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Abstract: Mapping hydrothermal alteration minerals using multispectral remote sensing satellite
imagery provides vital information for the exploration of porphyry and epithermal ore mineralizations.
The Ahar-Arasbaran region, NW Iran, contains a variety of porphyry, skarn and epithermal ore
deposits. Gold mineralization occurs in the form of epithermal veins and veinlets, which is associated
with hydrothermal alteration zones. Thus, the identification of hydrothermal alteration zones is
one of the key indicators for targeting new prospective zones of epithermal gold mineralization
in the Ahar-Arasbaran region. In this study, Landsat Enhanced Thematic Mapper+ (Landsat-7
ETM+), Landsat-8 and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
multispectral remote sensing datasets were processed to detect hydrothermal alteration zones
associated with epithermal gold mineralization in the Ahar-Arasbaran region. Band ratio techniques
and principal component analysis (PCA) were applied on Landsat-7 ETM+ and Landsat-8 data to
map hydrothermal alteration zones. Advanced argillic, argillic-phyllic, propylitic and hydrous silica
alteration zones were detected and discriminated by implementing band ratio, relative absorption
band depth (RBD) and selective PCA to ASTER data. Subsequently, the Bayesian network classifier
was used to synthesize the thematic layers of hydrothermal alteration zones. A mineral potential
map was generated by the Bayesian network classifier, which shows several new prospective zones
of epithermal gold mineralization in the Ahar-Arasbaran region. Besides, comprehensive field
surveying and laboratory analysis were conducted to verify the remote sensing results and mineral
potential map produced by the Bayesian network classifier. A good rate of agreement with field
and laboratory data is achieved for remote sensing results and consequential mineral potential map.
It is recommended that the Bayesian network classifier can be broadly used as a valuable model for
fusing multi-sensor remote sensing results to generate mineral potential map for reconnaissance
stages of epithermal gold exploration in the Ahar-Arasbaran region and other analogous metallogenic
provinces around the world.
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1. Introduction

Hydrothermal alteration minerals such as iron oxide/hydroxides, Al-OH, Fe,Mg-OH, S-O, Si-OH
and carbonate minerals show indicative spectral absorption signatures in the visible near-infrared
(VNIR) and the shortwave infrared (SWIR) regions [1–5]. Multispectral and hyperspectral satellite
imagery with appropriate spatial and spectral resolution is capable of recording the spectral absorption
signatures of alteration minerals in the VNIR and SWIR spectral bands, which can be utilized to map
and remotely detect hydrothermal alteration mineral zones associated with ore mineraliztions [6–9].
Recently, the identification of alteration mineral zones using remote sensing sensors is effectively and
extensively used for prospecting porphyry copper, epithermal gold, uranium and massive sulfide
deposits in metallogenic provinces around the world [10–20].

The Landsat-7 ETM+ imagery was used for mapping hydrothermal alteration zones related
to epithermal gold and porphyry copper deposits in the reconnaissance stages of copper/gold
exploration. The VNIR spectral bands of Landsat-7 ETM+ were utilized to map iron oxides/hydroxide
minerals (gossan), while, SWIR spectral bands were used to detect hydroxyl-bearing minerals and
carbonates [21–24]. Band ratio of 3/1 is able to identify iron oxides/hydroxide minerals (hematite, jarosite
and limonite) due to strong reflectance in band 3 (0.63–0.69 µm) and absorption features in band 1
(0.45–0.52µm) [23]. Band ratio of 5/7 is sensitive to hydroxyl-bearing minerals and carbonates because of
reflectance features in band 5 (1.55–1.75 µm) and strong absorption in band 7 (2.09–2.35 µm) [23,25–27].
Equivalent bands of Landsat-8, bands 2 and 4 responsive to iron oxides/hydroxides and bands 6 and 7
sensitive to hydroxyl-bearing minerals and carbonates, were also extensively used for hydrothermal
alteration mineral mapping in metallogenic provinces [12,16,18,19,28]. Discrimination of particular
alteration zones and minerals (i.e., argillic, phyllic propylitic zones and muscovite, chlorite and
kaolinite) using Landsat-7 ETM+ and Landsat-8 VNIR and SWIR spectral bands is challenging due to
position, number and the broad extent of the bands [28,29].

Distinguishing hydrothermal alteration zones or specific mineral assemblages as an indicator
of high-economic potential zones for exploring ore mineralizations is significant [30,31]. For
instance, discriminating phyllic zone within the inner shell of mineralization for porphyry copper
exploration is important and identification of advanced argillic zone situated near to hydrothermal
mineralization system for epithermal gold exploration is essential [32–34]. ASTER multispectral satellite
imagery is particularly useful for discriminating hydrothermal alteration zones associated with ore
mineralizations [6,35–37]. Three VNIR spectral bands of ASTER (0.52 to 0.86 µm) are used for detecting
iron oxide/hydroxide minerals [6,35]. Phyllic, argillic and propylitic zones are recognizable using six
SWIR spectral bands of ASTER (1.6 to 2.43 µm) [35]. The phyllic zone containing illite/muscovite
(sericite) and strong Al-OH absorption feature at 2.20 µm is detectable by band 6 of ASTER. The argillic
zone (kaolinite/alunite) has Al-OH absorption feature at 2.17 µm, which is coincident with band 5 of
ASTER. The propylitic zone comprising epidote, chlorite and calcite shows absorption features around
2.35 µm, which is corresponded with band 8 of ASTER [35–39].

Obtaining information from multi-sensor remote sensing satellite data can produce relevant
results for detailed mapping of hydrothermal alteration zones [12]. The integration of the multi-sensor
remote sensing results using geostatistical techniques can quickly produce a mineral potential map,
which indicates the high potential zones of hydrothermal ore mineralizations [40]. Mineral potential
map of a region is generally realized as the predictive classification of each spatial unit contains a
particular combination of spatially coincident predictor patterns as mineralized or barren zones [41,42].
A Bayesian network is a type of statistical model (probabilistic graphical model), which represents a
set of variables and their conditional dependencies through a Directed Acyclic Graph (DAG) [41,43,44].
It predicts the likelihood that anyone of several possible known causes was the contributing factor [45].
Therefore, the Bayesian network is a suitable model for fusing thematic layers derived from multi-sensor
remote sensing satellite data to generate a mineral potential map.

In this study, Landsat-7 ETM+, Landsat-8 and ASTER multispectral remote sensing datasets
were used to identify hydrothermal alteration zones associated with epithermal gold mineralization
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and producing thematic layers, which were afterward synthesized in the Bayesian networks for
mineral potential mapping in the Ahar-Arasbaran region, NW Iran (Figure 1). This region is a
well-endowed terrain hosting numerous known epithermal gold deposits, several porphyry and
skarn Cu-Mo deposits, Fe skarn deposits, Cu-Au porphyry deposits and many other Cu-Mo-Au vein
mineralizations [46–50]. The deposits are associated with extensive hydrothermal alteration mineral
zones such as iron oxide/hydroxides, advanced argillic, argillic, phyllic and propylitic [48,51,52]. The
Ahar-Arasbaran region has a high potential for exploring new prospective zones of epithermal gold
and many other ore mineralizations. Pazand et al. [52] used ASTER satellite data for hydrothermal
alteration mapping in the Ahar area, NW Iran. Some geo-referenced hydrothermal alteration maps were
produced using RBD (relative absorption band depth), principal component analysis (PCA), minimum
noise fraction (MNF) and matched filtering (MF) image processing techniques for reconnaissance stages
of porphyry copper exploration in the Ahar area. Furthermore, Pazand and Hezarkhani [48] generated
a favorability map for Cu porphyry mineralization using fuzzy modeling in the Ahar–Arasbaran zone,
NW Iran. There is no comprehensive remote sensing research available for mapping hydrothermal
alteration zones in the Ahar-Arasbaran region using multi-sensor satellite imagery at a regional scale.
This study characterizes an extensive remote sensing analysis using Landsat-7 ETM+, Landsat-8 and
ASTER datasets, detailed fieldwork and laboratory analysis for mineral potential mapping. Therefore,
the primary purposes of the research are: (1) to map hydrothermal alteration mineral zones using
Landsat-7 ETM+, Landsat-8 and ASTER datasets by implementing the band ratio, PCA, RBD and
selective PCA image processing techniques; (2) to generate mineral potential map by fusing the
alteration thematic layers using the Bayesian networks; and (3) to verify the high potential zones by
checking the detailed global positioning system (GPS) surveying in the field and analyzing several
microphotographs of hydrothermal alteration minerals and gold mineralization and X-ray diffraction
(XRD) analysis of collected rock samples from alteration zones.

2. Geology of the Ahar-Arasbaran Region

The Ahar-Arasbaran region covers an area (approximately 5000 km2), which is located between
latitudes 38◦07′N and 38◦52′N and longitudes 46◦15′E and 47◦30′E (Figure 1). This zone is a part of
Lesser Caucasus metallogenic zone and corresponding to tectono-magmatism activity from Jurassic to
Quaternary [46,47,53,54]. The volcano-plutonic belt of Arasbaran-Lesser Caucasus is a mountainous
and uplifted region that trending NW-SE from Georgia (Republic of Azerbaijan) to the Talesh region
(Iran) [50]. Magmatic rocks in the Ahar-Arasbaran region containing tholeiitic, calc-alkaline, high
calcium calc-alkaline, shoshonitic, adakitic, alkaline sodic and potassic rocks, which are formed in a
continental margin of a subduction zone (subduction to post-collision stages) [50]. Cretaceous units
(limestone and shale), flysch deposits, Paleocene and Eocene volcanic rocks are also exposed in the
study area (Figure 1). Several intrusive bodies having different sizes are penetrated in the Eocene
and Cretaceous volcanic-sedimentary rocks and caused folding, alteration and mineralization [49,51].
Structural trends of folds, faults, dykes and veins are mostly NW-SE, E-W and NE-SW, which show the
main stresses that affected the study area [50,51].

The intrusion of the Oligo-Miocene batholiths into the Cretaceous to Eocene sedimentary and
volcano-sedimentary deposits along with hydrothermal fluids is formed intensive alteration halos in
the Eocene volcanic rocks [55]. The alteration zones such as argillic, silica and alunite are associated
with Cu, Au, Mo, Ag, Pb and Zn mineralizations [49]. Moreover, several skarn zones are formed in the
contact zone of intrusive masses with Cretaceous limestone [51]. A variety of ore mineralization zones
were identified in the Ahar-Arasbaran region, including Fe, Cu, Pb-Zn, Cu-Au, Cu-Mo, Au-Ag, Fe-Au,
which occurred in the form of sprains, veins, stokes and in relation to the skarn zones [49,51]. The gold
mineralization in the study area is observed in the form of epithermal veins [55]. The Masjed Daghi
(Siahrood) and AliJavad valley (Anjerd) are considered to be Au-Cu porphyry deposits. The Sharaf-abad,
Hize-jan, Nabi-jan, Zailig, Miveh-roud, Safi-Khanloo, Noqdouz, Anniqh and Khoyneh-roud are known
as epithermal gold deposits in the study area [55].
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Figure 1. Geological map of the Ahar-Arasbaran region. Modified from five 1:100,000 geological map
sheet provided by the Geological Survey of Iran [56]. Abbreviation to epithermal gold mineralization:
ANI = Annigh; AST = Astamal; AND = Andiryan; KLJ = Kalijan; SHF = Sharaf-abad; HIZ = Hize-jan;
KYN = Khoyneh-roud; DYM = Day-mamagh; NAB = Nabi-jan; ARP1 = Arpaligh1; ARP2 = Arpaligh2;
YRL = Yaralojeh; ANJ = Anjerd; ALV = Alavigh; JVS = Javan-sheykh; SHL = Shaleh-boran;
ASB = Asb-abad; SNJ = Sonajil; YSF = Yosoufloo; NOG = Noghdouz; NYZ = Niyaz; ZY1 = Zailigh1;
ZY2 = Zailigh2; KH1 = Khiarloo1; KH2 = Khiarloo1.

3. Materials and Methods

3.1. Remote Sensing Data and Pre-Processing

The Landsat-7 ETM+, Landsat-8 and ASTER satellite remote sensing datasets were used in this
study. Technical characteristics of Landsat-7 ETM+, Landsat-8 and ASTER remote sensing sensors are
summarized in Table 1.
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Table 1. Technical characteristics of the Landsat-7 ETM+, Landsat-8 and ASTER remote sensing
sensors [23,57–59].

Landsat 7
Enhanced Thematic Mapper

Plus (Landsat-7 ETM+)

Bands Wavelength (µm) Resolution (m)

Band 1—Blue 0.45–0.52 30

Band 2—Green 0.52–0.60 30

Band 3—Red 0.63–0.69 30

Band 4—Near Infrared (NIR) 0.77–0.90 30

Band 5—Shortwave Infrared (SWIR) 1 1.55–1.75 30

Band 6—Thermal 10.40–12.50 60 * (30)

Band 7—Shortwave Infrared (SWIR) 2 2.09–2.35 30

Band 8—Panchromatic 0.520–0.900 15

Landsat 8
Operational Land Imager (OLI)

and Thermal Infrared Sensor
(TIRS)

Bands Wavelength (µm) Resolution (m)

Band 1—Ultra Blue (coastal/aerosol) 0.435 –0.451 30

Band 2—Blue 0.452–0.512 30

Band 3—Green 0.533–0.590 30

Band 4—Red 0.636–0.673 30

Band 5—Near Infrared (NIR) 0.851–0.879 30

Band 6—Shortwave Infrared (SWIR) 1 1.566–1.651 30

Band 7—Shortwave Infrared (SWIR) 2 2.107–2.294 30

Band 8—Panchromatic 0.503–0.676 15

Band 9—Cirrus 1.363–1.384 30

Band 10—Thermal Infrared (TIRS) 1 10.60–11.19 100 * (30)

Band 11—Thermal Infrared (TIRS) 2 11.50–12.51 100 * (30)

ASTER
Advanced Space borne
Thermal Emission and
Reflection Radiometer

Band Label Wavelength (µm) Resolution (m) Description

B1 VNIR_Band1 0.520–0.60 15 Visible green/yellow

B2 VNIR_Band2 0.630–0.690 15 Visible red

B3N VNIR_Band3N 0.760–0.860 15
Near infrared

B3B VNIR_Band3B 0.760–0.860 15

B4 SWIR_Band4 1.600–1.700 30

Short-wave infrared

B5 SWIR_Band5 2.145–2.185 30

B6 SWIR_Band6 2.185–2.225 30

B7 SWIR_Band7 2.235–2.285 30

B8 SWIR_Band8 2.295–2.365 30

B9 SWIR_Band9 2.360–2.430 30

B10 TIR_Band10 8.125–8.475 90

Long-wave infrared or
thermal IR

B11 TIR_Band11 8.475–8.825 90

B12 TIR_Band12 8.925–9.275 90

B13 TIR_Band13 10.250–10.950 90

B14 TIR_Band14 10.950–11.650 90

* The 60 m thermal band of Landsat-7 ETM+ is resampled and co-registered to the 30 m VNIR and SWIR bands. The
100 m TIRS bands are resampled and co-registered to the 30 m OLI bands.

A Landsat-7 ETM+ scene (Path/Raw: 168/33) covering the Ahar-Arasbaran region was acquired
on 15 June 2001. A level 1T (terrain corrected) Landsat 8 scene (Path/Raw: 168/33) was also acquired
on 10 June 2016 for the study area. Seven level 1B ASTER scenes covering the study area were
acquired from 8 to 29 June 2002–2004. The data were obtained from the U.S. Geological Survey’s
Earth Resources Observation System (EROS) Data Center (EDC) (https://earthexploere.usgs.gov/ and
https://glovis.usgs.gov). The scenes were cloud-free and have been already georeferenced to the
UTM zone 38 North projection using the WGS-84 datum. For converting Landsat-7 ETM+ digital
numbers to spectral radiance or exoatmospheric reflectance (reflectance above the atmosphere), the
Landsat Calibration technique was adopted from Chander et al. [60]. This technique uses the published
post-launch gain and offset values [61,62]. The mathematical details of the technical performance
can be found in Chander et al. [60]. For Landsat 8 and ASTER datasets, Internal Average Relative
Reflectance (IARR) was utilized. The IARR calibration method normalizes images to a scene average
spectrum [61,63]. This is particularly effective for reducing imaging spectrometer data to relative

https://earthexploere.usgs.gov/
https://glovis.usgs.gov
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reflectance in an area where no ground measurements exist and little is known about the scene [61,63].
It works best for arid areas with no vegetation. The IARR calibration is performed by calculating an
average spectrum for the entire scene and using this as the reference spectrum. Apparent reflectance is
calculated for each pixel of the image by dividing the reference spectrum into the spectrum for each
pixel. The atmospheric correction was implemented to ASTER data after Crosstalk correction [64].
Moreover, the 15 m VNIR bands of ASTER were resampled to the 30 m SWIR bands using the cubic
convolution technique. A masking procedure was applied to the remote sensing datasets for removing
the effects of vegetation and Quaternary deposits. Normalized Difference Vegetation Index (NDVI) was
calculated for the remote sensing datasets. As a result, a masking procedure was executed to the remote
sensing datasets for eliminating the influences of sparse vegetation in the study area. For Quaternary
deposits, we used geological map of the study area to identify the location of the Quaternary units, then
a masking procedure was implemented to the remote sensing datasets. The ENVI (Environment for
Visualizing Images, http://www.exelisvis.com) version 5.2 and ArcGIS version 10.3 (Esri, Redlands, CA,
USA) software packages were employed for processing Landsat-7 ETM+, Landsat-8 and ASTER data.

3.2. Image Processing Techniques

The main objective of image processing techniques implemented in this analysis is to map
hydrothermal alteration zones for generating thematic layers from multi-sensor remote sensing satellite
datasets. Then, the thematic layers are fused using a Bayesian network model for producing a mineral
potential map of the Ahar-Arasbaran region. Fieldwork and laboratory analysis are used to verify the
results. A view of the methodological flowchart applied in this study is shown in Figure 2.

Figure 2. An overview of the methodological flowchart applied in this analysis.

http://www.exelisvis.com
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3.2.1. Band Ratio

The band ratio technique is one of the most applicable image processing techniques for mapping
hydrothermal alteration minerals and zones such muscovite, jarosite, gossan, advanced argillic,
argillic-phyllic, propylitic and hydrous silica-affected zones [23,39,65,66]. The digital number (DN)
value of a band is partitioned by the DN value of other band, which highlights particular spectral
features related to minerals or materials that planned to map [23]. Relative Absorption Band Depth
(RBD) uses three-point ratio formulation for detecting typical absorption features related to a specific
mineral or alteration zone [67]. For a specific absorption characteristic, the numerator is the sum of
the bands demonstrating the shoulders and the denominator is the band positioned adjoining the
absorption feature minimum [67]. Therefore, the absorption intensities attributed to Al-OH, Fe,Mg-OH,
Si-OH and CO3 can be formulated for mapping advanced argillic, argillic-phyllic, propylitic and
hydrous-silica alteration zones [35].

In this study, iron oxide-bearing minerals (gossan) were mapped using Landsat-7 ETM+ band
ratio of band 3/band 1, Landsat-8 band ratio of band 4/band 2 and ASTER band ratio of band 2/band 1,
respectively [23,39,68]. As mentioned before, iron oxide/hydroxide minerals contain diagnostic spectral
characteristics coincident with selected bands of different sensors [19,23,28,35]. Hydroxyl-bearing
(Al-OH and Fe,Mg-OH) and carbonates minerals were typically identified in the study region through
Landsat-7 ETM+ band ratio of band 5/band 7, Landsat-8 band ratio of band 6/band 7 and ASTER
band ratio of band 4/band 9, respectively [23,28,29,68]. The advanced argillic alteration (alunite and
kaolinite) contain strong absorption about 2.17 µm (corresponding band 5 of ASTER) [35], thus, ASTER
band ratio of band 4/band 6 was used to highlight the advanced argillic alteration zone [69] in the
study area. The argillic-phyllic alteration zone is mostly dominated by sericite (muscovite/illite), which
shows high absorption feature at 2.20 µm (equivalent to band 6 of ASTER) [35,36]. This alteration zone
was detected by applying ASTER band ratio of band 5/band 6 [36]. Moreover, the propylitic alteration
zone was mapped using ASTER band ratio of band 5/band 8 [35,36] in this analysis.

For detailed mapping of advanced argillic, argillic-phyllic, propylitic and hydrous silica-affected
alteration zones, four RBDs were adopted using SWIR bands of ASTER (Table 2). The RDB1 = (band 4 +

band 6)/band 5 for detecting advanced argillic zone, the RDB2 = (band 5 + band 7)/band 6 for identifying
argillic-phyllic zone [38,39], the RDB3 = (band 6 + band 9)/(band 7+ band 8) for discriminating
propylitic zone and RDB4 = (band 5 + band 8)/(band 6 + band 7) for mapping hydrous silica zone [70]
were implemented.

Table 2. The RBD indices applied for hydrothermal alteration mapping in the study area using
ASTER imagery.

Alteration Zone Mineral Assemblages RBD Band

Advanced Argillic Alunite-Kaolinite-Pyrophyllite (4 + 6)/5
Argillic-Phyllic Sericitic-Illite-Smectite (5 + 7)/6

Propylitic Epidote-Chlorite-Amphibole-Biotite (6 + 9)/(7 + 8)
Hydrous Silica Hydrous Silica-Jarosite-Sericite (5 + 8)/(6 + 7)

3.2.2. Principal Component Analysis

Principal Component Analysis (PCA) is a statistical approach that broadly and successfully used
for decorrelation and enhancing the spectral contrast in remote sensing imagery [71]. This method
transforms a number of correlated variables into several uncorrelated variables that termed PCs [72].
The eigenvector loadings (uncorrelated linear combinations) of variables were selected in a consistent
way that each PC contains a smaller variance of extracted linear combination, sequentially [71,73].
The eigenvector loadings include key information linked to spectral features, which are anticipated
from spectral bands of a remote sensing sensor [74]. For instance, a PC contains strong eigenvector
loadings for indicative bands (reflection and absorption bands) of an alteration mineral with opposite
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signs enhances that mineral as bright pixels (if loading is positive in reflection band) or dark pixels (if
loading is negative in reflection band) in the PC image [74,75].

In this study, the PCA method was implemented to some selected bands of Landsat-7 ETM+,
Landsat-8 and ASTER using a covariance matrix for mapping hydrothermal alteration minerals. For
identifying iron oxide-affected zones (gossan), bands 1, 3, 4 and 5 of Landsat-7 ETM+, bands 2, 4, 5
and 6 of Landsat-8 and bands 1, 2, 3 and 4 of ASTER were selected. The selected bands cover the iron
oxide/hydroxide spectral properties in the VNIR region [3–5]. The eigenvector matrix for the selected
bands and satellite sensors for mapping iron oxide/hydroxides are shown in Table 3A–C. Bands 1,
4, 5 and 7 of Landsat-7 ETM+, bands 2, 5, 6 and 7 of Landsat-8 and bands 1, 3, 4 and 6 of ASTER
were used for detecting hydroxyl-bearing minerals. These bands cover the reflectance and absorption
features of OH-minerals in the VNIR and SWIR regions [1,2]. Table 4A–C shows the eigenvector matrix
for the selected bands and satellite sensors for mapping hydroxyl-bearing minerals. The reflectance
properties and absorption intensities related to Al-OH, Fe,Mg-OH and CO3 can be mapped by ASTER
VNIR+SWIR bands [23,35,38]. Bands 1, 4, 6 and 7 of ASTER were utilized for mapping advanced
argillic zone. Bands 1, 3, 5 and 6 of ASTER were executed to detect argillic-phyllic zone. Bands 1, 3,
5 and 8 of ASTER were performed for discriminating propylitic alteration zone. Table 5A–C shows
eigenvector matrix for the selected bands of ASTER for mapping advanced argillic, argillic-phyllic and
propylitic alteration zones. After implementing the algorithms for all band ratios and PCAs, firstly the
obtained DN values were normalized, then the X+3S was used to obtain definite anomaly. It means all
the DN values showing the number more than the X+3S have been considered as target alteration
minerals and zones.

Table 3. The Eigenvector matrix values derived from principal component analysis (PCA) for mapping
iron oxide/hydroxides. (A) Bands 1, 3, 4 and 5 of Landsat-7 ETM+; (B) Bands 2, 4, 5 and 6 of Landsat-8;
and (C) Bands 1, 2, 3 and 4 of ASTER.

(A)

Eigenvector Band 1 Band 3 Band 4 Band 5

PCA 1 0.442 0.536 0.386 0.605
PCA 2 0.095 0.616 −0.771 −0.123
PCA 3 0.420 0.258 0.383 −0.780
PCA 4 0.786 −0.515 −0.328 0.091

(B)

Eigenvector Band 2 Band 4 Band 5 Band 6

PCA 1 0.399 0.444 0.544 0.587
PCA 2 −0.374 0.037 −0.555 0.741
PCA 3 −0.566 −0.510 0.614 0.201
PCA 4 0.616 −0.734 −0.126 0.253

(C)

Eigenvector Band 1 Band 2 Band 3 Band 4

PCA1 0.320 0.360 0.562 0.671
PCA2 0.265 0.506 −0.779 0.253
PCA3 −0.396 −0.539 −0.259 0.695
PCA4 0.817 −0.567 −0.092 −0.008
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Table 4. The Eigenvector matrix values derived from PCA for mapping hydroxyl-bearing minerals.
(A) Bands 1, 4, 5 and 7 of Landsat-7 ETM++; (B) Bands 2, 5, 6 and 7 of Landsat-8; and (C) Bands 1, 3, 4
and 6 of ASTER.

(A)

Eigenvector Band 1 Band 4 Band 5 Band 7

PCA 1 0.455 0.401 0.629 0.484
PCA 2 −0.002 −0.839 0.129 0.528
PCA 3 0.865 −0.130 −0.475 −0.086
PCA 4 −0.208 0.343 −0.599 0.692

(B)

Eigenvector Band 2 Band 5 Band 6 Band 7

PCA 1 0.388 0.529 0.573 0.490
PCA 2 0.294 0.698 −0.410 −0.506
PCA 3 0.841 −0.426 −0.298 0.142
PCA 4 −0.232 0.223 −0.643 0.694

(C)

Eigenvector Band 1 Band 3 Band 4 Band 6

PCA1 0.284 0.498 0.599 0.558
PCA2 0.062 −0.839 0.202 0.499
PCA3 0.839 0.011 −0.527 0.127
PCA4 0.457 −0.215 0.567 −0.649

Table 5. The Eigenvector matrix values derived from PCA for mapping advanced argillic, argillic-phyllic
and propylitic alteration zones using ASTER VNIR+SWIR bands. (A) Bands 1, 4, 6 and 7 for advanced
argillic zone mapping; (B) Bands 1, 3, 5 and 6 for argillic-phyllic zone mapping; and (C) Bands 1, 3, 5
and 8 for propylitic zone mapping.

(A)

Eigenvector Band 1 Band 4 Band 6 Band 7

PCA1 −0.28 −0.593 −0.553 −0.514
PCA2 −0.787 0.589 −0.08 −0.166
PCA3 −0.543 −0.549 0.509 0.382
PCA4 −0.089 0.003 −0.655 0.75

(B)

Eigenvector Band 1 Band 3 Band 5 Band 6

PCA1 0.297 0.512 0.551 0.586
PCA2 0.01 −0.845 0.366 0.389
PCA3 0.954 −0.15 −0.154 −0.207
PCA4 0.027 −0.004 −0.733 0.679

(C)

Eigenvector Band 1 Band 3 Band 5 Band 8

PCA1 0.307 0.528 0.568 0.552
PCA2 0.014 −0.832 0.341 0.438
PCA3 0.95 −0.154 −0.233 −0.142
PCA4 −0.059 0.073 −0.712 0.696

3.3. Bayesian Networks Model

A Bayesian network is an interpreted directed acyclic graph (DAG), which is able to model
uncertain relationships between variables in a complex system [76–79]. The mathematical concepts
of the Bayesian networks model can be summarized as follows [43,77]. The subclass x belongs to a
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class of a set of classesω1,ω2, . . . ,ωn, if a class is defined by the highest conditional probability. The
conditional probability is calculated using Equation (1):

P(ωi|x) =
P(ωi

∣∣∣x)P(ωi)

P(x)
, (1)

where P(x) is the non-conditional probability and P(ωi) is the prior probability of each class. The
prior probability is calculated by dividing the number of samples in each class by the total number of
samples [43]. In this method, a probability distribution function (PDF) is assigned for each class. Then,
the training data is exploited to estimate the parameters involved in the PDF. The covariance matrix
and the mean vector are calculated as the parameters of a Gaussian probability function provided that
the data is normally distributed [76]. In other words, it is mathematically formulated as follows:

gi(x) =
1

(2π)
m
2 |

∑
i |

1
2

exp
[

1
2 (x− µi)

T∑−1
i (x− µi)

]
× P(ω i)

i = 1, 2, . . . , c
(2)

In this equation (Equation (2)), m is the number of variables, which is added to µi and Σi of the
mean vector and an m*m covariance matrix of the ith class that calculated using Equations (3) and (4):

µi =
1
ni

ni∑
j=1

xji (3)

∑
i

=
1
ni

ni∑
j=1

(
xji − µi

)(
xji − µi

)T
. (4)

Bayesian networks model uses a structural graph known as a DAG to represent the knowledge
about different domains or random variables [41]. The DAG is defined by the nodes and the directed
edges. The former and the latter represent random variables and the relationship among variables,
respectively, as it is shown in Figure 3. As can be seen from the direction of the arrow in Figure 3, there
is a direct relationship between xi and xj. The xi (known as the parent node) is a dependent variable of
the xj (known as an offspring node) [43].

Figure 3. A schematic diagram depicting a general Bayesian network model [43].

There are different forms of Bayesian networks (See Reference [41] and references therein). One
of the most popular forms of Bayesian networks is Naive Bayes (NB) classifier [80,81]. It is a simple
structured algorithm with a single parent node and a number of offspring nodes [76,79,80]. A typical
NB classifier diagram is shown in Figure 4. It is not only straightforward and easy to construct but also,
no training procedure is required in the NB classifier [81]. The NB classifier undertakes comprehensive
conditional independence between characteristics, which is impracticable for several predictor patterns
utilized in mineral potential mapping [41]. In this study, the NB classifier was used for fusing the
thematic layers derived from Landsat-7 ETM+, Landsat-8 and ASTER satellite sensors for generating a
mineral potential map for the Ahar-Arasbaran region.
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Figure 4. A typical Naive Bayes classifier diagram [79].

3.4. Fieldwork Data and Laboratory Analysis

The locations of hydrothermal alteration zones and their spatial relation with epithermal gold
mineralization were systematically investigated using Global positioning system (GPS) survey in the
study area (several field campaigns from June to August 2018). A handheld GPS (Garmin, Etrex Vista
Hcx), with an average accuracy of 7 m, was used to record the hydrothermal alteration locations.
Numerous field photographs and rock samples (120 samples) were collected from the alteration
zones and ore mineralization. Rock samples were utilized for laboratory analysis to prepare thin and
polished sections of altered rocks and ore mineralization as well as X-ray diffraction (XRD) analysis.
Mineralogical compositions were analyzed using an Asenware AW-XDM 300 X-ray diffractometer
(voltage: 40 Kv, current: 30 mA, step time: 1s and step size: 0.05◦ 2θ) at the Zarazma Mineral Studies
Company, Tehran, Iran. Besides, the confusion matrix (error matrix) and Kappa Coefficient were
calculated for hydrothermal alteration mineral mapping derived from remote sensing analysis versus
field data.

4. Results

4.1. Generating Thematic Layers Using Multi-Sensor Remote Sensing Data

Figure 5A–C shows iron oxide/hydroxide zones (gossan) derived from 3/1 band ratio of Landsat-7
ETM+, 4/2 band ratio of Landsat-8 and 2/1 band ratio of ASTER, respectively. Figure 5A shows the
spatial distribution of iron oxide/hydroxide minerals derived from the Landsat-7 ETM+ band ratio as
red pixels. Most of the documented gold mineralizations are associated with iron oxide/hydroxide
zones (gossan), especially in the northern and northeastern parts of the study area. The spatial
distribution of iron oxide/hydroxide minerals in the Landsat-8 band ratio image (Figure 5B) is almost
similar to Landsat-7 ETM+ resultant image. But, it is extensive in some locations in the northwestern
and southeastern parts of the selected subset scene. Figure 5C shows the ASTER band ratio resultant
image. The surface abundance of iron oxide/hydroxides in this image is lower compared to the
Landsat-7 ETM+ and Landsat-8 results. However, the high concentration of iron oxide/hydroxides was
mapped in the northwestern part of the study area using the ASTER band ratio (Figure 5C). Regarding
the geological map of the Ahar-Arasbaran region (see Figure 1), iron oxide/hydroxide minerals were
mapped along with geological lineament features and igneous rocks (granite, granodiorite, biotite
granite, andesite, dasite and basalt), volcano sedimentary units and massive and bedded limestone.

Typically, hydroxyl-bearing (Al-OH and Fe,Mg-OH) minerals and carbonates zones were mapped
in Figure 6A–C using the 5/7 band ratio of Landsat-7 ETM+ (A), 6/7 band ratio of Landsat-8 (B)
and 4/9 band ratio of ASTER (C). The green pixels depict OH-alteration and carbonates, which are
normally concentrated in igneous rock (granite, granodiorite, biotite granite, andesite and dasite),
volcano sedimentary units and limestone. The OH-alteration minerals are more strongly mapped in
the Landsat-8 and ASTER resultant images compared to Landsat-7 ETM+ image (Figure 6A–C). Almost
all of the documented gold occurrences have an adjoining spatial relationship with hydroxyl-bearing
alteration minerals; it is particularly observable in the Landsat-8 resultant image (Figure 6B). It may
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be due to the high signal to noise radiometer performance of Landsat-8 data, which allows detecting
subtle variation in surface conditions [58].

Figure 5. Spatial distribution of iron oxide/hydroxide zones (gossan) in the study area overlaid on hill
shade. (A) The 3/1 band ratio image of Landsat-7 ETM+; (B) the 4/2 band ratio image of Landsat-8;
(C) the 2/1 band ratio image of ASTER.

Figure 6. Spatial distribution of hydroxyl-bearing minerals and carbonates in the study area overlaid on
hill shade. (A) The 5/7 band ratio image of Landsat-7 ETM+; (B) the 6/7 band ratio image of Landsat-8;
(C) the 4/9 band ratio image of ASTER.
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ASTER band ratios were used to specifically map the surface distribution of hydrothermal
alteration zones in the study area. Figure 7A–C shows the advanced argillic alteration zone derived
from 4/6 (A), the argillic-phyllic alteration zone derived from 5/6 (B) and the propylitic alteration
zone derived from 5/8 (C), respectively. Concerning the geology map of the study area (see Figure 1),
the advanced argillic alteration zone is corresponded to igneous, volcano sedimentary units and
limestone; the argillic-phyllic alteration zone is associated with granite, granodiorite, andesite, dasite,
rhyolite, trachyte, limestone units and sedimentary rocks; the propylitic alteration zone is typically
concentrated with andesite, dasite, volcano sedimentary units and limestone (Figure 7A–C). The
high surface abundance of argillic-phyllic and propylitic alteration zones was mainly mapped in the
northwestern part of the study area. The spatial distribution of the advanced argillic alteration zone
(Figure 7A) is intensely matched with hydroxyl-bearing mineral zones that mapped by Landsat-7
ETM+ and Landsat-8 band ratio images (Figure 6A,B). The documented gold mineralizations have
closer spatial relationship with the advanced argillic alteration zone compared to the argillic-phyllic
and propylitic alteration zones in the study area.

Figure 7. Spatial distribution of hydrothermal alteration zones in the study area overlaid on hill shade.
(A) The advanced argillic alteration zone (4/6 band ratio image of ASTER); (B) the argillic-phyllic
alteration zone (5/6 band ratio image of ASTER); (C) the propylitic alteration zone (5/8 band ratio image
of ASTER).

Detailed mapping of advanced argillic, argillic-phyllic, propylitic and hydrous silica-affected
alteration zones was obtained using the RDB1 (4 + 6/5), RDB2 (5 + 7/6), RDB3 (6 + 9/7 + 8) and
RDB4 (5 + 8/6 + 7) of ASTER (Figure 8). Red pixels show advanced argillic zones, which are mostly
distributed in the eastern and southeastern parts of the selected subset scene. Comparison to the
geological map of the study area (see Figure 1), suggests that the advanced argillic zones are typically
associated with granite and granodiorite rocks. Some of the documented gold mineralizations show
close spatial relationship with the advanced argillic zones, especially in the eastern part of the study area
(Figure 8). Argillic-phyllic alteration zone depict as green pixels. This alteration zone is distributed in
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many parts of the study area, which are normally associated with andesite, dasite, volcano sedimentary
units and sedimentary rocks (e.g., sandstone, siltstone, marl and conglomerates). Due to high content of
detrital clays (montmorillonite, illite and kaolinite) in the sedimentary units, argillic-phyllic alteration
zone could also be mapped with exposures of sedimentary rocks [35]. The surface abundance of
hydrous silica-affected alteration zone (blue pixels) is low and mostly detected in the southwestern and
northwestern parts of the study zone (Figure 8). The hydrous silica zone was commonly identified with
sedimentary units (conglomerates and sandstone), although this alteration zone is correspondingly
adjacent to some of the gold mineralization zones in the northwestern part of the study area. Propylitic
zone (yellow pixels) was strongly mapped in the selected subset scene (Figure 8). With regard to the
geology map of the study area (see Figure 1), the spatial distribution of the propylitic zone typically
corresponds with massive and bedded limestone, volcano sedimentary units and intermediate to
mafic igneous rocks. It is because carbonates and alteration products of mafic minerals contain the
strong contribution of CO3 and Fe,Mg-OH mineral groups, which produce similar spectral features to
propylitic alteration zone. However, this alteration zone is one of the dominant mineral assemblages
that mapped near to the gold mineralization zones, especially in the northwestern and northern parts
of the study area (Figure 8).

Figure 8. The RDB1(4 + 6/5), RDB2 (5 + 7/6), RDB3 (6 + 9/7 + 8) and RDB4 (5 + 8/6 + 7) of ASTER shows
advanced argillic, argillic-phyllic, propylitic and hydrous silica-affected alteration zones in the study
area overlaid on hill shade.

Table 3 shows the eigenvector loadings derived from PCA for mapping iron oxide/hydroxides
(gossan) using bands 1, 3, 4 and 5 of Landsat-7 ETM+, bands 2, 4, 5 and 6 of Landsat-8 and bands 1,
2, 3 and 4 of ASTER. Analyzing the eigenvector loadings for Landsat-7 ETM+ selected bands (1, 3,
4 and 5) indicates that the PCA3 contains unique contribution (magnitude and sign of eigenvector
loadings) of iron oxide/hydroxide minerals. The PCA3 has moderate loadings of band 1 (0.420) and
strong loadings of band 5 (−0.780) with opposite signs (Table 3A). Band 1 (0.45–0.52 µm) of Landsat-7
ETM+ is positioned at absorption features of iron oxide/hydroxides (band 1 is considered an absorption
band herein), while band 5 (1.55–1.75 µm) of Landsat-7 ETM+ is positioned at reflectance properties
of iron oxide/hydroxides (band 5 is considered a reflection band herein). Thus, iron oxide/hydroxide
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minerals appear as dark pixels in the PCA3 due to negative sing in the reflection band (band 5), which
were subsequently converted to bright pixels by negation. Figure 9A shows the resultant PCA3 image.
Iron oxide/hydroxide minerals (red pixels) are mainly represented in the northern and northwestern
parts of the study area, which are associated with some of the gold occurrences. However, a number
of epithermal gold mineralizations do not show the spatial relationship with high abundance of iron
oxide/hydroxide minerals, which are located in the southern and western parts of the study area.

Figure 9. The PCA images derived from Landsat-7 ETM+, Landsat-8 and ASTER selected bands for
mapping iron oxide/hydroxide zones (gossan) in the study area overlaid on hill shade. (A) The PCA3
image of Landsat-7 ETM+; (B) the PCA2 image of Landsat-8; (C) the PCA3 image of ASTER.

Analysis of the eigenvector loadings of Landsat-8 selected bands (2, 4, 5 and 6) shows that the
PCA2 can be used for mapping oxide/hydroxide minerals. The PCA2 contains moderate to strong
contribution of bands 2 (−0.374) and 5 (−0.555) as absorption bands and strong contribution of band 6
(0.741) with a positive sign as reflection band (Table 3B). As a result, iron oxide/hydroxide minerals
manifest as bright pixels in the PCA2 image (Figure 9B). The spatial distribution of iron oxide/hydroxide
minerals (red pixels) in Landsat-8 results is identical with Landsat-7 ETM+ PCA3 image but it is stronger
in some parts, mainly in the southern and western sectors. Iron oxide/hydroxide minerals can be
detected using the PCA3 derived from ASTER selected bands (1, 2, 3 and 4). The PCA3 shows moderate
to strong loadings in absorption bands, including band 1 (−0.396), band 2 (−0.539) and band 3 (−0.259)
with a negative sign and strong and positive loading in band 4 (0.695) as reflection band (Table 3C).
Hence, iron oxide/hydroxide minerals represent bright pixels (Figure 9C). A higher abundance of iron
oxide/hydroxide minerals was mapped in the ASTER PCA2 image compared to Landsat-7 ETM+ and
Landsat-8 PCA images, which is typically matched with most of the gold mineralizations.

The pixels contain iron oxide/hydroxide minerals mapped by PCA images show a better spatial
relationship with the gold mineralization zones compared to band ratio images (see Figure 5A–C).
It indicates that the selective PCA can specially detect the alteration pixels in the spatial domain.
Table 4 shows the eigenvector loadings derived from PCA for mapping hydroxyl-bearing minerals
using bands 1, 4, 5 and 7 of Landsat-7 ETM+, bands 2, 5, 6 and 7 of Landsat-8 and bands 1, 3, 4 and
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6 of ASTER. Considering the eigenvector loadings contain unique contribution of hydroxyl-bearing
minerals in the absorption and reflection bands, it is discernible that the PCA4 includes the unique
contribution of OH-minerals for all selected datasets (Table 4A–C). The PCA4 derived from Landsat-7
ETM+ selected bands (1, 4, 5 and 7) shows a strong negative loading in band 5 (−0.599) and a strong
positive loading in band 7 (0.692) (Table 4A). Because of negative loading in the reflection band (band 5),
the hydroxyl-bearing minerals are represented as dark pixels in the PCA4, which are inverted to bright
pixels by multiplication to −1, subsequently (Figure 10A). Surface distribution of hydroxyl-bearing
minerals (green pixels) depicts in the PCA4 image of Landsat-7 ETM+. The PCA4 derived from
Landsat-8 selected bands (2, 5, 6 and 7) contains a strong negative loading of band 6 (−0.643) (the
reflection band) and a strong positive loading of band 7 (0.694) (the absorption band) (Table 4B).
Therefore, the PCA4 image was negated to depict the OH-minerals as bright pixels. Figure 10B
shows the resultant image. For ASTER selected bands (1, 3, 4 and 6), the PCA4 has a strong positive
contribution of band 4 (0.567) and a strong negative contribution of band 6 (−0.649) (Table 4C). Hence,
the hydroxyl-bearing minerals appear as bright pixels in the PCA4 image. Figure 10C manifests the
spatial distribution of the OH-minerals as green pixels in the PCA4 image of ASTER. Comparison of
the PCA images to the band ratio images (see Figure 6A–C) suggests that the pixels detected in the
selective PCA method show a closer spatial relationship to the gold mineralization zones and have a
stronger manifestation in the image-maps.

Figure 10. The PCA images derived from Landsat-7 ETM+, Landsat-8 and ASTER selected bands for
mapping hydroxyl-bearing minerals in the study area overlaid on hill shade. (A) The PCA4 image of
Landsat-7 ETM+; (B) the PCA4 image of Landsat-8; (C) the PCA4 image of ASTER.

Table 5 shows the eigenvector loadings for mapping advanced argillic, argillic-phyllic and
propylitic alteration zones using ASTER bands such as bands 1, 4, 6 and 7 for the advanced argillic
zone, bands 1, 3, 5 and 6 for the argillic-phyllic zone and bands 1, 3, 5 and 8 for the propylitic zone.
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Considering the magnitude and sign of eigenvector loadings for mapping advanced argillic zone
(Table 5A), it is evident that the PCA3 contains spectral information to map advanced argillic zone
due to a strong negative loading in band 4 (−0.549) and a strong positive loading in band 6 (0.509).
Dark pixels depict the alteration zone due to a negative sign in the reflection band (band 4), which are
afterward converted to bright pixels. The analysis of eigenvector loadings for mapping argillic-phyllic
zone indicates that the PCA4 can mainly detect argillic-phyllic zone because of the strong contribution
of bands 5 (−0.733) and 6 (0.679) with inverse signs (Table 5B). Muscovite (as a typical and dominant
mineral in the phyllic zone) shows strong absorption in band 6 of ASTER, while lower absorption in
band 5 of ASTER [35,37]. Thus, band 5 is assumed to be a reflection band and band 6 is considered
as a strong absorption band herein. As a result, argillic-phyllic zone manifests as dark pixels due
to negative sign in the band 5 (reflection band). Then, dark pixels were inverted to bright pixels by
negation. Propylitic alteration zone can be mapped in the PCA4 image because of strong eigenvector
loadings in band 5 (−0.712) and band 8 (0.696) with opposed signs (Table 5C). Herein, band 5 is
pondered as reflection band and band 8 is deliberated as absorption band. Fe,Mg-OH and CO3

mineral groups (propylitic zone: chlorite, epidote and calcite) have high absorption properties in
band 8 (2.295–2.365 µm) and reflection (very low absorption) features in band 5 (2.145–2.185 µm) of
ASTER [35,39]. Accordingly, propylitic alteration zone appears as dark pixels that were negated to
bright pixels in the PCA4 image.

Figure 11 shows PCA image-map derived from the PCA3 image for advanced argillic mapping,
the PCA4 image for argillic-phyllic zone mapping and the PCA4 image for propylitic zone mapping.

Figure 11. The PCA image-map derived from ASTER selected PCAs for mapping advanced argillic,
argillic-phyllic and propylitic alteration zones in the study area that overlaid on hill shade.

The spatial distribution of advanced argillic zones is stronger in the northeastern parts and weaker
in southeastern part of the study area compared to RDBs image-map (see Figure 8). The advanced
argillic zone resulting from PCA shows remarkable vicinity to the gold mineralization (Figure 11).
The argillic-phyllic zone shows nearly similar surface distribution to RDBs image-map. However, the
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high concentration of propylitic zone was mapped in the northwestern part of the study area in the
PCA image-map compared to RDBs image-map (see Figure 8). On the other hand, the propylitic zone
shows lower spatial distribution in the northeastern and southeastern parts of the PCA image-map
(Figure 11).

4.2. Fusing Thematic Layers Using Naive Bayes (NB) Classifier

The thematic layers of hydrothermal alteration zones derived from Landsat-7 ETM+, Landsat-8
and ASTER datasets were fused using the NB classifier to generate a mineral potential map for the
Ahar-Arasbaran region. A DAG was designed for the thematic layers produced by image processing
techniques in this study (Figure 12). Eight distinct layers were employed as independent predictive
layers, including iron oxide minerals derived from Landsat-7 ETM+, hydroxyl-bearing minerals derived
from Landsat-7 ETM+, iron oxide minerals derived from Landsat-8, hydroxyl-bearing minerals derived
from Landsat-8, iron oxide minerals derived from ASTER, advanced argillic alteration derived from
ASTER, argillic-phyllic alteration derived from ASTER and propylitic alteration derived from ASTER.

Figure 12. The DAG diagram used in this study for the fusing the thematic layers produced by image
processing techniques.

The DAG was used to integrate the predictor variables. It yields a posterior probability map
showing the probability of gold mineralization occurrences. Subsequently, the following steps were
taken to generate the posterior probability map. To train the DAG, 25 known gold mineralizations
in the study area were selected as positive sites and 26 non-mineralized locations were selected as
non-deposit (negative) sites, which have already been verified by field survey. In the next stage, the
thematic layers (alteration image-maps) were resampled to a cell size of 150 * 150 m and a buffer
zone of 300 m was considered around the positive and negative sites. The training data, the pixels
superimposed by the positive and negative sites, containing a total of 468 pixels. Each pixel was
considered as a vector of 8 arrays, including the values of 8 thematic (alteration) layers. To train
the model, 70% of these pixels were used, while 30% of the pixels were used to validate the model
generated. The calculation of the confusion matrix shows a total accuracy of 85.1%, which indicates
that the model has been hypothesized and established. Having the trained NB model, all the data were
used as the input of the model to generate the posterior probability map. However, the map is also
required subsequent classification; thus the natural breaks algorithm [81] was used for classification of
the posterior probability map. Three threshold values (produced by the foregoing algorithm) were
used to generate a four-class map showing the probability of epithermal gold occurrences. The classes
are highly probable (red), probable (green), moderately probable (yellow) and improbable (gray). As a
result, a mineral potential map for the Ahar-Arasbaran region was produced (Figure 13). Most of the
known gold mineralizations are located in the highly probable (red) zone, although a small number of
the gold occurrences can be seen in the probable (green) and moderately probable (yellow) zones. Many
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high probable zones in the northwestern, northern, northeastern, southeastern and southwestern parts
of the study area contain high potential for undiscovered epithermal gold mineralizations (Figure 13).

Figure 13. Mineral potential map of the Ahar-Arasbaran region produced using the NB classifier. For
abbreviation to epithermal gold mineralizations, refer to Figure 1.

4.3. Verifying the Results Using Field Data and Laboratory Analysis

Several GPS surveys were carried out in different parts of the Ahar-Arasbaran region for verifying
the mineral potential map and discovering new prospective zones of epithermal gold mineralizations,
especially in highly probable zones. Numerous field photographs and rock samples were collected
from different types of alteration zones related to gold mineralization such as advanced argillic,
argillic-phyllic, propylitic and hydrous silica. In this investigation, some of the gold mineralization
areas (highly probable zone), such as Zailig, Noghdouz, Javan-Sheikh, Nabi-Jan and Sonajil, were
selected for a detailed field excursion, petrographic study and XRD analysis. The advanced argillic
alteration, argillic-silica alteration, silica alteration and propylitic alteration were identified in the Zailig
area (Figure 14A–D). The advanced argillic alteration is the most extensive alteration zone in the vicinity
of gold mineralizations in the Zailig area (Figure 14A,B). The silica alteration is identified in the form of
silica major clasts along with iron oxides (Figure 14C). The other type of alteration zones is argillic-silica
alteration, which is placed around the silica veins associated with gold mineralization (Figure 14D).
Figure 15A,B) shows microphotographs of argillic-silica alteration. Primary plagioclase replaced by
sericite, clay minerals and jarosite (Figure 15A). Recrystallized quartz and relics of plagioclase are
surrounded by clay minerals (Figure 15B). Propylitic alteration zone were also found as distal alteration
zone in the Zailig area (Figure 16A–D). Secondary minerals for instance, chlorite, epidote and calcite
replaced original mineralogy (feldspars) as vesicular and amygdaloidal textures in the propylitic zone
(Figure 16B). Microphotographs of the propylitic zone show that the phenocrysts of plagioclase are
replaced by chlorite, epidote and calcite (Figure 16C,D). Quartz is phenocrystalline and anhedral in
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the background, while plagioclase is euhedral and partially replaced by epidote (Figure 16C). The
amygdaloidal texture is observable in Figure 16D, which amygdales are filled with calcite and quartz.

Figure 14. Field photographs of typical hydrothermal alteration zones in the Zailig area. (A) View of
argillic alteration zone close to the quartz veins; (B) Regional view of advanced argillic alteration zone;
(C) View of silicification alteration zone with iron oxides, (D) Close view of argillic-silica alteration and
a sample of crustiform and colloform banded chalcedonic gold-quartz vein.
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Figure 16. Propylitic alteration zone in the Zailig area. (A) View of Propylitic alteration zone;
(B) Vesicular and amygdaloidal textures in a hand specimen of propylitic zone; (C) Microphotographs
of plagioclase that is partially replaced by epidote and recrystallized large-grained quartz in the
background; (D) Microphotographs of amygdaloidal texture in the propylitic zone that amygdales are
filled with calcite, chlorite and quartz.

Some typical silicified and breccia (quartz veins) zones occur in altered granitic and andesitic
rocks in the Noghdouz gold mineralization area (Figures 17 and 18). The specimens of silicified zone
show breccia and clastic textures. The cement and major clasts of the breccia textures are composed of
silicate minerals (Figure 17A–C). Epithermal gold mineralization occurs in the breccia zone (quartz
veins) in the altered granitic host rocks. This mineralization is also associated with advanced argillic
alteration (Figure 18A,B).

Figure 17. Silicified zone in the Noghdouz gold mineralization area. (A) Regional view of Silicified
zone; (B) Close view of breccia textures in a hand specimen of the andesitic host rock; (C) View of silica
clasts in a hand specimen of the breccia textures.
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Figure 18. Breccia zone (quartz veins) in the granitic host rocks in the Noghdouz gold mineralization
area. (A) View of breccia zone (quartz veins) in the granitic host rocks (Ahar-Meshkinshahr road);
(B) Close view of quartz veins in the breccia zone and advanced argillic alteration.

Iron oxide alteration zone (limonitic-hematite rocks) and oxidized breccia with banded chalcedonic
quartz are identified in Javan-Sheikh gold mineralization area (Figure 19A,B). The well-developed
gossan covers (limonitic-hematite-silicic rocks) show rough and geologic relief features compared to
surrounding altered rocks (Figure 19A). The size of gossan covers are around 200 to 300 m that are
surrounded by more extensive zones of propylitic and phyllic-argillic alteration zones. Although,
silicified zone is also associated with the gossan covers, partially. The epithermal gold mineralization
of the Nabi-Jan area is located in quartz-sulfide veins and developed at the top of an intrusive body of
granodiorite (Figure 20A,B). Gold mineralization is typically in the zones where intensely silicified
and located in the advanced argillic alteration. In the Nabi-Jan area, the distal alteration zone is also
propylitic alteration. The Sonajil gold mineralization occurs as a stock-work of thin quartz veins in
granitoid rocks. The development of the argillic-phyllic alteration zone along with the siliceous zones
and iron oxides were identified in the Kalijan area. Sphalerite, galena, chalcopyrite and pyrite are
main sulfide mineralization associated with native gold mineralization (Figure 21A–E). Quartz, iron
oxide/hydroxide and minor calcite are gangue minerals.

Mineralogical compositions of hydrothermal alteration zones were investigated by XRD
analysis. Thirty samples from different hydrothermal alteration zones were analyzed for this study.
Representative XRD analysis of samples collected from the iron oxide/hydroxide alteration (gossan
covers), advanced argillic alteration, argillic-phyllic alteration, propylitic alteration and hydrous silica
alteration (silicified zone) are shown in this paper (Figure 22A–E). Goethite, jarosite, gypsum and
quartz are mineral phases that detected in the gossan cover (Figure 22A). In the advanced argillic
alteration (Figure 22B), muscovite, illite, kaolinite, gypsum, orthoclase, albite and quartz are main
mineralogical phases. The predominant minerals detected in the argillic-phyllic alteration are kaolinite,
muscovite, illite, jarosite, albite and quartz (Figure 22C). Epidote, chlorite, calcite, albite and quartz are
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identified in the propylitic alteration (Figure 22D). Quartz, albite, jarosite, goethite, calcite, chlorite,
gypsum and dolomite are observed in the silicified alteration zone (Figure 22E).

Figure 19. The iron oxides (limonitic-hematite rocks) in Javan-Sheikh area. (A) View of limonitic-hematite
rocks; (B) View of oxidized breccia with banded chalcedonic quartz infill.

Figure 20. Gold mineralization in the Nabi-Jan area. (A) View of quartz-sulfide veins that developed at
the top of an intrusive body of granodiorite; (B) Close view of quartz-sulfide gold mineralization in a
hand specimen.



Remote Sens. 2020, 12, 105 24 of 33

Figure 21. Microphotographs of sulfide mineralization in the Kalijan area (polished section). (A) Coarse
anhedral sphalerite (Sp) in concordance with galena (Gn) and chalcopyrite (Chpy) (magnification:
10XPL); (B) Coarse anhedral sphalerite (Sp) intergrowth with galena (Gn) (white) and chalcopyrite
(Chpy) (yellow) in quartz gangue (magnification: 10XPL); (C) Large anhedral form of chalcopyrite
(Chpy), pyrite (Py) and sphalerite (Sp) (magnification: 20XPL); (D) Gold (Au) detected as an insulator
inside the sphalerite (Sp) fracture (glossy yellow) (magnification: 20XPL); (E) Gold (Au) mineralization
with a particle size of 10 microns along with an iron hydroxide (Lim) crystal surrounded by sphalerite
(Sp) (magnification: 20XPL).

Figure 22. Cont.
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Figure 22. Representative XRD analysis of samples collected from hydrothermal alteration zones in
the study area. (A) Iron oxide/hydroxide alteration (gossan covers); (B) Advanced argillic alteration;
(C) Argillic-phyllic alteration; (D) Propylitic alteration; (E) Hydrous silica alteration (silicified zone).

In this analysis, confusion matrix and Kappa Coefficient [82–86] were used for assessing the
accuracy of alteration mineral mapping derived from remote sensing analysis versus systematic
GPS surveys collected from different alteration zones during fieldwork in the study area. Thirty
representative GPS points were used for calculating the confusion matrix and Kappa Coefficient in
this paper. Table 6 shows the locations of hydrothermal alteration zones recorded by a systematic
GPS survey. Table 7 shows the confusion matrix for alteration mineral mapping versus field data.
The results show the overall accuracy of 76.66% and Kappa Coefficient of 0.71. The advanced argillic
alteration, argillic-phyllic and propylitic classes show the producer’s accuracy of 83%, while the
producer’s accuracy for the iron oxide/hydroxide and hydrous silica classes is 67%. The highest user’s
accuracy is achieved for the argillic-phyllic and propylitic classes (100%), whereas the lowest user’s
accuracy is recorded for the iron oxide/hydroxide class (50%). The advanced argillic has the user’s
accuracy of 83% and hydrous silica class shows the user’s accuracy of 67% (Table 7). Accordingly,
the accuracy assessment results indicate that the alteration mineral mapping has appropriate match
(overall accuracy: 76.66%) and very good degree of agreement (Kappa Coefficient: 0.71) with field
data. However, some spectral mixing and confusion between alteration classes are also distinguishable.
The iron oxide/hydroxide and hydrous silica classes show the highest feasibility for spectral mixing
and confusion compared to other classes. The propylitic and argillic-phyllic classes contain the lowest
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spectral mixing and confusion. The advanced argillic class has some spectral mixing and confusion
with the argillic-phyllic class.

Table 6. Locations of representative hydrothermal alteration zones recorded by systematic GPS survey
during fieldwork in the study area.

Alteration Zones Coordinates

1 Advanced argillic 38◦26.324′N–47◦21.279′E
2 Advanced argillic 38◦11.796′N–47◦15.995′E
3 Advanced argillic 38◦20.514′N–46◦58.566′E
4 Advanced argillic 38◦32.717′N–47◦03.374′E
5 Advanced argillic 38◦49.398′N–46◦16.417′E
6 Advanced argillic 38◦43.269′N–47◦00.223′E
7 Iron oxide minerals 38◦30.095′N–47◦07.023′E
8 Iron oxide minerals 38◦44.378′N–46◦23.321′E
9 Iron oxide minerals 38◦08.975′N–47◦27.312′E

10 Iron oxide minerals 38◦40.687′N–46◦42.420′E
11 Iron oxide minerals 38◦43.525′N–46◦48.243′E
12 Iron oxide minerals 38◦37.564′N–46◦29.257′E
13 argillic-phyllic 38◦10.102′N–47◦28.384′E
14 argillic-phyllic 38◦24.794′N–47◦24.250′E
15 argillic-phyllic 38◦36.792′N–46◦43.712′E
16 argillic-phyllic 38◦37.814′N–46◦22.895′E
17 argillic-phyllic 38◦21.812′N–46◦51.621′E
18 argillic-phyllic 38◦35.575′N–47◦00.520′E
19 Hydrous silica 38◦41.894′N–46◦41.574′E
20 Hydrous silica 38◦25.525′N–47◦20.882′E
21 Hydrous silica 38◦44.511′N–46◦46.563′E
22 Hydrous silica 38◦36.700′N–46◦51.888′E
23 Hydrous silica 38◦36.931′N–46◦31.907′E
24 Hydrous silica 38◦43.265′N–46◦25.118′E
25 Propylitic 38◦37.090′N–46◦28.190′E
26 Propylitic 38◦50.119′N–46◦22.157′E
27 Propylitic 38◦45.696′N–46◦49.787′E
28 Propylitic 38◦25.034′N–47◦24.969′E
29 Propylitic 38◦40.665′N–46◦22.871′E
30 Propylitic 38◦31.197′N–46◦17.014′E

Table 7. Confusion matrix for alteration mineral mapping versus field data.

Class Advanced
Argillic

Iron Oxide/
Hydroxides Argillic-Phyllic Hydrous

Silica Propylitic Totals
(Field Data)

User’s
Accuracy

Advanced argillic 5 0 1 0 0 6 83%
Iron oxide/hydroxides 0 4 0 2 1 8 50%

Argillic-phyllic 1 0 5 0 0 5 100%
Hydrous silica 0 2 0 4 0 6 67%

Propylitic 0 0 0 0 5 5 100%

Totals (Remote
sensing analysis) 6 6 6 6 6 30

Producer’s Accuracy 83% 67% 83% 67% 83%

Overall accuracy = 76.66% Kappa Coefficient = 0.71

5. Discussion

Hydrothermal alteration mineral assemblages associated with gold mineralization that formed
under low to medium temperatures (≤150 ◦C~300 ◦C) are deliberated as one of the most significant
indicators for epithermal gold exploration [33,34,87–89]. Remote sensing satellite imagery is extensively
and successfully used for mapping hydrothermal alteration zones for gold minerals exploration in many
metallogenic provinces around the world [7,12,15,17–20,36,38,90–94]. In the Ahar-Arasbaran region,
NW Iran, a variety of ore mineralizations such as Au, Cu-Au, Au-Ag, Fe-Au, Cu-Mo, Fe, Cu, Pb-Zn are
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identified, which are associated with widespread hydrothermal alteration minerals [47,49,51,95–97].
In this investigation, Landsat-7 ETM+, Landsat-8 and ASTER multi-sensor remote sensing satellite
imagery was used to map hydrothermal alteration zones associated with epithermal gold mineralization
in the Ahar-Arasbaran region. A Bayesian network model was subsequently used to fuse thematic
layers of hydrothermal alteration zones derived from the multi-sensor satellite imagery for producing
a mineral potential map of the study area.

Iron oxide/hydroxide zones (gossan cover), hydroxyl-bearing (Al-OH and Fe,Mg-OH) minerals
and carbonates zones, advanced argillic, argillic-phyllic, propylitic and hydrous silica (silicified zone)
alteration zones were mapped using band ratio, RBD and selective PCA image processing techniques.
Using band ratios of 3/1 (Landsat-7 ETM+), 4/2 (Landsat-8) and 2/1 (ASTER) identify the spatial
distribution of iron oxide/hydroxide zones, which are mainly associated with lineament features and
igneous rocks, volcano sedimentary units and massive and bedded limestone (See Figure 5A–C).
The documented epithermal gold occurrences mostly show close spatial locations with detected iron
oxide/hydroxide zones. The PCA3 image of Landsat-7 ETM+ selected bands (1, 3, 4 and 5), the
PCA2 image of Landsat-8 selected bands (2, 4, 5 and 6) and the PCA3 image of ASTER selected
bands (1, 2, 3 and 4) were also represented iron oxide/hydroxide spatial distribution in the study
area (see Figure 9A–C). The identified iron oxide/hydroxide zones using PCA are characteristically
better matched with most of the gold mineralizations compared to band ratio images. Using band
ratios of 5/7 (Landsat-7 ETM+), 6/7 (Landsat-8) and 4/9 (ASTER) detect the hydroxyl-bearing minerals
and carbonates zones (see Figure 6A–C), which are generally matched with igneous rock, volcano
sedimentary units and limestone. The gold mineralizations are typically located in the high abundance
zones of hydroxyl-bearing/carbonate minerals. The advanced argillic, argillic-phyllic and propylitic
alteration zones are mapped using ASTER band ratios of 4/6 (advanced argillic), 5/6 (argillic-phyllic),
5/8 (propylitic), respectively (see Figure 7A–C). The advanced argillic alteration shows closer spatial
location with the gold mineralizations in comparison with the argillic-phyllic and propylitic alteration
zones. The PCA4 image of Landsat-7 ETM+ selected bands (1, 4, 5 and 7), Landsat-8 selected bands (2, 5,
6 and 7) and ASTER selected bands (1, 3, 4 and 6) detects the surface distribution of hydroxyl-bearing
minerals in the study area (see Figure 10A–C). The pixels detected in the PCA images show a stronger
manifestation of OH-minerals compared to band ratio images and closer spatial relationship to the
documented gold mineralization zones.

Implementing the RDB1 (4 + 6/5), RDB2 (5 + 7/6), RDB3 (6 + 9/7 + 8) and RDB4 (5 + 8/6 + 7) of
ASTER reveal the advanced argillic, argillic-phyllic, propylitic and hydrous silica-affected alteration
zones in the study area, comprehensively (see Figure 8). Some of the gold mineralizations in the eastern
part of the study area are mainly situated in the advanced argillic zones. The hydrous silica zone
was also mapped near some of the gold mineralization zones in the northwestern part of the study
area. The propylitic zone is one of the main mineral assemblages associated with gold mineralization
zones in the northern and northwestern parts of the study area. Only few gold occurrences were
identified in the argillic-phyllic alteration zone. The PCA3 image derived from ASTER bands 1, 4,
6 and 7 for advanced argillic mapping, the PCA4 image derived from ASTER bands 1, 3, 5 and 6
for argillic-phyllic zone mapping and the PCA4 image derived from ASTER bands 1, 3, 5 and 8 for
propylitic zone mapping show surface abundance of advanced argillic, argillic-phyllic and propylitic
zone with some spatial discrepancies (see Figure 11) compared to RDBs image-map (see Figure 8).
Notable vicinity to the documented gold mineralizations was mapped in the advanced argillic zone,
which is detected with the PCA technique.

The produced thematic layers (see the DAG diagram in Figure 12) derived from band ratio and
PCA image processing techniques are fused using the NB classifier. Consequently, a mineral potential
map for the Ahar-Arasbaran region is produced (see Figure 13), which includes four classes such as
highly probable, probable, moderately probable and improbable. Maximum numbers of the known
gold occurrences are situated in highly probable class, while some of the gold mineralizations are
located in the probable and moderately probable classes. Accordingly, several parts of the study



Remote Sens. 2020, 12, 105 28 of 33

area, such as the northwestern, northern, northeastern, southeastern and southwestern sectors, can
be considered to be highly prospective zones for epithermal gold mineralizations and may contain
undiscovered Au deposits (see Figure 13).

Detailed field expedition, petrographic study and XRD analysis in some of the prospective areas
located in the highly probable zone show the presence of hydrothermal alteration zones associated
with gold mineralizations. Extensive alteration mineral assemblages of the advanced argillic and
argillic-silica alteration zones are found in the vicinity of gold mineralizations in the Zailig area (see
Figure 14A–D). Microphotographs of argillic-silica alteration show that primary plagioclase replaced
by sericite, clay minerals and jarosite and relics of plagioclase are surrounded by clay minerals. The
distal alteration zone in the Zailig area is propylitic alteration zone, which contains chlorite, epidote
and calcite that replaced original mineralogy (feldspars) as vesicular and amygdaloidal textures (see
Figure 16A–D). In the Noghdouz area, gold mineralization is occurred in the breccia zone (quartz veins)
in the altered granitic host rocks, which is associated with advanced argillic alteration (see Figure 17A–C
and Figure 18A,B). Limonitic-hematite rocks and oxidized breccia with banded chalcedonic quartz
are identified in Javan-Sheikh gold mineralization area (see Figure 19A,B), which are surrounded by
propylitic and phyllic-argillic alteration zones. In the Nabi-Jan area, gold mineralization is associated
with quartz-sulfide veins hosted by granodiorite (see Figure 20A,B), which strongly silicified and
placed in advanced argillic alteration. Development of the argillic-phyllic alteration zone associated
with the siliceous zones and iron oxides in granitoid rocks were identified with gold mineralization in
the Sonajil area. Native gold mineralization is associated with sphalerite, galena, chalcopyrite and
pyrite (see Figure 21A–E).

The XRD analysis of rock samples collected from different alteration zones is verified the presence
of hydrothermal alteration minerals, including (i) goethite, jarosite, gypsum and quartz in the gossan
cover; (ii) muscovite, illite, kaolinite, gypsum, orthoclase, albite and quartz in the advanced argillic
alteration, (iii) kaolinite, muscovite, illite, jarosite, albite and quartz in the argillic-phyllic alteration;
(iv) epidote, chlorite, calcite, albite and quartz in the propylitic alteration (see Figure 22A–E). The
accuracy assessment results show the overall accuracy of 76.66% and Kappa Coefficient of 0.71 for
hydrothermal alteration mapping using remote sensing datasets. It indicates that the alteration
mineral mapping contains a suitable match and a very good degree of agreement with field data.
Analyzing the producer’s accuracy and user’s accuracy shows that some spectral mixing and confusion
between alteration classes are also feasible, especially for iron oxide/hydroxide and hydrous silica
alteration groups and the advanced argillic and the argillic-phyllic alteration groups. Accordingly,
the mineral potential map produced in this study using multi-sensor remote sensing imagery and
Bayesian network model is viable and can be broadly applicable for epithermal gold exploration in the
Ahar-Arasbaran region.

6. Conclusions

This investigation was accomplished to produce a mineral potential map for prospecting epithermal
gold mineralization in the Ahar-Arasbaran region, NW Iran using multi-sensor remote sensing
satellite imagery (e.g., Landsat-7 ETM+, Landsat-8 and ASTER) and the Bayesian network model.
Iron oxide/hydroxide zones, hydroxyl-bearing minerals and carbonates zones, advanced argillic,
argillic-phyllic, propylitic and silicified alteration zones were mapped in the Ahar-Arasbaran region
using band ratio, RBD and selective PCA image processing techniques. The NB classifier was
successfully implemented to fuse the thematic layers of hydrothermal alteration zones derived from
the multi-sensor satellite imagery. As a result, a mineral potential map for the Ahar-Arasbaran region
was produced, which highlighted the prospective zones as highly probable, probable and moderately
probable zones. The northwestern, northern, northeastern, southeastern and southwestern parts of the
study area were considered high potential zones for epithermal gold mineralizations, which might have
undiscovered epithermal gold deposits. The high potential zones were verified by field and laboratory
analysis such as systematic GPS surveying, analyzing several microphotographs of hydrothermal
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alteration minerals and ore mineralization and XRD analysis of collected rock samples from alteration
zones. The advanced argillic and argillic-silica alteration zones were typically found in the vicinity of
gold mineralizations. However, limonitic-hematite rocks, oxidized breccia and propylitic alteration
zones were also documented as high potential zones in the study area. The field and laboratory
results verified that the mineral potential map of the Ahar-Arasbaran region successfully indicates the
known epithermal gold mineralizations and several new high prospective zones in the study area. The
approach developed in this study is a cost-effective technique that can be used for epithermal gold
exploration in metallogenic provinces before costly geophysical and geochemical studies. Briefly, this
study suggests that geostatistical techniques (e.g., Bayesian network model, Fuzzy model, Artificial
Neural Network Model etc.) are valuable approaches to fuse thematic layers of the multi-sensor
imagery for generating the remote sensing-based mineral potential map for metallogenic provinces.
The mineral exploration community and mining companies can consider the remote sensing-based
mineral potential map as an economical and cost-effective tool for mineral prospecting before pricey
geophysical and geochemical surveys in the metallogenic provinces.
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