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Abstract: With the growing development of smartphones equipped with Wi-Fi technology and
the need of inexpensive indoor location systems, many researchers are focusing their efforts on
the development of Wi-Fi-based indoor localization methods. However, due to the difficulties in
characterizing the Wi-Fi radio signal propagation in such environments, the development of universal
indoor localization mechanisms is still an open issue. In this paper, we focus on the calibration of
Wi-Fi-based indoor tracking systems to be used by smartphones. The primary goal is to build
an accurate and robust Wi-Fi signal propagation representation in indoor scenarios.We analyze
the suitability of our approach in a smartphone-based indoor tracking system by introducing a
novel in-motion calibration methodology using three different signal propagation characterizations
supplemented with a particle filter. We compare the results obtained with each one of the three
characterization in-motion calibration methodologies and those obtained using a static calibration
approach, in a real-world scenario. Based on our experimental results, we show that the use of an
in-motion calibration mechanism considerably improves the tracking accuracy.
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1. Introduction

The research in indoor localization systems has seen substantial growth over the past decade [1,2].
While outdoor localization systems (such as GPS) fulfill most context-aware application requirements,
the design of accurate indoor localization mechanisms is still an open issue. The main drawback of
such scenarios is the presence of obstacles such as walls or furniture, which can cause a negative
impact in the signal.

Many indoor localization mechanisms have been proposed using wireless technologies such as
Wi-Fi, Bluetooth, ZigBee or LoRa [3]. However, due to the wide availability of Wi-Fi signals in indoor
environments and the presence of Wi-Fi adapters in current smartphones, Wi-Fi based localization
mechanisms have attracted most attention.

Wi-Fi based localization mechanisms rely on Wi-Fi radio spectrum parameters, such as time
difference of arrival (TDoA), angle of arrival (AoA) or received signal strength indicator (RSSI) [4].
The most widely used parameter is RSSI since it is an inexpensive indicator to obtain and it is available
on most commercial wireless devices without need of additional hardware. However, this parameter
is greatly affected by the indoor inherent features, which cause reflections, interference and shadowing
in the signal [5].

Among the RSSI-based indoor localization methods, we find two approaches [4]: fingerprinting
and range-model based. Both approaches are being considered for addressing the two main localization
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problems: positioning and tracking. The former simply estimates the smartphone position, while the
latter estimates the smartphone position taking into account its trajectory. While fingerprinting has
proven to be useful in developing accurate positioning mechanisms [6], its use on developing tracking
mechanisms raises many concerns.

As for most existing RSSI-based ranging models, they usually depend on the path loss between
transmitter and receiver devices. The RSSI is related to distance using an environment-dependent
exponent which needs to be obtained before the actual deployment of the localization mechanism in
the target environment. Traditionally, the log-distance path loss model [7] (LDPLM) has been adopted
by the majority of researches and can be expressed as:

Pr(d) = Pr(d0)− 10 · n · log10(
d
d0

) (1)

where Pr(d) is the received signal strength in dBm at d meters, Pr(d0) is the received signal strength
in dBm at d0 meters and n is the path loss exponent (unitless). The n value indicates how the radio
signal spreads in a certain scenario. It varies between 2 and 3 in an indoor scenario [7], depending
upon the line-of-sight (LOS) operating conditions between transmitter and receiver. In LOS conditions,
the n value is close to 2, while in non-line-of-sight (NLOS) conditions, the value is close to 3. However,
LDPLM is not able by itself to accurately represent the real attenuation of RSSI signal in indoor
environments, due to the great variety of factors affecting the Wi-Fi signal.

In one of our previous works [8], we overcame these problems by using RANdom SAmple
Consensus (RANSAC) smoothing algorithm. In addition, we proposed a (static) calibration
methodology for indoor localization systems capable of defining one LOS and different NLOS
conditions by dividing the environment into several zones. Although this approach proved to improve
the RSSI estimation, we have found out that this approach has serious limitations when used by
smartphones on the development of indoor tracking mechanisms.

In this work, we present an analysis of signal propagation behavior when the capture device
(a smartphone) is in motion. To the best of our knowledge, this is the first work that studies
this behavior, and especially, this behavior in smartphones. The main goal is to design a novel
calibration methodology which creates a signal propagation representation to be used by android-based
smartphones in Wi-Fi-based indoor tracking systems. In addition, we also design a particle-filter-based
indoor tracking algorithm capable of using the proposed calibration methodology.

The main contributions of this work are:

• The analysis of the RSSI signal behavior of in-motion captures in order to implement an indoor
tracking system for smartphones.

• The proposal of a novel in-motion calibration methodology, which can be implemented in a
typical indoor scenario using an inexpensive time procedure. The outcome is a signal propagation
representation of the access points belonging to the wireless platform.

• The design of an indoor tracking system following a particle filter approach. In particular, instead
of converting the RSSI into distance, the weighting stage of the particle filter algorithm makes
use of the RSSI estimation according to the distance. That RSSI estimation is based on the signal
propagation representation adopted.

The remainder of this paper is organized as follows. Section 2 presents some related work.
Section 3 shows a study of the in-motion Wi-Fi signal behavior under smartphones perspective.
Based on this analysis, Section 4 describes the proposed calibration methodologies, which create
several signal propagation representations. Section 5 presents the design of a tracking algorithm
capable of using the resulting signal propagation representations. The whole indoor tracking algorithm
is evaluated in a real-world scenario in Section 6. Finally, we conclude the paper in Section 7.
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2. Related Work

2.1. Factors Affecting Wi-Fi Signal

Wi-Fi radio signal propagation is sensitive to a multitude of factors that usually are divided into
two categories: environment characteristics and hardware differences between both transmitter and
receiver devices [9,10]. The former includes, among others, multipath propagation, fading, LOS and
NLOS situations and motion of people. The latter covers sending power, antenna anisotropy, hardware
heterogeneity, signal propagation changes and so on. An indoor tracking system must be able to cope
with all these factors in order to achieve suitable accuracy.

The direct consequence of these factors is a continuous variation in the RSSI level. Traditionally,
the effects produced by these factors have been modeled as Gaussian noise due to the inherent random
propagation nature of Wi-Fi signal [5,7]. However, in order to reduce the noise, the research community
has applied some smoothing or filter algorithms. Belmonte-Hernández et al. [11] propose to apply
multistage filters, using a Modified version of Kalman Filter (MKF) and an Alpha-Beta Filter. Kalman
Filters are also used by Chen et al. [12] in conjunction with an outliers-remover based on Tukey’s
test method to smooth the RSSI value. However, the use of Kalman Filters requires knowing the
actual Wi-Fi signal propagation model. Martínez et al. [8] applies the RANSAC smoothing algorithm
to remove RSSI outliers knowing the actual distance between transmitter and receiver. However,
the RANSAC algorithm is not applicable to an indoor tracking system since the actual distance
between such devices is unknown. The work presented in [13] by Booranawong et al. presents an
analysis between three filter algorithms: Window Moving Average Filter (WMAF), Exponentially
Weighted Moving Average Filter (EWMAF) and Span Thresholding Filter (STF). These algorithms
are suitable for tracking since the current position estimate is obtained using previous RSSI values,
i.e., the position estimates are determined using actual RSSI samples and not by applying a signal
propagation model. any model of the signal. Although both EWMAF and STF show good results,
they have some parameters that need to be adjusted with real RSSI values, introducing once again
some noise. With all this in mind, in this work we opt for using WMAF.

2.2. Calibration of Wi-Fi-Based Indoor Localization Systems

Previous works on calibration of Wi-Fi-based indoor localization system can be divided into two
categories depending upon the followed localization approach, i.e., fingerprinting or range-based model.
Fingerprint calibration consist of capturing the RSSI in several known locations of the environment
in order to create a RSSI indoor radio map, such the work presented in [14]. The calibration of
range-based models localization systems seeks to tune the model parameters in order to represent
the signal propagation in a given environment [15]. Although the fingerprinting approach has proven to
be useful in developing accurate positioning mechanisms, we focus on range-based models since they
provide a more general solution and do not need to rebuild the indoor radio map.

Several range-based models have been proposed to predict the indoor radio propagation:
Log-Distance Path Loss Model (LDPLM) [7], Multi-Wall Model (MWM) [16], New Empirical Model
(NEM) [17] or Radio Irregularity Model (RIM) [9]. LDPLM (Equation (1)) assumes a logarithmic
dependence between path-loss and distance. NWM and NEM are modifications of LDPLM, in which
the authors introduce some new parameters to model wall attenuation, floor attenuation and angle of
incidence. Finally, RIM introduces some parameters to model the radio irregularity causes: anisotropy,
continuous variations and heterogeneity. The introduction of such parameters proved to improve
the RSSI estimation, however, the number of parameters to be estimated increase, as well as the
computation complexity in order for parameters to be estimated. Therefore, in this work we opt for
using LDPLM due to its simplicity.

In order to obtain LDPLM parameters (i.e., to calibrate the model), some RSSI captures in known
locations of target environment are needed [18]. The captured data is passed on to an algorithm capable
of obtaining parameters value, such as Least Squares [19] or Particle Filters [20]. The authors of [19,20]
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obtain a single parameter value for the entire environment, however, this approach cannot describe the
signal propagation in complex real-world scenarios. This is due to LDPLM not being able to accurately
represent the real attenuation of Wi-Fi signal in environments with the presence of NLOS situations
between receiver and transmitter devices [21]. To overcome this problem, Carrera et al. [22] define two
different situations in which a particular model is obtained: one for LOS situations and another one for
NLOS situations. However, the definition of such situations depends on the determination of a RSSI
value from which NLOS situations are assumed. Due to the Wi-Fi signal propagation changes, this value
may change over the time, therefore, the system can misinterpret LOS and NLOS situations. By contrast,
Martínez et al. [8] define both LOS and NLOS situations based on the environment’s floor plan. This
approach proved to be more accurate, since LOS and NLOS situations are properly distinguished. In
this paper, we introduce a novel in-motion calibration methodology, based on a particle filter where we
estimate the RSSI according to the distance, rather than converting the RSSI into distance. Our numerical
results show a significant improvement on the performance of the localization estimation.

3. Study of Wi-Fi Signal Behavior in Motion

This section shows a study of Wi-Fi signal behavior when the receiver device, in our case a
smartphone, moves around a given space. The primary goal of this study is to find out the path
loss exponent actual behavior in order to build an accurate and robust Wi-Fi signal propagation
representation in indoor scenarios.

To reach this goal, an in-motion RSSI capture in one laboratory of the Albacete’s Research Institute
of Informatics has been carried out. One TP-Link Archer C7 AC1750 Access Point (AP) operating
in 2.4 GHz band of IEEE 802.11n Wi-Fi specification has been deployed in a known position of the
laboratory. The receiver device (LG Nexus 5) captures continuously the RSSI of such AP following a
predefined trajectory whose coordinates are known.

3.1. RSSI Smoothing

In tracking, the current position of the device depends on the previous positions, therefore, the
current position has to be based on the proximities of the previous positions. In this way, unexpected
jumps should not be allowed by indoor tracking systems. Due to the noisy nature of the Wi-Fi signal,
which is reflected in continuous variations of RSSI value, RSSI-based indoor tracking systems can
considerably vary. To overcome this problem, a smoothing algorithm can be used in order to reduce
the RSSI value noise [13].

To show the benefits of using a smoothing algorithm, both raw and smoothed RSSI values of the
in-motion capture have been plotted in Figure 1. The blue line represents the raw RSSI, while the red
line represents the smoothed RSSI using a Window Moving Average Filter (WMAF).
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Figure 1. RSSI of a in-motion capture.
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3.2. Relation between RSSI and Distance

Since the ground truth of the in-motion capture is known, the actual distance between the
transmitter and the receiver can be computed. Figure 2 shows the RSSI reported at the corresponding
distance represented by the red line. As expected, the Wi-Fi signal fades with distance [5,7]. However,
Equation (1) is unable to fully characterize the behavior of the RSSI metric [23].

As shown in Figure 2, the value of the RSSI remains practically constant at the closest distances to
an AP. This fact has been studied in [24], where the authors conclude that such distances (less than
20λ) exhibit an NLOS behavior, i.e., there is hardly any signal fading. Distances between 20λ and 15 m,
which in our case corresponds with LOS situations and the first NLOS situations, exhibit high signal
fading. Larger distances than 15 m, i.e., hard NLOS situations, exhibit low signal fading.
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Figure 2. Received signal strength indicator (RSSI) and distance evolutions of a in-motion capture.

3.3. Path Loss Exponent Evolution

Since our approach is based on the LDPLM range-based model, we should start by estimating the
path loss exponent value. Traditionally, this value is inferred using RSSI captures taken in a predefined
set of measurement points. However, this approach is not able to show the actual behavior of such
parameters in indoor tracking systems due to the absence of motion in the capturing process.

Instead, in this work the path loss exponent value is inferred using Equation (1) with the smoothed
in-motion RSSI capture and the actual distance. The results can be seen in Figure 3, which plots the
path loss exponent as a function of distance. The results show that when the smartphone is placed very
close to the AP (less than 20λ), the value of the path loss exponent value is at its highest. As expected,
we found out that as far as the smartphone is displaced across our lab, always under LOS conditions,
the value of the n remains close to 2. Furthermore, as soon as we placed the smartphone under
NLOS conditions, the path loss exponent value increases up to 3. This results shows the fundamental
difference between classical approaches and the actual in-motion path loss exponent behaviour.
Traditionally, two path loss exponent values are used: one in LOS conditions and another one in NLOS
conditions [22]. We found based on our results that the path loss exponent value needs to be gradually
increased when NLOS starts to reach a value close to 3.
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Figure 3. Path loss exponent value vs distance of a in-motion capture.

From the above, we can make the following observations:

• A smoothing algorithm needs to be used in order to reduce the inherent Wi-Fi signal noise.
• The in-motion RSSI value evolution shows a fading-relation with distance. However, the fading

exhibits a different behavior depending upon the distance and LOS condition between the
transmitter and the receiver.

• Different path loss exponent values are needed to be used according to the distance between
transmitter and receiver devices.

4. Calibration Methodologies for Smartphone-Based Indoor Tracking Systems

In this section, we first introduce two different calibration methodologies to be potentially
included in the development process of smartphone-based indoor tracking systems. Our study is
motivated by our preliminary findings reported in Section 3. The ultimate goal of our study is
therefore to identify the best calibration methodology to create accurate and robust signal propagation
representations for each AP in the target environment, i.e., to properly establish the LDPLM’s path
loss exponent value.

The calibration process for both methodologies starts by capturing, throughout the environment,
RSSI samples in order to create a spatial signal propagation representation of each access point.
As explained below, static and in-motion sample gathering procedures are considered. Our goal is
therefore to solve Equation (1) to determine the values of the path loss exponent, n for each access point:

n =
Pr(d)− Pr(d0)

−10 · log10(
d
d0
)

(2)

Figure 4 shows the five proposed signal propagation representations, of which two of them are
obtained using the static calibration method, while the three others are determined using the in-motion
calibration method. The following sections explain the overall calibration methodologies.
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Figure 4. Proposed signal propagation representations.

4.1. Static Calibration Methodology

The static calibration methodology is named static due to its RSSI capture procedure is performed
motion-free by placing the smartphone at several independent measurement points whose coordinates
are known. The pedestrian who holds the smartphone remains stationary in each measurement point
while the smartphone is capturing the RSSI samples.

This calibration methodology is based on a previous work [8], where we proposed using
(1) the RANdom SAmple Consensus (RANSAC) algorithm to smooth the signal noise and (2) an
environment zone division based on environment’s structural changes. RANSAC is an iterative
method for estimating a mathematical model from a dataset likely to contain outliers. It iteratively
estimates models from random subsets of the original data that are then evaluated against the complete
data set until some conditions about the model are met. The use of RANSAC is fully justified due to the
unpredictable nature of Wi-Fi signal. This approach is capable of defining one LOS situation and several
NLOS situations for each AP and assigning a different path loss exponent value to each combination.

The entire calibration procedure can be seen in Figure 5. First, several measurement points are
distributed along the target environment. The point distribution has to cover most of the target
environment in order to capture the RSSI of each AP at several distances. Then, the static RSSI capture
is performed as commented above. Finally, two signal propagation representations are proposed:
Static One (SO) and Static Zone (SZ). The following section explains both representations.
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Figure 5. Static calibration methodology procedure. RANdom SAmple Consensus (RANSAC) algorithm.

4.1.1. Static One Representation

The entire RSSI raw dataset is firstly smoothed using RANSAC algorithm. Then, using the
resulting smoothed dataset, a single path loss exponent value for each AP is computed by averaging
all infered path loss exponent values.

4.1.2. Static Zone Representation

The environment is divided into several zones according to environment structural changes such
as presence of corridors or rooms. In that way, measurement points can be classified in the zone they
belong. Then, each raw RSSI zone dataset is smoothed using RANSAC algorithm. The resulting
smoothed zone dataset is finally used to compute one path loss exponent value for each combination
of AP and zone by averaging all values of each combination.

4.2. In-Motion Calibration Methodology

As Section 3 demonstrated, the in-motion signal behaviour needs to be included in the calibration
methodology in order to obtain a more illustrative signal propagation representation. This section
presents a calibration methodology that incorporates the in-motion behavior into the calibration
process. The entire methodology can be seen in Figure 6.

To incorporate the in-motion signal behavior, the static calibration methodology has been
redrafted. Instead of defining several measurement points throughout the environment and capturing
the RSSI at each one separately, a trajectory is defined and traveled by a pedestrian holding a
smartphone. The coordinates of each sample are recorded. To do that, a synchronized auxiliary
localization system can be used. If this is not possible, the trajectory can be designed by defining
several control points and interpolating the positions between two consecutive control points.
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Figure 6. In-motion calibration methodology procedure. Window Moving Average Filter (WMAF).

The resulting in-motion capture, which is composed of the (RSSI, distance) tuples of all points in
the trajectory, is subsequently used to compute the path loss exponent evolution, previous smoothing
as stated in Section 3. In this way, one path loss exponent value for each trajectory point is computed
using Equation (1). Finally, three Wi-Fi signal propagation representations are proposed: in-Motion
One (MO), in-Motion Zone (MZ) and in-Motion Grid (MG).

4.2.1. In-Motion One Representation

A single path loss exponent value is obtained for each AP by averaging all values of the path loss
exponent evolution.

4.2.2. In-Motion Zone Representation

The environment is divided into several zones according to environment structural changes,
following our previous approach [8]. Then, a path loss exponent value for each combination of zone
and AP is computed by averaging the values of the path loss exponent evolution that belong to the
zone. To do that, the position of each RSSI measurement is used.

4.2.3. In-Motion Grid Representation

The path loss exponent is a distance-dependent parameter, as stated in the in-motion signal
behavior analysis (Section 3). The zone-based representations are able to describe both LOS and
NLOS situations, however, they are not able to describe the in-motion path loss exponent evolution
within a zone. For this reason, a grid-based representation which enables a progressive evolution both
throughout the environment and within a zone is proposed.

The environment is divided into several δx-meter-side square cells. Then, each cell receives its
own path loss exponent value using the Kriging interpolation technique. This interpolation technique
has been widely used in closely related areas, such as wireless sensor networks [25], and precision
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agriculture [26] among others. Kriging extends the simplistic distance method by a realistic spatial
correlation model. It determines the experimental variogram defined as a sampling function of a
phenomenon and the distance between the corresponding sampling location.

5. Particle-Filter-Based Indoor Tracking Algorithm

In this section, we present the indoor tracking algorithm of our system, which is based on a
particle filter able to incorporate the proposed calibration methodologies. A particle filter uses the
Bayesian theory to sequentially process signals likely to contain noise in order to estimate a time-based
system state.

The indoor tracking problem can be modeled using a particle filter localization approach,
specifically using the Monte Carlo Localization (MCL) algorithm, by defining the system state as:

~xt = [xt, yt]
T (3)

which represents the Cartesian coordinates of the smartphone inside the target environment, at time
step t.

The particle filter estimates the posterior distribution of the state based on some noisy-likely
measurements Zt, that is p(~xt|Zt). In our case Zt is represented by the RSSI captures of each AP.

In sampling-based methods the density p(~xt|Zt) is represented by a set of N random samples or
particles Xt = {(~xi

t, wi
t), . . . , (~xN

t , wN
t )} drawn from it, where ~xi

t is the system state and wi
t is the weight

(likelihood) of the i-th particle at time t.
A particle filter is typically defined by three iterative steps after the particle initialization: motion

update, measurement update and resampling. In this work, we have redrafted the measurement
update step, introducing the RSSI estimation into this process. In addition, a new step before the
resampling step called as current state estimation has been included. This step provides explicitly the
user position estimation for every time t in order to be able to track the trajectory of the user.

The entire workflow of the designed indoor tracking algorithm can be seen in Figure 7 (left).
The following sections explain all steps involved into this method.

Initialization

Resampling 

Motion update

Measurement 
update 

New iteration

Current 
state  

estimation

Measurement update

Real-time  
RSSI 

capture 

Smooth  
RSSI

Signal propagation 
representation

Estimate  
RSSI 

Weight update

Figure 7. Indoor tracking algorithm: workflow (left) and detailed measurement update stage (right).

5.1. Initialization

The initialization deploys randomly several (N) particles along the environment and set the
particle’s weights uniformly. That is, for t = 0:

{wi
0}N

i=1 :=
1
N

(4)
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5.2. Measurement Update

The measurement update step computes the probability distribution function (PDF) of the particles
based on Zt measurements and particles position. Traditionally, this process can be expressed as:

wi
t = p(Zt|~xi

t) (5)

In order to make the state estimation as realistic as possible, the measurement update step has
been redrafted. First, the algorithm estimates the RSSI of all APs in each particle position ~xi

t using a
particular signal propagation representation. This can be done since both particle positions and AP’s
positions are known. Moreover, the Zt measurements are smoothed using a Window Moving Average
Filter in order to reduce the Wi-Fi signal noise. Both filtered RSSI and estimated RSSI are subsequently
used to compute the weight of each particle, as can be seen in Figure 7 (right).

Finally, a weight normalization is needed in order to define a probability distribution over
the weights:

w̄i
t =

wi
t

∑N
j=1 wj

t

, i = 1, . . . , N (6)

5.3. Current State Estimation

The current state estimation (i.e., the current smartphone/user position), denoted by ~̂xt, is obtained
based on both particle positions and weights of current time t. First, the particle set is sorted in
descending order according to particle’s weights. Then, the state estimation is computed using a
weight-weighted average of the M more-likely particles:

~̂xt =
1
M

M

∑
i=1

~xi
t · w̄i

t (7)

5.4. Resampling

The resampling is the process of selecting the next population of particles Xt+1. The selection
is adopted to eliminate particles with small weights by replacing them by high-weight particles,
following the Monte Carlo’s selection. More formally the resampling process consists of building the
set Xt+1 drawing N particles ~xi

t from Xt with probability ∝ wi
t.

5.5. Motion Update

The last step of a particle filter iteration is the motion update. The position of each selected
particle is modified in order to apply the device’s motion, usually using a step counter and a heading
estimator. Since these measurements cannot be extracted from Wi-Fi technology, a random motion
update is applied.

6. Experimental Results

In this section, we show the results of the experiments carried out to evaluate the indoor tracking
system. The primary goal of the experiments is to determine the best calibration methodology to
be used in deploying an indoor tracking system for smartphones. To reach this goal, we compare
both static and in-motion signal propagation representations in terms of (1) suitability of the signal
propagation representation and (2) tracking accuracy in meters.

6.1. Environment Definition

We set up our experimental platforms in one of the labs of the Albacete Research Institute of
Informatics, University of Castilla-La Mancha, Spain. The lab layout and dimensions are similar to
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those used in comparable research studies [27]. Figure 8 shows the floor plan of the lab. The lab
dimensions are 28.7 m long and 6.4 m wide, i.e., the total area is 183.68 m2

The benchmark lab is divided into four accessible zones, identified in the Figure by capital
letters A, B, C, and D; and two professor offices which were intentionally non-accessible during our
experimental sessions. This division was made in that way with the only purpose of making the
environment as realistic as possible, in which we will typically have to deal with non-public access
areas. More specifically, zones A and C, are two computer labs of 9 m long and 6 m wide, each. Zone
B, is a corridor of 10.7 m long and 1.2 m wide. Zone C is a meeting room of 5 m long and 5 m wide.
The two computer labs are furnished with tables located against the walls. The meeting room is
furnished with a table and chairs placed in the middle.

Figure 8. Experimental environment layout. White squares denote the location of APs.

As shown in Figure 8, our experimental wiress platform consisted of five wireless APs. All five APs
were of the brand TP-LINK AC1750 Archer C7 implementing the IEEE 802.11ac standard. The number
of APs as well as the position of each one in the enviroment have been selected following the
recommendations provided by major manufacturers [28] on the deployment of Wi-Fi-based location
services. First, the recommendations state that the APs should be installed in every corner of the
environment and additional APs may be included in areas where accuracy is desired to be improved.
In addition, for devices to be tracked properly, at least three APs should be detected in each position of
the environment with a RSSI greater than −75 dBm. Furthermore, in order to ensure LOS situations
for each AP in the zone they are placed, the APs should be placed in the ceiling. In our case, we have
placed one AP at each corner and another one in the central meeting room, all of them in the ceiling.

6.2. Experimental Setup

In order to evaluate all proposed calibration methodologies in a real-world scenario, both static
and in-motion calibration methodologies have been carried out. To do that, two RSSI capturing
processes to be executed using a LG Nexus 5 as a capture device have been designed.

The static RSSI capturing process is performed by gathering the RSSI value in 30 static
measurement points, whose coordinates can be seen in Figure 9. The measurement points have
been distributed based on the area of each zone. In this way, zones A and C have 11 measurements
points each. Zones B and D have three and five measurements points, respectively. The pedestrian
who holds the smartphone remains stationary in each measurement point during one minute while
the smartphone is capturing RSSI.

Figure 9. Measurement points distribution of static RSSI captures.

The in-motion RSSI capturing process is carried out by traveling a designed trajectory covering
most of our target environment, which can be seen in Figure 10, while the capture device is gathering
the RSSI. The trajectory is traveled two times to carry out two in-motion captures. The differences
between the two in-motion captures are the starting point (which is the same that the final point) and
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the followed direction, as can be seen in Figure 10. The trajectory shown on left is used to perform the
calibration/training stage, while the one shown on the right is used to test the indoor tracking system.

Figure 10. Trajectories of in-motion RSSI captures: for calibration (left) and for tracking (right).

The resulting static capture and in-motion calibration capture are subsequently used to build two
static and three in-motion signal propagation representations following the instructions specified in
Section 4. As stated above, static signal propagation representations are Static One (SO) and Static
Zone (SZ), while in-motion signal propagation representations are in-Motion One (MO), in-Motion
Zone (MZ) and in-Motion Grid (MG).

6.3. Comparison of Signal Propagation Representations

In this section, we present a comparison between the outputs (i.e., path loss exponent values)
of both static and in-motion calibration methodologies in order to assess the suitability of signal
propagation representations. Despite the path loss exponent values are unitless, all of them are
expected to be in the range [2,3], proposed in [7]. In addition, and as observed in the experimental
results carried out in this paper, the higher distance to an AP, the higher path loss exponent value.

First, we compare the path loss exponent values of both one-based signal propagation
representations, which can be seen in Table 1. All in-motion representation values are inside the
expected range, while static representation values are not. Therefore, static representation is expected
to achieve very low tracking accuracy.

Table 1. Path loss exponent values of Static One (SO) and in-Motion One (MO) representations of all
Access Points (AP).

AP1 AP2 AP3 AP4 AP5

SO MO SO MO SO MO SO MO SO MO

3.458 2.599 3.212 2.423 3.092 2.029 3.234 2.571 3.287 2.712

Furthermore, both zone-based signal propagation representations are compared. This comparison
can be seen in Table 2. The bold-marked values correspond to a LOS situation, where the minimum
value of the representation is expected to be obtained. In-motion representation always achieves the
expected behaviour, while static representation do not in all cases. For instance, the static representation
minimum value is only obtained correctly for AP3.

Table 2. Path loss exponent values of Static Zone (SZ) and in-Motion Zone (MZ) representations of all
Access Points (AP). Bold-marked values correspond to LOS situations.

AP1 AP2 AP3 AP4 AP5

Zone SZ MZ SZ MZ SZ MZ SZ MZ SZ MZ

A 3.234 2.269 2.882 2.033 3.154 2.303 3.344 2.867 3.665 3.067
B 3.232 2.639 2.794 2.447 2.908 2.026 1.739 2.555 3.175 2.785
C 3.638 2.939 3.510 2.725 3.119 1.902 2.743 2.203 3.161 2.209
D 2.511 2.554 2.519 2.538 2.048 1.808 2.989 2.692 3.126 2.871

From the results, we can conclude that in-motion calibration representations exhibit the desired
path loss exponent behavior. In contrast, although our previous work demonstrated the static
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calibration methodology improves the RSSI estimation, the static calibration representations are
incoherent. This is due to the fact that our previous work made use of Raspberry devices, whose signal
dispersion is much smaller than the smartphone signal dispersion. Therefore, the proposed in-motion
calibration methodology is capable of representing correctly the path loss exponent behavior using a
high signal-dispersed device.

6.4. Tracking Accuracy

In this section, the tracking accuracy in meters of both static and in-motion calibration
methodologies is shown. Each signal propagation representation is used by the particle filter to
estimate the trajectory of the device from the in-motion tracking capture.

The tracking accuracy results of all signal propagation representations can be seen in Figure 11.
The left figure shows the mean tracking error of each signal propagation representation, while the right
figure shows the cumulative distribution function of each signal propagation representation. In-motion
signal propagation representations obtain more robust and accurate localization results, as expected
from the conclusions of previous section. In addition, zone-based representations outperform
one-based representations, due to the tracking algorithm has more representative information about
signal propagation. Finally, there are insignificant differences between grid-based and zone-based
in-motion signal propagation representations.
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Figure 11. Tracking accuracy per signal propagation representation: mean error (left) and cummulative
distribution function (right).

The tracking algorithm results are also depicted in Figure 12 as a heat-map in order to represent
the tracking error in meters along the whole environment. The uncovered areas by in-motion trajectory
has been interpolated using the Kriging algorithm. The maps show the improvement achieved by
in-motion representations in comparison with static representations. While static one representation
presents a mean error over 6 m in almost entire environment, both grid-based and zone-based in-motion
calibration representations exhibit a mean error close to 1.5 m.
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Static One Static Zone

In-motion One In-motion Zone

In-motion Grid

Figure 12. Localization error per calibration procedure in whole environment.

7. Conclusions

In this paper, we have studied the in-motion Wi-Fi signal behavior using a smartphone perspective
in order to design an indoor tracking system calibration methodology to be used by such devices.
Based on this study, an in-motion calibration methodology, which creates three different signal
propagation representations from an in-motion RSSI capture, has been proposed. In order to cope
with the inherent noise of Wi-Fi signals, a Window Moving Average Filter is applied to the raw RSSI
capture. In addition, a particle filter particularly tailored based on our approach has been implemented
to perform the tracking stage.

The whole indoor tracking system has been evaluated in a multi-room office laboratory
of 183.68 m2 using the proposed static and in-motion calibration methodologies. Based on our
experimental results, the in-motion calibration methodology outperforms the tracking accuracy
achieved by motion-free (static) calibration methodology. This is due to the lack of motion in the
calibration process causes a misrepresentation of the actual signal propagation in indoor scenarios.

As a future work, we propose the incorporation of another information source such as
smartphone’s Inertial Measurement Units or Bluetooth technology. The first one is able to estimate
the smartphone’s motion, which can be incorporated to the particle-filter-based tracking algorithm in
order to update the motion. The second one can help to define areas where the smartphone is more
likely to be found. In addition, we are interested in the calibration of new smartphones based on
the signal propagation representations proposed in this paper and the real-time modification of such
representations in order to cope with signal propagation changes of Wi-Fi signal. Furthermore, in
order for our indoor tracking system to be reproducible in other environments, both the selection and
placement of APs will be evaluated in future works.
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