream, defined as the Euclidean distance from each pixel to
the nearest stream line and rainfall, which was provided by the Iran meteorological organization,
see [27]. To estimate the anthropic effects of overland flows, we computed the distance to road as the
Euclidean distance from each pixel to the nearest road. The effect of vegetation on water absorption was
accounted for using the NDVI (normalized difference vegetation index) obtained from a LANDSAT 8
(2018/08/12) scene of the area. The land use/cover was obtained from a supervised classification of
the spectral properties obtained by LANDSAT 8. Lithology was digitized from the local geological
map at 1: 100,000 scale, see GSDI (1997) for the original map. A description of the lithology units in
the study area is given in Table 2. The soil type was digitized from the soil map provided by the soil
conservation section of agricultural and natural resources research center of Semnan province.

Table 2. Lithology of the Study Area.

Code Lithology Description

A

Marl, gypsiferous marl and limestone, dacitic to andesitic volcano sediment, well bedded green
tuff and tuffaceous shale, dacitic to andesitic volcanic, dacitic to andesitic volcano breccia

Andesitic volcanic breccia, sandstone, marl and limestone, granite, pale-red, polygenic
conglomerate and sandstone

B Phyllite, slate and meta-sandstone, Jurassic dacite to andesite lava flows
C Cretaceous rocks in general

D Light-red to brown marl and gypsiferous marl with sandstone intercalations, red marl,
gypsiferous marl, sandstone and conglomerate

E Fluvial conglomerate, piedmont conglomerate and sandstone.

F Salt flat, high-level piedmont fan and valley terrace deposits, low-level piedmont fan and valley
terrace deposits, salt lake
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Figure 3. Gully erosion conditioning factors. (a) elevation, (b) slope, (c) aspect, (d) plan curvature,
(e) convergence index (CI), (f) slope length (LS), (g) stream power index (SPI), (h) topography position
index (TPI), (i) terrain ruggedness index (TRI), (j) topographical wetness index (TWI), (k) distance
to stream, (l) drainage density, (m) rainfall, (n) distance to road, (o) NDVI (normalized difference
vegetation index), (p) lithology, (q) land use/cover (LU/LC) and (r) soil type.

2.3. Multicollinearity Assessment

Although machine learning algorithms do not strictly require the elimination of redundant
conditioning factors, any predictive algorithm benefits from removing collinear properties [29].
Furthermore, in this work, we also focus on interpreting predisposing factors’ effects, so checking
whether the signal carried by one property is linearly linked to another helps to disregard
interdimensional relations before they can affect the models, which would disrupt the interpretation
through confounding effects. Consequently, we included a test for multicollinearity in our workflow.
The criterion we opted for includes two metrics, namely tolerance (TOL) and the variance inflation
factor (VIF) [30–32].

Regarding the TOL, values equal to or lower than 0.1 indicate a potential collinearity issue of a
specific conditioning factor. Similarly, a VIF≥ 10 confirms the same numerical indication. We calculated
the two metrics mentioned above for each continuous property, leaving aside the categorical ones (land
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use/cover, lithology and soil type). We reported the results of the multicollinearity tests in Table 3, where
no factor appears to be linearly related to the others. Having ensured that no multicollinearity affects the
factor set we initially chose, we post-processed each layer by reclassifying it into a number of sub-classes.
We opted for a binning procedure based on the natural break method [33,34]. The reclassified rasters
and the three categorical ones represent the factor set we subsequently explored for associations with
respect to gully occurrences, as well as for the susceptibility mapping procedures, as detailed in the
following sections.

Table 3. Multicollinearity Analysis of Gully Erosion Conditioning Factors.

Factors
Collinearity Statistics

Factors
Collinearity Statistics

Tolerance VIF Tolerance VIF

Distance to road 0.370 2.702 Distance to Stream 0.596 1.677
Rainfall 0.321 3.098 Slope 0.612 1.525

Convergence index 0.586 1.707 Aspect 0.948 1.055
Plan curvature 0.656 1.524 NDVI 0.658 1.520

Terrain Ruggedness Index 0.558 2.286 Topography wetness index 0.357 2.911
Elevation 0.438 2.545 Slope length 0.874 1.144

Stream power index 0.419 2.346 Lithology 0.749 1.335
Drainage density 0.362 2.766 Topographic Position Index 0.564 1.772

Soil type 0.431 2.318 Land use/land cover 0.621 1.611

2.4. Models

2.4.1. Predisposing Factors’ Effects Via EBF Model

We assessed the spatial dependence of gully locations on the selected predisposing factors via
the EBF. We chose this method because of its straightforward interpretability and because it has been
previously tested in several other susceptibility applications [9]. The theoretical foundations of EBF
can be found in the Dempster–Shafer theory of evidence [35,36]. The full implementation of EBF relies
on four components or belief functions, namely belief (Bel), disbelief (Dis), uncertainty (Unc) and
plausibility (Pls). For susceptibility mapping purposes, all four components need to be computed and
aggregated [9]. However, here we chose to use EBF solely as an explanatory tool by only focusing on
the Bel function as this component alone allows one to interpret a factors’ effects on a binary target
variable. We implemented EBF in a bivariate structure where we retrieved Bel as follows:

Bel =

N(F∩Ai j)
N(F) /

N(Ai j)−N(F∩Ai j)
N (P)−N (F)∑[

N(F∩Ai j)
N(F) /

N(Ai j)−N(F∩Ai j)
N (P)−N (F)

] , (1)

where i is the vector of predisposing factors, j is the associated number of classes, N
(
F∩Ai j

)
is the

aggregation of gullies falling into each area delimited by the spatial bins Ai j, N(F) is the total number
of gullies within the study area, N

(
Ai j

)
is the sum of all pixels for each Ai j and N (P) is the aggregation

of pixels in the entire study area. The interpretation of EBF results for each factor and associated class
is based on the amplitude of the EBF values. In other words, the greater the EBF value, the greater the
association or influence of the given class in predisposing gully erosion conditions.

2.4.2. Susceptibility Mapping Via FLDA model

The Fisher’s linear discriminant analysis (FLDF) can be regarded as one of the first tools to be
applied to pattern recognition [37]. This approach is also known as linear discriminant analysis (LDA)
and Fisher’s LDA [38,39]. The basic idea of FLDF is that all the samples with multiple attributes
(multi-dimensional data) are processed using linear projections, and a series of aligned scatter points
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are acquired. The density of the scatter points reflects the classification results to a certain degree.
Specifically, the linear projections can be calculated using the following formula.

yi = wTxi, (2)

where xi is the i-th sample with multiple attributes, yi is the corresponding result, which is obtained by
linear projection and w denotes the weight vector.

It is obvious that the results of linear projections mainly depend on the direction of w. Hence, it is
critical to find the optimal w to enhance the distinction between different classes and similarity within
the same classes. The optimal w can be figured out by maximizing the following equation [40].

JF(w) =
wTSbw
wTSww

, (3)

where Sb is “between classes scatter matrix”, and Sw is defined as “within classes scatter matrix”.
Finally, the optimization of JF(w) can be realized using the Lagrange multiplier method.

2.4.3. Susceptibility Mapping Via LMT Model

The LMT is a combination of logistic regression and the classic decision tree model [41]. Currently,
the published achievements of the LMT model are abundant, and its prominent performance in terms
of addressing classification issues has also been proved [42,43]. The LMT model usually produces
more satisfying results compared to other machine learning models with low variance and bias,
and the probability estimation of each class can be acquired when the final classification results are
generated. In the LMT, logistic regression functions are established on leaf nodes using the LogitBoost
algorithm, which is based on the boosting algorithm [44]. During the process of model training,
the incorrectly classified samples can attract more attention and be given higher weights. Moreover,
the classification and regression tree (CART) algorithm is employed in the tree pruning step to detect
overfitting problems. The corresponding posteriori probability of each node, which is illustrated in the
following, can be determined using the linear logistic regression approach.

P(c|x) =
eLc(x)∑C

c′=1 eLc′(x)
, (4)

where Lc(x) denotes the aforementioned linear regression function, and C represents the total number
of classes.

2.4.4. Susceptibility Mapping Via NBTree Model

Generally, the naive Bayes (NB) and decision tree (DT) models can be regarded as the most widely
used approaches to solve classification problems. The NBTree model is a hybrid of the NB and DT
models [45,46]. The modeling procedure using the NBTree model is similar to that of a C4.5 decision
tree, but it should be emphasized that the naïve Bayes categorizers are adopted on the leaf nodes in
the NBTree algorithm [47]. In the process of decision tree growth, the attributes to be split on can be
determined by the values of information gain (InfoGain), split information (SplitInfo) and information
gain ratio (GainRatio), which can be calculated using the equations below.

InfoGain(A) = Entropy(D) − EntropyA(D), (5)

SplitInfo = −
∑n

i=1

|Di|

|D|
× log2(

|Di|

|D|
) (6)

GainRatio(A) =
InfoGain(A)

SplitInfo(A)
, (7)
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where D is a set of cases that can be rearranged into subsets, which are denoted as Di. |D| and |Di|

represent the number of cases in D and Di, respectively. A denotes one corresponding attribute.
The NBTree model combines the advantages of the NB and DT models. Concretely, the NBTree

model not only has a brief and efficient inductive structure but also possesses notable statistical
significance. Additionally, the independence assumption of the NB model can be weakened in the
NBTree algorithm, which raises the universality and applicability of this model [47]. Finally, the class
that generates the highest posteriori probability can be determined based on the classification rule of
NB [47].

2.4.5. Random SubSpace (RS) Mata Classifier Model

The RS model was initially proposed by Barandiaran [48] as a way to create ensemble models
for classification and regression trees [49]. One of its applications became widely known as random
forest [49]. To introduce the RS concept, we need to briefly recap some features of decision trees. These
are essentially graphs that represent the classification of a given process, and every node consists of a
classification rule. The depth up to which the graph or tree can grow is one of the main weaknesses of
these methods for they specialize to recognize a given dataset to a level where they struggle to do the
same with an unknown dataset. In other words, the high performance reached during the training
drops significantly on a test dataset. This phenomenon is known as overfit [50]. Two methods have been
proposed in the literature, one of which is known as pruning [51] while the other relies on ensemble
models [52]. Ensemble models, or ensemble learners, either combine different classification algorithm
outputs into one or they combine a set of replicates’ outputs generated from a single classification
algorithm. This is typically done by taking the mean of several responses, which in turn smooths
out the algorithmic or data-driven bias of each separate classification and contributes to reducing
the overall overfit. The RSS is an ensemble method, which combines the outcome obtained by using
replicates of data, each one different from the other, modeled with the same algorithm. Each replicate
is iteratively generated as a bootstrapped subset of the original data, and the ensemble is performed
not as the mean but via a majority-voting method, summarized as follows:

L′(x) = argmax
∑t

i=1
1(Ci(x) = y), (8)

where L’(x) is the output classifier; Ci(x) denotes the weak classifier, which is produced by the single
i-th replicate; t is the total number of bootstrapped training datasets and y is the dichotomous (0/1)
target of each model, in our case defined as 0 for the absence of gullies and 1 for the presence of gullies.

2.5. Performance Assessment

In this work, we examined the model performance via multiple metrics. In the first stage,
we computed the receiver operating characteristic (ROC) curves and associated integrals; the area
under curve (AUC) [53,54]. A ROC curve is a diagnostic test defined to summarize the relationship
between the false positive rate and the true positive rate, both of which are obtained for all possible
probability cutoff values (see [55–67]). The corresponding AUC expresses the quality of the model from
an entirely random prediction, when AUC = 0.5, to an ideal case with AUC = 1.0. The intermediate
AUC value ranges were classified by [56] to correspond to outstanding for 1.0 < AUC < 0.9, excellent
for 0.9 < AUC < 0.8 and acceptable, for 0.8 < AUC < 0.7. From AUC values of 0.5 to 0.0 the classification
was simply inverted.

This is an informative metric that has become almost omnipresent in any susceptibility study [55].
However, it does not provide information on the accuracy of the model when it comes to classifying
positives and negatives separately. This information is usually provided by confusion matrices
(e.g., [68]), and they have been suggested to complement the AUC in several recent contributions [69].
Rahmati et al [63] have provided a Python-based toolbox for ArcGIS, called the performance measure
tool (PMT), where a complete set of performance metrics can be quickly obtained. In this study,
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we selected the true skill statistics (TSS) to broaden our assessment on model hits and misses at a
specific probability cutoff, which we chose to define as 0.5 (see cutoff for balanced samples in [70]).
We also computed Cohen’s kappa (Kappa) to account for the intrinsic numerical randomness in the
prediction. In contrast to the ROCs, the TSS is a cutoff-dependent metric calculated as:

TSS =
TP

TP + FN
+

TN
TN + FP

− 1. (9)

TSS is bounded between −1 and +1, and the closer to zero, the closer the prediction is to being
random [71].

The Kappa is a measure of agreement between two dichotomous sets while taking the randomness
in the classification into account. In our case, these sets consisted of the true and false positives as well
as true and false negatives. Kappa was computed in three steps. In the first step, the sum of the true
positives and the true negatives, or overall agreement (Ao) was calculated. This is known as the overall
agreement. However, in order to disregard an agreement due to randomness, Cohen’s kappa includes
a measure called agreement by chance (Ac), which is computed as follows:

Ac =
TP+FN

TP+TN+FP+FN ×
TP+FP

TP+TN+FP+FN + FP+TN
TP+TN+FP+FN ×

FN+TN
TP+TN+FP+FN . (10)

The third step combines the two parameters above as follows:

K = (Ao − Ac) / (1− Ac). (11)

K is bounded between 0 and 1, where 0 indicates no agreement and 1 indicates perfect prediction
(further details can be found in [72]). Cohen [73] himself suggested the following classification on the
basis of K ranges: K ≤ 0 indicates no agreement; 0.01 < K < 0.20 slight agreement; 0.21 < K < 0.40 fair
agreement; 0.41 < K < 0.60 moderate agreement; 0.61 < K < 0.80 substantial agreement and 0.81 < K <

1.00 almost perfect agreement. These criteria were used for training (success rate curve (SRC)) and
validation (prediction rate curve (PRC) data).

As shown in Figure 4, this research consisted of four steps: 1—collection of data and database
construction, 2—multicollinearity test using VIF and TOL, 3—modeling of gully erosion and preparation
of gully erosion susceptibility and 4—validation of results.
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3. Results

Our methodological workflow is summarized in Figure 4. The procedures involved analyses in GIS
and Weka. Several components are shown, which we reported on separately in the following sections.

3.1. Predisposing Factors’ Effects

Table 4 reports the outcome of the EBF analyses, and, specifically, the parameter Bel, which was
adopted here to assess the relationship between gully occurrences and each factor. Since each factor
was originally reclassified, a Bel value was assigned separately to each class rather than to the factor as
a whole. The greater the Bel value, the stronger the effect of the given class on gully erosion occurrence.
The primary contributors to gullies are factors associated with overland flows. This is particularly
evident for distance to road (lower than 500 m), which is assigned the highest Bel value of 6.7; drainage
density (greater than 1.7 km/km2) ranks second with a Bel value of 4.2; third is the stream power index
(11.9 > SPI > 14.9) with a Bel value of 4.1 and fourth is the topographic wetness index (TWI > 12.0)
with a Bel value of 4.0. These hydrological factors indicate a clear hydrological control on whether
an area is prone to gully occurrence that far surpasses the effects of all other factor considered in this
study. In fact, the four Bel values reported above far exceed the Bel values retrieved for the other
factors, sometimes by one order of magnitude. This is an important finding that places the importance
of hydrology above geomorphology and the other thematic properties in terms of contributing to
gully erosion.

We could interpret the interconnected effects of the abovementioned factors in a simple schematic
model in which the role of distance to road initially controls the total runoff over the road network.
Roads are barriers to infiltration processes and promote runoff in their proximity, which in turn may be
captured by the evidential belief function as a driver for gully erosion. The resulting runoff can travel
to the surrounding drainage system, especially in cases where the drainage network is particularly
dense (picked up by the drainage density). For those drainage branches where the morphology
controls: 1) the energy of the overland flows (carried by the SPI), giving rise to potential turbulent
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hydrodynamics and 2) the water confluence and potential stagnation (TWI effect) through which gully
erosional conditions are promoted.

An alternative interpretation to the above scheme is based on the assumption that the overland
water coming from road-driven runoff accumulates in the neighboring streams. This can be assumed
because of the high Bel value (2.2) assigned to distance to the stream (lower than 100 m). Taking aside
the predominant role of hydrological properties, minor but still significantly influencing factors could
be recognized in eastward facing aspect (Bel = 1.9), low to average rainfall discharges (66.3 < rain <

84.9, Bel = 1.6), low to medium greenness (0.043 < NDVI < 0.132), fluvial and piedmont conglomerates
(Bel = 2.0), marshland cover type (kavir Bel = 1.7) and Entisols/Aridisols (Bel = 1.5).

Under consideration of these relevant factors’ subset, the previous interpretation scheme can be
expanded to accommodate for specific morphometric exposition under relatively low precipitation
regimes. Moreover, vegetation is scarce but not completely absent. A complete absence of vegetation
usually corresponds to rock outcrops where erosion rates are extremely low because of the material
properties of the rock. Conversely, areas with low to medium vegetation are often associated with
the presence of soil that is not protected by leaves or stabilized by roots. Conglomerates are usually
unconsolidated and unsorted sediments in the area, which can break down and be washed away.
Furthermore, kavir and Aridisols, which are soluble deposits, are both indicative of regions where salt
crusts frequently cover the landscape in Iran.

Table 4. Spatial Analysis of Gully Erosion Conditioning Factors and Gully Locations using the
Evidential Belief Function (EBF) Model.

Factors Classes Pixels in Domain Number of Gullies Bel

Elevation (m)

<819 1373897 46 1.006
819–1000 567118 29 1.536
1000–1206 450512 9 0.600
1206–1500 237673 6 0.758

>1500 73829 0 0.000

Slope (◦)

<5 2270219 81 1.072
5–10 234394 6 0.769

10–15 84199 3 1.070
15–20 43477 0 0.000
20–30 46247 0 0.000
>30 24488 0 0.000

Aspect

F 135222 4 0.888
N 203003 4 0.915

NE 244887 10 1.226
E 395661 25 1.898

SE 496849 24 1.451
S 473666 13 0.824

SW 342248 6 0.527
W 223850 3 0.402

NW 187643 1 0.160

Plan curvature
(100/m)

Concave 894313 31 1.041
Flat 901103 40 1.333

Convex 907612 19 0.629

Convergence index
(100/m)

<–39.6 275709 14 1.523
–39.6 to –12.9 586976 22 1.124

–12.9–10.5 919934 28 0.913
10.5–38 624756 18 0.864

>38 292694 8 0.820
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Table 4. Cont.

Factors Classes Pixels in Domain Number of Gullies Bel

LS (m)

<20 1531797 63 1.235
20–57.5 230099 9 1.175

57.5–92.1 396472 9 0.682
92.1–128.2 339443 4 0.354

>128.2 204840 5 0.733
<8.2 1023818 32 0.939

SPI 8.2–9.9 1017957 30 0.885
9.9–11.9 489089 9 0.553

11.9–14.9 140449 19 4.063
>14.9 31709 0 0.000
<−8 42635 3 2.113

TPI –8 to –1.8 371266 17 1.375
–1.8–1.9 2122669 69 0.976
1.9–9.6 138072 1 0.218
>9.6 28385 0 0.000
<1.4 2031200 73 1.079

TRI 1.4–3.9 421180 12 0.856
3.9–7.8 159763 5 0.940
7.8–13.5 69390 0 0.000
>13.5 21495 0 0.000

TWI

<6.25 1087667 24 0.663
6.25–8.57 1013529 30 0.889
8.57–11.97 465805 18 1.161

>11.97 136023 18 3.975

Distance to stream
(m)

<100 645017 48 2.235
100–200 486406 15 0.926
200–300 435933 9 0.620
300–400 297487 7 0.707

>400 838184 11 0.394

Drainage density
(km/km2)

<0.89 670956 9 0.403
0.89–1.25 1133824 27 0.715
1.25–1.73 696610 26 1.121

>1.73 201639 28 4.171

Rainfall (mm)

<66.3 615156 8 0.391
66.3–84.9 1046810 54 1.549
84.9–111.5 904755 28 0.929

111.5–149.9 86955 0 0.000
>149.9 49353 0 0.000

Distance to road
(m)

<500 142666 32 6.738
500–1000 134376 8 1.788
1000–1500 129321 1 0.232
1500–2000 125196 4 0.960

>2000 2171485 45 0.622

NDVI
<0.043 1279439 29 0.679

0.043–0.132 1417082 61 1.290
>0.132 873 0 0.000

Lithology

A 578105 11 0.571
B 27122 2 2.213
C 34563 0 0.000
D 439618 22 1.502
E 193927 13 2.011
F 1427087 42 0.883
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Table 4. Cont.

Factors Classes Pixels in Domain Number of Gullies Bel

Agriculture 2353 0 0.000
LU/LC Bareland 20180 0 0.000

Kavir 806162 46 1.712
Poorrange 1460908 37 0.760

Rock 296104 5 0.507
Saltlake 99897 2 0.601
Saltland 13808 0 0.000
Wetland 1010 0 0.000

Bad Lands (a) 241417 3 0.373
Rock Outcrops/Entisols

(b) 495473 13 0.787

Soil type Rocky Lands (c) 134508 0 0.000
Salt Flats (d) 469856 8 0.511
Aridisols (e) 3622 0 0.000

Entisols/Aridisols (f) 1355545 66 1.461

3.2. Susceptibility Mapping

The application of FLDA, LMT and NBTree and the corresponding ensembles with RS meta
classifier is summarized in Figure 5, where each susceptibility map is shown. The three basic models
show significantly different patterns, especially the NBTree where the maps reproduce the patterns
shown in the road network for the central region and the patterns shown in the distance to stream for
the majority of the peripheral areas (see Figure 5).

The FLDA and the LMT produce smoother susceptibility estimates although the LMT is much
stricter in depicting high and low probability areas. These graphical indications can be used as
diagnostic tools to describe how rigidly each classification is performed. Machine learning algorithms
are widely known for their classification capacity, albeit some issues can arise when they are used for
prediction because to reach such extreme classification performance, they lose some flexibility over
unknown instances. However, this appeared not to be the case in this work, for the actual prediction
performed better than the model built with the training set (as will be discussed in the next section).

What stands out the most in observing the ensemble-driven susceptibility maps is that the models
behaved very differently when combined with the Random SubSpace. The RS-FLDA was essentially
unchanged with respect to the original FLDA. The RS-LMT strongly smoothed the patterns shown
in the initial LMT map, and the most interesting effects are shown in the RS-NBTree. In this case,
the gully-prone patterns were further specialized towards susceptible conditions. By specialized,
we referred to the original smooth trend towards gully erosion conditions, which became much more
confined to a narrow range of high susceptibility. This is particularly evident in the RS-NBTree map,
where the very highly susceptible zones corresponding to the road corridors shown in the NBTree
map became even narrower in the RS-NBTree. This implies that the ensemble procedure improved
the ability of the simpler models to recognize gully-prone conditions. We numerically translate this
“narrowing” effect in Table 5, where the NBTree is shown to have its very high susceptibility class
shrunk when combined with the Random SubSpace. In Table 5, the behavior described based on the
susceptibility maps for the FLDA and LMT (plus ensemble) are also numerically confirmed. The former
class frequencies do not change substantially from FLDA to RS-FLDA, and the LMT became more
normally distributed in the RS-LMT.
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Table 5. Area and percentage of susceptibility classes in different models.

Model Classes Area % Model Classes Area %

LMT

Very Low 570.19 23.44

RS-LMT

Very Low 460.15 18.92
Low 612.51 25.18 Low 688.42 28.30

Moderate 543.93 22.36 Moderate 606.83 24.94
High 409.67 16.84 High 432.77 17.79

Very High 296.42 12.18 Very High 244.56 10.05

FLDA

Very Low 267.42 10.99

RS-FLDA

Very Low 232.46 9.56
Low 603.25 24.80 Low 525.06 21.58

Moderate 716.31 29.44 Moderate 749.11 30.79
High 580.03 23.84 High 603.13 24.79

Very High 265.72 10.92 Very High 322.95 13.28

NBTree

Very Low 510.48 20.98

RS-NBTree

Very Low 923.20 37.95
Low 805.93 33.13 Low 693.29 28.50

Moderate 141.55 5.82 Moderate 369.36 15.19
High 423.87 17.42 High 294.96 12.13

Very High 550.90 22.65 Very High 151.59 6.23
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3.3. Model Performance

We initially assessed each model using ROC curves. Figure 6 summarizes the ROCs for each of
the six models, both for the calibration (panel a) and validation (panel b) subsets. We recall here that
the greater sparsity in the validation ROCs was due to the smaller number of data points. However,
even though the calibration model is trained to describe gully-prone conditions solely based on the
corresponding subset, the validation performances were even better (see Table 6). This must be a
data specific feature because, generally, any training model outperformed the testing one. However,
such behavior suggests that the gully-prone conditions in the area are quite consistent. In addition to
the considerations above, we further examined both the changes between the simple and ensemble
models as well as considering additional performance metrics. In fact, the ensemble models consistently
outperformed the single ones, with the overall best being the validation RS-NBTree (AUC = 0.898) set.
This is an interesting case where the calibration and validation performances are ranked differently
among the ensemble models. In fact, the RS-NBTree is the worst model when tested with the training
subset. This behavior may indicate a greater flexibility of the RS-NBTree compared to the other two
models. In terms of auxiliary metrics, we also reported the Kappa and the TSS in Table 6. There,
the relative ranks and the overall classification of model performance remain unchanged. The K
suggests a substantial agreement across all models with a clear spike close to perfect prediction
uniquely associated with RS-NBTree (K = 0.75). Furthermore, albeit a clear classification for the TSS
has not been defined, several studies define high performances as anything above the 0.5 threshold
(see [59]). Therefore, similar considerations to the one made for the AUC can be confirmed even from
cutoff-dependent metrics.Remote Sens. 2018, 10, x FOR PEER REVIEW    19  of  25 
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Table 6. Validation of Results.

Models
AUC Kappa TSS

SRC PRC SRC PRC SRC PRC

FLDA 0.763 0.755 0.657 0.650 0.571 0.50
LMT 0.677 0.766 0.672 0.665 0.559 0.531

NBTree 0.666 0.777 0.658 0.670 0.501 0.541
RS-FLDA 0.777 0.810 0.652 0.676 0.539 0.552
RS-LMT 0.742 0.859 0.643 0.702 0.539 0.604

RS-NBTree 0.780 0.898 0.682 0.748 0.618 0.697
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4. Discussion and Conclusions

4.1. General Overview and Novelty

In the last decade, ensemble models have increasingly been applied in various scientific fields,
which indicates their usefulness in improving predictive performance and reducing overfit with respect
to single classifiers [9,74].

The novel idea behind the ensemble model is that any model is affected by two main sources of
bias. The first one is inherent to the data one uses. For instance, incomplete inventories can heavily
bias a model. Let us assume that we only had mapped gullies in proximity to the road network, the
use of this biased dataset would have led to different associations with respect to the predisposing
factors and hence, would have produced a different susceptibility pattern. Therefore, the best way to
tackle this issue is either to use the best possible data and assume it to be an appropriate representation
of reality, or to disregard the use of predisposing factors that are sensitive to the bias (in this theoretical
example the distance to road should be removed). The second source of bias is caused by the method
one adopts to model the gully erosion susceptibility. In fact, no matter how simple or complex a model
may be, it performs in a way that is unique to the method itself. Therefore, from a wider perspective,
each method, to some extent, leads to a different data treatment and susceptibility result. One way
to cope with this methodological bias is to create a multi-model or ensemble model environment.
In fact, the combination of more than one model helps to generalize the predictive results. A better
generalization in the context of prediction can lead any given model to adapt to the new validation
dataset, therefore reducing overfitting issues at the calibration stage and increasing performance during
the validation one.

In this work, our results confirm both strengths of such a method. The dataset used for the
analyses was repeatedly fed to each algorithm. Hence, changes in performance are unique due to the
difference in the way the data is modeled.

4.2. Methodological Considerations

Our ensemble models consistently outperformed the corresponding simple models. Of the
ensembles, the RS-NBTree performed significantly better than the other two. This is an important
indicator and confirmation of how merging different results can improve the model flexibility. However,
it is also important to note how each of the models we tested proved to be flexible enough without
the intervention of the Random SubSpace with respect to the training and validation set. In fact,
the Fisher’s linear discriminant function did not show any performance variation between training
and testing in all metrics we explored. In any other case, this would already be an achievement but,
furthermore, the other two methods we tested showed an improvement when predicting the unknown
gully erosion dataset using the FLDA model. Conversely, the LMT and NBTree both demonstrated a
greater adaptability, being able to explain the validation set even better than the calibration. However,
of the two methods, the NBTree performed better, especially when combined with the Random
SubSpace [75].

An NBTree is a combination of the decision tree (DT) and naïve Bayes (NB) algorithms, which are
effective classifiers for classification problems [76]. However, the performance of an NBTree depends on
the independence assumption [77]. Accordingly, ensemble (meta) classifiers such as the RS technique
could improve the performance of single (weak) classifiers and enhance the results of the goodness-of-fit
and prediction accuracies [77].

The RS meta classifier has already been reported to be a strong tool to build a reliable ensemble
model, even compared to other ensembles [78]. In our case, the results we obtained are well in line with
other studies, such as Shirzadi et al. [76], Pham et al. [79], Jebur et al. [80], Bui et al. [81], Bui et al. [82],
Chen et al. [83], Pham et al. [84] and Hong et al. [85], where the ability of these meta-classifier and
ensemble classifier models to reduce overfit and improve the accuracy has already been highlighted.
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4.3. Applicability

Our results showed that the models’ performance could contribute valuable information for
local planners. Since the arid to semi-arid environment in Iran can change quite rapidly from one
catchment to another, be it in terms of temperatures or precipitation regimes, or simply in the landscape
arrangement, it is especially important to have accurate and robust models to support decision
making [31]. Therefore, greater model flexibility can support the choice of one method over another.
We extended the usual performance assessment (area under the ROC curve) to include additional
metrics (Cohen’s Kappa and True Skill Statistics), more versed in summarizing the classification of
positives and negatives. Nevertheless, the three metrics reached a similar conclusion. Therefore,
although we cannot generalize, for the present case it appears that the AUC alone would have been
enough, which also justifies its adoption over any other metrics in the literature [74].

4.4. Interpretability

Concerning the association between gully erosion occurrences and causative factors, the patterns
highlighted by the EBF appeared to be realistic and geomorphologically sound [9]. The primary
contributors to gullying corresponded to hydrological or hydrologically related parameters. A clear
conceptual scheme could even be drawn where the distance to road drives the initial runoff into the
neighboring drainage and landscape incisions (distance to stream) where the combined action of the
erosive power of running water (stream power index) and the tendency to drive and retain that water
in a given location (topographic wetness index) set the conditions for gully erosion under climatic
stress (rainfall). Ultimately, the conceptual scheme is completed by including eastward facing regions
where a conglomeratic bedrock upwardly transitions to soluble soils rich in salt crusts exposed by
weathering due to lack of vegetation protection.

Being able to draw such detailed conceptual schemes is the core of any study where causative
relations between factors and gullies are explored. In fact, susceptibility maps can point out regions
where actions should be taken to reduce or prevent gully erosion. However, the decision on what actual
properties of the system should be addressed comes from understanding those that play a major role.

4.5. Summary and Relevance in Arid to Semi-arid Environments

The Iranian scientific community has recently focused on soil erosion. More specifically, they
focused on gully erosion processes in Iran with the main goal of creating susceptibility models at the
catchment scale. Our work aligns with this broader theme by testing three machine learning tools
(FLDA, LMT and NBTree) and their “ensembled” extensions combined with RS, leaving the factors’
influence interpretation to EBF. The NBTree-RS showed flexibility far greater than that of the other
methods tested in this work, and even compared to other published results. This is an important finding
because a model able to adapt and predict an unknown dataset can support transferability studies.
This type of application essentially builds models in a given region where data is relatively rich and
predicts gully-prone conditions in regions where data is lacking, either because of missing processes or
missing inventory maps. At the same time, EBF provided a clear picture of which factors are promoting
gullying within the study area. This is an additional strength of EBF because implementing remediation
practices relies on prioritizing investments over specific tasks. For instance, in this work, hydrological
properties influence gullies to a greater extent than the other factors do. Therefore, investments can be
made to control overland water fluxes. Overall, this work originated out of an Iranian scientific need,
but its applicability and considerations are much more general. For instance, ensemble models do
make a difference. The general perspective interprets the strength of ensemble models to be two-fold.
The first states that “assembling” several models into one can smooth out specific biases resulting
from the algorithmic structure. The second highlights “assembling” to be an efficient way to make a
single model able to deal with large variations in the data, especially for prediction. In this study, we
confirmed the second statement, for every single model we tested was significantly improved when
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combined with the RS meta classifier. Specifically, the performance of the NBTree-RS model supports
its use in other geographic contexts, also for transferability purposes.
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